
Exact and Approximate Computational Geometry

Solutions Of An Unrestricted Point Set Stereo

Matching Problem 1

Frank Dehne

School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6

dehne@scs.carleton.ca

Katia Guimar~aes �

Departamento de Inform�atica

Univ. Federal de Pernambuco

50732-970 Recife, Pe, Brasil

katia@di.ufpe.br

Abstract

In this paper we study the problem of computing an exact, or arbitrarily close to exact,

solution of an unrestricted point set stereo matching problem. Within the context of classical

approaches like the Marr-Poggio algorithm, this means that we study how to solve the un-

restricted basic subproblems created within such approaches, possibly yielding an improved

overall performance of such methods.

We present an O(n2+4k) time and O(n4) space algorithm for exact unrestricted stereo

matching, where n represents the number of points in each set and k the number of depth

levels considered. We generalize the notion of a �-approximate solution for point set con-

gruence to the stereo matching problem and present an O(( �
�
)kn2+2k) time and O( �

�
n
2) space

�-approximate algorithm for unrestricted stereo matching (� represents measurement inaccura-

cies in the image). We introduce new Computational Geometry tools for stereo matching: the

translation square arrangement, approximate translation square arrangement and approximate

stereo matching tree.

1 Introduction

Binocular stereo is a technique used in machine vision for creating depth perception from two

2-D images (views) recorded from di�erent angles. The di�erence in location of the same object

in the two views, also called binocular disparity, determines the depth (i.e. location in the third

dimension) of an object. The primary computational problem of binocular stereo, called the stereo

matching problem, is to identify corresponding objects in the two views (see e.g. [2]). The stereo

matching problem has been extensively studied in the vision literature, see e.g. [2, 3, 4, 5, 6,

7, 10, 11, 12, 14, 15, 16, 18]. Considerable investigation has been dedicated to the random-dot

stereogram which consists of two syntetic images of uncorrelated dots that happen to be two views

of the same surface. The question studied is to retrieve depth information in such a stereogram

which contains no other cues besides location (in contrast to, e.g., knowledge-based approaches

which also use shape, intensity, etc.).

The majority of solutions to the stereo matching problem presented in the literature use order

preserving restrictions, heuristics, simulated annealing or other random optimisation methods. A
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classical approach is the Marr-Poggio algorithm [10, 11, 12]. It uses several versions of the image

with increasing resolution, and solves the stereo matching problem for each version by using the

results obtained for the previous versions together with order preserving restrictions. The problem

is reduced to a large number of unrestricted stereo matching problems for considerably smaller

subsets and considerably fewer possible depth levels. We will refer to these problems as the basic

subproblems. The Marr-Poggio and related algorithms solve the unrestricted basic subproblems

by brute force.

In this paper we study the problem of computing an exact, or arbitrarily close to exact, solution

for unrestricted point set stereo matching. Within the context of stereo matching approaches

like the Marr-Poggio algorithm this means that we study how to solve the unrestricted basic

subproblems faster than by brute force and thereby obtain an improved overall performance. We

show that an unrestricted basic subproblem can be solved in polynomial time without any loss

in accuracy. An arbitrarily close to exact solution can be found with a further improved time

complexity.

The follwoing is the formal de�nition of the unrestricted point set stereo matching problem

studied in the remainder.

Let A = fa1; : : : ; ang and B = fb1; : : : ; bng be two sets of points in R
2 representing two views.

A (k; �)-stereo matching, �, for A and B, where � > 0 and 1 � k � n, is comprised of (a) a

partitioning of A and B into k subsets A1; : : : ; Ak, and B1; : : : ; Bk, respectively, (b) k bijections

li : Bi ! Ai, 1 � i � k, (called labelings) and (c) k translation vectors t1; : : : ; tk with the the

following property: For all 1 � i � k and b 2 Bi, dist(b + ti; li(b)) � �. All distances dist(:; :)

will be measured with respect to the L1 metric. The (k; �)-stereo matching problem for A and B

consists of �nding such a stereo matching, if it exists.

In the above de�nition, k corresponds to the number of depth levels to be considered, A1; : : : ; Ak

and B1; : : : ; Bk represent the points in the di�erent depth layers, and li : Bi ! Ai, 1 � i � k the

matchings between those points. Due to inaccuracy in measurings, some degree of noise tolerance

is necessary, which is represented by the factor �.

In Section 2 of this paper we present an algorithm for solving the (k; �)-stereo matching

problem in time O(n2+4k) and space O(n4). Our polynomial time soltution is without any loss in

accuracy.

The (k; �)-stereo matching problem for the special case of k = 1 is also called the point set

congruence problem, for which an O(n6) time algorithm was presented in [1].

Let �0 be the smallest � such that A and B have a (k; �)-stereo matching. De�ne the �-

approximate (k; �)-stereo matching problem, 0 < � < �, as follows: If j�0��j > �, �nd a (k; �)-stereo

matching for A and B (if exists), otherwise return \don't know". The �-approximate (k; �)-stereo

matching problem is a relaxed version of stereo matching, where our algorithm has to produce a

correct result only for values of � outside the �-range of the threshold value �0. In general, this

relaxation is not critical in practice, but it will allow for a considerable speedup of the algorithm.

In Section 3 of this paper we present an algorithm for solving the �-approximate (k; �)-stereo

matching problem in time O(( �
�
)kn2+2k) and space O( �

�
n2)). Again, for j�0 � �j > �, our solution

is without any loss in accuracy.

The special case k = 1, called approximate point set congruence, was introduced in [17] and

subsequently also studied in [8]. O(( �
�
)2n2:5) and O(( �

�
)6n3) time algorithms, respectively, were

presented.

Our methods for the general (k; �)-stereo matching problem are a non trivial generalization

of [8]. The algorithms in [17] and [8] are based on using the centroids and lower left corners,

respectively, of the two sets A and B. This is not possible for the general (k; �)-stereo matching

problem, as the partitioning into subsets A1; : : : ; Ak, and B1; : : : ; Bk is not given a priori (while for
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A B

Figure 1: Two Points Sets A and B and Their Translation Square Arrangement.

k = 1 the partitioning is trivial). Computing this partitioning of A and B is the major additional

problem for stereo matching. We present a new tool, the translation square arrangement, and

a new approximation scheme yielding an approximate translation square arrangement. Based on

this arrangement, we build an approximate stereo matching tree which is the main data structure

guiding our algorithm. Our approximation scheme has subtle but important di�erences from [8].

It allows us to prove some combinatorial properties of the approximate stereo matching tree and

relationships between approximations and exact solutions which yield the obtained results.

2 (k; �)-Stereo Matching

For a =

�
a1

a2

�
2 A and b =

�
b1

b2

�
2 B, the square with side length 2� centered at a � b =�

a1 � b1

a2 � b2

�
is called the translation square s�(a; b). Notice that the square s�(a; b) represents all

translation vectors ti such that dist(b + ti; a) � �. We call S� = fs�(a; b) j a 2 A; b 2 Bg the

translation square arrangement (see Figure 1). Note that jS�j = n2.

Let RS� denote the set of regions in the plane created by S�, where all regions not intersecting

any s 2 S� are identi�ed as one single region called the external region.

Observation 1 jRS� j = O(jS�j
2) = O(n4).

Let G
adj

S�
= (RS� ; E

adj

S�
) be the adjacency graph of RS� with vertex set RS� and edge set E

adj

S�

connecting all pairs (r1; r2) of adjacent regions of RS� that share a common boundary edge (not

just a vertex). Since G
adj

S�
is planar (except for the subgraph induced by the node representing

the external region) and G
adj

S�
can be constructed by a standard plane sweep (see e.g. [13]), we

observe the following:

Observation 2 jGadj

S�
j = O(jRS�j) = O(n4), and G

adj

S�
can be constructed in time O(n4 logn).

For a region r 2 RS� , let E
cand

S�
(r) = f(a; b) 2 A � B j r � s�(a; b)g denote the candidate

edges induced by r. For k regions r1; : : : ; rk de�ne the translation square graph G
tsg

S�
(r1; : : : ; rk) =

(A [B;Ecand

S�
(r1) [Ecand

S�
(r2) [ : : :[ Ecand

S�
(rk)). Note that G

tsg

S�
(r1; : : : ; rk) is a bipartite graph.

We now discuss the relationship between the translation square arrangement and (k; �)-stereo

matchings. Consider k regions r1; : : : ; rk of RS� and assume that the translation square graph

G
tsg

S�
(r1; : : : ; rk) has a perfect matching �. In such a case, the following de�nes the (k; �)-stereo

matching induced by (r1; : : : ; rk) and �, referred to as ��
S�
(r1; : : : ; rk): The subsets Ai and Bi

(1 � i � k) are the sets of point a 2 A and b 2 B, respectively, incident to those edges of the

perfect matching � that are contained in the edge set Ecand

S�
(ri). The edges of E

cand

S�
(ri) selected
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in the perfect matching � de�ne labeling li, and translation vector ti is the centroid (center of

gravity) of ri, 1 � i � k. Note that, any point inside ri could be selected as a possible translation

vector ti.

For the remainder, we will ommit the subscript � if it is obvious from the context.

Lemma 1 Every (k; �)-stereo matching of A and B corresponds to a k-tuple r1; : : : ; rk of regions

of RS such that the translation square graph G
tsg

S
(r1; : : : ; rk) has a perfect matching, and vice

versa.

Proof. Given k regions r1; : : : ; rk of RS such that G
tsg

S
(r1; : : : ; rk) has a perfect matching �, then

��
S
(r1; : : : ; rk) is a (k; �)-stereo matching. On the other hand, consider a (k; �)-stereo matching �.

Denote with r1; r2; : : : ; rk the k regions of RS which contain the k translation vectors of �. All

labelings li of �, taken together, correspond to a subset of edges (a; b) in G
tsg

S
(r1; : : : ; rk) which is

a perfect matching for G
tsg

S
(r1; : : : ; rk). 2

Recall the following results from [9] on computing maximum matchings.

Lemma 2 [9]

(a) A maximum matching in a bipartite graph with n vertices and e edges can be found in time

O(n2:5).

(b) Given a maximum matching in a graph G with n vertices and e edges, and another graph G0

with the same vertices which di�ers from G by at most one edge, then a maximum matching

for G0
can be found in time O(e).

After the following de�nition, we are ready to present an algorithm for computing a (k; �)-

stereo matching for two point sets A and B.

For any sequence � = (x1; : : : ; xM) let �[k] be the sequence of k-tuples of elements of � in

lexicographic order, i.e. �[k] = ((x1; : : : ; x1; x1; x1), (x1; : : : ; x1; x1; x2), : : : ; (x1; : : : ; x1; x1; xM),

(x1; : : : ; x1; x2; x1), : : : ; (xM ; : : : ; xM ; xM ; xM)).

Algorithm 1 (k; �)-Stereo Matching

(1) Compute S, RS , and the adjacency graph G
adj

S
.

(2) Consider any (e.g. depth-�rst) traversal of Gadj(RS) starting at some vertex v, traversing

the entire graph Gadj(RS), and returning to the same vertex v. This induces a sequence �

of regions ri 2 RS which contains each region at least once.

For each k-tuple of regions (r1; : : : ; rk) 2 �[k] determine if the respective translation square

graph G
tsg

S
(r1; : : : ; rk) has a perfect matching. Compute a maximum matching for the �rst

k-tuple by using Lemma 2(a) and for all subsequent k-tuples by using Lemma 2(b).

(3) If, in Step 2, a graph G
tsg

S
(r1; : : : ; rk) with perfect matching � has been found, report the

(k; �)-stereo matching ��
S
(r1; : : : ; rk) induced by (r1; : : : ; rk) and �; otherwise report that no

(k; �)-stereo matching exists.

| End of Algorithm |

Theorem 1 The (k; �)-stereo matching problem for two point sets A and B with n points each,

� > 0, can be solved in time O(n2+4k) and space O(n4).
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Proof. The correctness of Algorithm 1 follows from Lemma 1. The time complexity of Step

1 is O(n4 logn), see Observation 2. Note that, when traversing G
adj

S
in Step 2, any particular

region might be traversed several times. However, the total number of regions traversed in � is

O(jRSj) = O(n4), see Observation 2. Hence, the number of k-tuples of regions enumerated in

sequence �[k] of Step 2 is O(n4k). The translation square graphs for two consecutive k-tuples of

regions di�er in 1 edge, and the size of each translation square graph is O(n2). Therefore, the

time for computing/maintaining the maximum matchings for all k-tuples of regions is O(n2+4k).

The time for Step 3 is dominated by the time for Step 2. Thus, the claimed time complexity for

Algorithm 1 follows. The space requirement of Algorithm 1 is determined by the space for the

adjacency graph G
adj

S
which is O(n4), see Observation 2. 2

3 Approximate (k; �)-Stereo Matching

Let �0 be the smallest � such that A and B have a (k; �)-stereo matching. We recall the de�nition

of the �-approximate (k; �)-stereo matching problem, 0 < � < �, given in Section 1: If j�0 � �j > �,

�nd a (k; �)-stereo matching for A and B (if exists), otherwise return \don't know".

For ease of description we assume that �

�
is an integer. However, all results presented in the

remainder hold for any 0 < � < �.

We de�ne the approximate translation square arrangement, S�
�
as follows: Let the �-grid be a

grid of horizontal and vertical lines of distance �, respectively, covering the entire plane. The line

crossings are called gridpoints. For each translation square s�(a; b) 2 S� de�ne as its approximation

s�� (a; b) the square obtained from s�(a; b) by moving its center to the closest gridpoint. Let

S�� = fs�� (a; b) j s�(a; b) 2 S�g be the approximate translation square arrangement.

Note that several translation squares s�(a; b) might have the same approximation. For each

s� 2 S�� we de�ne its multiplicity m(s�) = jfs�(a; b) 2 S� j s
�

� (a; b) = s�gj.
Analogously to Section 2 we de�ne for S�

�
(instead of S�) its set of regions RS�

�
, adjacency

graph G
adj

S��
, the candidate edges Ecand

S��
(r) induced by r 2 RS��

, the translation square graph

G
tsg

S��
(r1; : : : ; rk) for r1; r2; : : : ; rk 2 RS��

, and the induced (k; �)-stereo matching ��
S��
(r1; : : : ; rk) if

G
tsg

S��
(r1; : : : ; rk) has a perfect matching �.

The main advantage of the approximate translation square arrangement S�� is that it has a

considerably smaller number of regions.

Lemma 3 jRS��
j = O( �

�
jSj) = O( �

�
n2).

Proof. Let B be the set of regions of the �-grid adjacent to the border of some s 2 S�� . Since

each region r 2 RS�
�
contains a (distinct) region of B, it follows that jRS�

�
j � jBj. On the other

hand, each s 2 S�� has at most O( �
�
) regions of the �-grid adjacent to its border, which implies

that jBj = O( �
�
n2). 2

If G
tsg

S�
�

(r1; : : : ; rk) has a perfect matching � for some k regions r1; : : : ; rk 2 RS��
of the approx-

imate translation square arrangement S�� , then ��
S��
(r1; : : : ; rk) is called a (k; �; �)-stereo matching

approximation for A and B.

In the remainder of this section we �rst show how to e�ciently compute a (k; �; �)-stereo

matching approximation (if exists), and then study how a stereo matching approximation can be

used to solve the �-approximate stereo matching problem. Note that the latter problem requires

an \exact" (k; �)-stereo matching to be reported if j�0 � �j > �.

When it is obvious from the context, we will omit the subscript �.
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Figure 2: An Approximate Translation Square Arrangement and its Approximate Stereo Matching

Tree.

3.1 Computing A (k; �; �)-Stereo Matching Approximation

Analogously to Section 2 we make the following Observations.

Observation 3 (a) jGadj

S�
j = O(jRS�j) = O( �

�
n2), and

(b) G
adj

S�
can be constructed in time O( �

�
n2 logn).

Let T � be a spanning tree of the adjacency graph G
adj

S�
, rooted at the node representing the

external region. For each node of T � representing a region r 2 RS� , we will store the centroid

of r and the set Ecand

S��
(r) of candidate edges induced by r. Storing all sets Ecand

S��
(r) explicitly

requires space O( �
�
n4). In order to reduce this memory size we will represent all sets Ecand

S��
(r)

in an incremental way by storing Ecand

S�
�

(r) explicitly only for the root of T �, and for each edge

e = (r1; r2) of T
� the change between Ecand

S�
�

(r1) and Ecand

S�
�

(r2), referred to as �(e) = �(r1; r2).

The tree T � together with the centroids and incremental representation of the candidate edges is

called the approximate stereo matching tree T �. It will be our main tool for computing a stereo

matching approximation.

Lemma 4 X
e2T �

j�(e)j = O(
�

�
n2)

Proof. For each edge e = (r1; r2) of T
� let its weight w(e) be the sum of all multiplicitiesm(s),

s 2 S�, such that e crosses the boundary of s (i.e., r1 and r2 are on di�erent sides of the boundary

of s). The weight w(e) is equal to the number of candidate edge changes, j�(e)j. Let w(T �) =P
[e2T �]w(e) =

P
[e2T �] j�(e)j denote the total weight of T

�. We will show that w(T �) = O( �
�
n2).

For each region r 2 RS�, let w(r) =
P

[e edge of T � incident with r]w(e), and for each square

s 2 S�, let w(s) be the number of all edges e 2 T � that cross the boundary of s. It follows that

w(T �) = O

0
@ X
r2RS�

w(r)

1
A = O

 X
s2S�

m(s)w(s)

!
:
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For an s 2 S� and edge e = (r1; r2) 2 T
� crossing the boundary of s, r1 or r2 must be adjacent

to the boundary of s. For each s 2 S�, the number of regions adjacent to the boundary of s is

O( �
�
). Hence, w(s) = O( �

�
), and w(T �) = O( �

�

P
[s2S�]m(s)). Since

P
[s2S�]m(s) = jSj = O(n2),

it follows that w(T �) = O( �
�
n2). 2

Corollary 1 The approximate stereo matching tree T �
(together with the incremental represen-

tation of candidate edges) is of size O( �
�
n2), and can be built in time O( �

�
n2 log( �

�
n)).

Algorithm 2 Computing a (k; �; �)-Stereo Matching Approximation.

(1) Compute S�, RS� , G
adj

S�
, and the approximate stereo matching tree T � (together with the

incremental representation of candidate edges).

(2) Consider a depth-�rst traversal of T �, starting at the root, traversing T �, and returning to

the root. This induces a sequence � of regions ri 2 RS� which contains each region at least

once. For each k-tuple of regions (r1; : : : ; rk) 2 �[k] determine if the respective translation

square graph G
tsg

S�
(r1; : : : ; rk) has a perfect matching. Compute a maximum matching for

the �rst k-tuple by using Lemma 2(a) and for all subsequent k-tuples by using Lemma 2(b).

(3) If, in Step 2, a graph G
tsg

S�
(r1; : : : ; rk) with perfect matching � has been found, report

��
S�
(r1; : : : ; rk); otherwise report that no (k; �; �)-stereo matching approximation exists.

| End of Algorithm |

Theorem 2 A (k; �; �)-stereo matching approximation for two point sets A and B with n points

each, k � 2, 0 < � < �, (if exists) can be computed in time O(( �
�
)kn2+2k) and space O( �

�
n2).

Proof. The correctness of Algorithm 2 follows immediately from the de�nition of a (k; �; �)-stereo

matching approximation. The time complexity of Step 1 is O( �
�
n2); see Lemma 3, Observation 3,

Lemma 4 and Corollary 1. Note that, when traversing T � in Step 2, any particular region might be

traversed several times. However,the total number of regions traversed in � is O(jRSj) = O( �
�
n2),

see Observation 3. Hence, the number of k-tuples of regions enumerated in sequence �[k] of Step 2

is O(( �
�
)kn2k). From Lemma 4 it follows that the total number of edge updates for maintaining

the translation square graphs for all k-tuples of regions of � is also O(( �
�
)kn2k). The time per

edge update for maintaining the maximum matchings for a translation square graph is O(n2),

see Lemma 2(b). Hence, the time complexity for Step 2 is O(( �
�
)kn2+2k). The time for Step 3 is

dominated by the time for Step 2. Thus, the claimed time complexity for Algorithm 1 follows.

The space requirement of Algorithm 2 is determined by the space for T � which is O( �
�
n2), see

Observation 1. 2

3.2 Solving The �-Approximate (k; �)-Stereo Matching Problem

We will now study the relationship between (k; �; �)-stereo matching approximations and the �-

approximate (k; �)-stereo matching problem. Note that the latter problem requires not a stereo

matching approximation but an \exact" (k; �)-stereo matching to be reported if j�0 � �j > �.

Lemma 5 If � < �0� � then there exists no (k; �+ �

2
; �)-stereo matching approximation for A and

B.

7



(a) 
(b)
(c)
(d)

(e)

Figure 3: Containment Relationships Between Translation Squares And Their Approximations.

(a) s�
�+�=2

(a; b). (b) s�(a; b). (c) Center of s�(a; b). (d) s
�

���=2
(a; b). (e) Center of s�

���=2
(a; b) and

s�
�+�=2

(a; b).

Proof. Assume that � < �0�� and there exists a (k; �+�=2; �)-stereo matching approximation �

for A and B. Hence, there exist k regions r1; : : : ; rk 2 RS�
�+�=2

such that G
tsg

S�
�+�=2

(r1; : : : ; rk) has a

perfect matching � and � = ��
S
�

�+�=2

(r1; : : : ; rk). For any (a; b) 2 A�B we observe that s�
�+�=2

(a; b)

is contained in s�+�(a; b), see Figure 3. Thus, all edges of G
tsg

S
�

�+�=2

(r1; : : : ; rk) are also edges of

G
tsg

S�+�
(r1; : : : ; rk), and � is also a perfect matching for G

tsg

S�+�
(r1; : : : ; rk). Therefore, it follows

from Lemma 1 that ��
S�+�

(r1; : : : ; rk) is a (k; � + �)-stereo matching for A;B. A contradiction,

since � + � < �0. 2

Lemma 6 If � > �0 + � then there exists a (k; �� �

2
; �)-stereo matching approximation for A and

B.

Proof. Assume that � > �0 + �. Hence there exists a (k; � � �)-stereo matching � for A

and B. Consider the regions r1; : : : ; rk 2 RS���
de�ned in the proof of Lemma 1, such that

G
tsg

S���
(r1; : : : ; rk) has a perfect matching � and � = ��

S���
(r1; : : : ; rk). Since s���(a; b) is contained

in s�
���=2

(a; b) for all (a; b) 2 A�B (see Figure 3), it follows that all edges of G
tsg

S���
(r1; : : : ; rk) are

also edges of G
tsg

S�
���=2

(r1; : : : ; rk) and � is also a perfect matching for G
tsg

S�
���=2

(r1; : : : ; rk). Hence,

��
S
�

���=2

(r1; : : : ; rk) is a (k; �� �=2; �)-stereo matching approximation for A and B. 2

Lemma 7 If � > �0 + � then every (k; � � �

2
; �)-stereo matching approximation for A and B is

also a (k; �)-stereo matching for A and B.

Proof. Assume that � > �0 + � and let � be a (k; �� �=2; �)-stereo matching approximation for

A and B. Consider the regions r�1; : : : ; r
�

k
2 RS�

���=2
and perfect matching � for G

tsg

S�
���=2

(r�1; : : : ; r
�

k
)

such that � = ��
S�
���=2

(r�1; : : : ; r
�

k
). Let � be composed of a partitioning into subsets Ai and Bi,

labelings li, and translation vectors ti (1 � i � k) as given in the de�niton of ��
S�
���=2

(r�1; : : : ; r
�

k
).

Recall that ti is is a point inside r�
i
(1 � i � k). Let ri be the region of RS� that contains ti

(1 � i � k). Since s�
���=2

(a; b) is contained in s�(a; b) for all (a; b) 2 A � B (see Figure 3), all

edges in G
tsg

S
�

���=2

(r�1; : : : ; r
�

k
) are also edges of G

tsg

S�
(r1; : : : ; rk). Hence, � is also a perfect matching

for G
tsg

S�
(r1; : : : ; rk), and � is also a (k; �)-stereo matching for A and B; see Lemma 1. 2

The above three lemmas lead to the following algorithm for solving the �-approximate (k; �)-

stereo matching problem.
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Algorithm 3 �-Approximate (k; �)-Stereo Matching

(1) Using Algorithm 2, attempt to compute a (k; � + �

2
; �)-stereo matching approximation �1

for A and B. If no such stereo matching approximation is found, report \there exists no

(k; �)-stereo matching".

(2) Using Algorithm 2 attempt to compute a (k; �� �

2
; �)-stereo matching approximation �2 for

A and B. If such a stereo matching approximation �2 is found, report �2 as a (k; �)-stereo

matching for A and B. Otherwise, report \don't know: j�0 � �j � �".

| End of Algorithm |

Theorem 3 The �-approximate (k; �)-stereo matching problem for two point sets A and B with

n points each, k � 2, 0 < � < �, can be solved in time O(( �
�
)kn2+2k) and space O( �

�
n2).

Proof. The correctness of Algorithm 3 follows from Lemmas 5, 6, and 7, and its time complexity

and space requirement from Theorem 2. 2

4 Conclusion

We presented algorithms for solving the unrestricted (k; �)-stereo matching problem in time

O(n2+4k) and space O(n4), and the unrestricted �-approximate (k; �)-stereo matching problem

in time O(( �
�
)kn2+2k) and space O( �

�
n2). To obtain these results, we introduced the translation

square arrangement, approximate translation square arrangement and approximate stereo match-

ing tree. These structures have some interesting combinatorial properties which might make them

usefull for other applications as well.
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