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Parallel Computational Geometry is coneerned with solving somce given geometric problew of size
on a parallel computer with p processors (e, a PRAM, mesh, or hypereabe mnliprocessor) in time

Toaratier- Let Tocquentiai and 5, denote the sequential tuae comnplexity of the problem and
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the speedup obtained by the parallel solution, respectively. if S, = p, then the parallel algorithm s
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cleatly optimal. 'Fheoretical work for Parallel Computational Geometry has so far focusserd on the case
2o O(1). also referred to as the fine grained cose. However, for paraliel geomwetric algorithmg to be
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relevant in practice, such algorithms wust be scalable, that is) they must be applicable and officient for a
wiide range of ratios Z'

Most existing multicomputers (e.g. the Intel Pavagon. Tutel iIPSC/860, and CMVEDHY consist ol aset of p
state-of-the-art processors (e.g. SPARC proc.), cach with considerable local niemory, connected fo some
interconnection netwovk (e resh, hyperenbe, fat tree). For these machines, ! is considerably larger
than G(1). Therefore the design of scalable algorithrus s listed ax oue Tuajor g{).tl in ihe 1592 “Grand
Challenges” report [4].

Yet, only little theoretical work has been done for desigining sealable varalicl algorithrns for Compnn
tational Geowetry. Note that, if there exists an optimal fine grained algorithm, then, at least fron a
theoretical point of view, the problem is trivial Standard simuadation gives an optinal algorithm for any

“ . Many wultiprocessors provide svstem softwace tools ususally veferred o as wrbnal processors,

ratio =
for implementing such smudation.

However, for most interconmoection networks used in practice, many problos do net as et have fine
grained algorithins with lincar speedip, or such linear speedup parallel algorithius are impossible due to
handwidth or diameter limitations. Such a situation is depicted in Figure 1. It shows the speedip S, as a
function of . for 1 < p < n. The diagonal. curve “A”, represents an algorithin with linear speedip. The
vertical line throngh p = n represents the fine-grained case. Point “a” represents a fine-grained algorithm
with linear speedup. As mndicated above, Hnear speedup is nupossible to obtain for some networks (og.
meshes). Let point “h7 represent au optimal fine-grained algorithre with fess thau Hnear speedup. For
p < n, curve “B7 (the straight line from “b” to the onging shows the speedips obtained by standard
simulation. However, if “b” represents the oprimal fine-grained speeduop. then the entire enrve “B7 does
not necessarily represcot the optimal speedups for all possible ragios

We can show that, for a variety of geometiic problews, the actual curve of apiinial specdips for all
1< p < a convex curve similar to curve “C7 depicted i Fignee 10 That is for ! larger than Of 1), we
present algorithies with speedups considerably faster than what can be cbtained throngh the standard
virtwal processor simlation of fine-giained algovithins. It is conunou kunowledge that many theoretical
Parallel Computational Geometry algoriths perform nuserably in practice. The above observation

“This presentation reviews recent, joint work with A Fabo (INRIAL Sophis Autbipolisy, O Kenyon (N5 Lyon), and A,
Rau-Chapiin (IHMACS).
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aces to be one of the reasons. It contrast, experiuents with some of onr methods show that our
scalable algorithms designed for ‘{7 larser than O(1) secrn to have constdorabie practical relevince.

T o outshell, the basic idea for our niethods is as followss We iry fo combine optinal sequential
algorithins for a given problew with an efficicat glovel vouting and partitiomng mechamsm. We devise a
constant pumber of partitioning schemes of the global problein (o the entite data sot of 7 data items)
into p subproblems of size O(2). Each processor will solve {sequentially) o constant wosher of such
subproblems, and we nse a constant maeher of glalal routing operstions (o pennste the subproblens

vt

hetween the processors. Eveotnally, by combining the O(1) solutions ofit’s 1 'i’, size subproblenis. each

processor determines it's (%) size portion of the global sotution.
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The above is vecessarily an oversvaplification. 1The actual aigovithbms will do vore than just those

yormutations. Lhe main chalienge Hes in devising the above pentioned partitioniog schomes. Note that,
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cach processor will solve only o constant muober of O(7) size subproblems, but eventuadly wiill have to
determine iUs part of the eutive O{n) size problens. The most compiicated parn of the algorithn is to
ensnre that the algorithm will teruinate after Q1) global pormusation vounds,

Detefministic Methods For Scalable Parallel Computational Geomelry

In [2] we presented deterministic algorithms for the following well known gecmetric prohiems:
(1) Area of the union of rectangles m Z-space.
(2) 3D-maxiwa.
(2) All ucarest neighbors of a poiut set in 2space.

Lower envelope of non-interseeting line sepments in Z-space (and with slishely mwore meniory for
bossibily intersecting line segments).
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(5) 2D-weighted dominance connting.



(6) Multisearch on balanced search trees, seginent troe construction, and multiple segroout tree search.

We also studicd the following applications of (Gi: the problew of determining for a set of sinple polygons
in 2-space all directious for which a uni-divectional transiation ordering cxasts, aud determinmg for a sel
of simple polygons a multi-directional trauslation oedering,.

Our sealable paraliel algorithms for Problems 1-6 have a ranning time of

O( Tecquential
P
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on a p-processor coarse grained mullicomputer with arbitrary interconnection network and local mewories
of size O( :') where ;j > p. Teore(n, p) vefors to the tiine of a global sort operation.

Consider for exampie the mesh architectuce. For the fine grained case, ;; == (1), a time complexity
of O(y/n} is optimal. Henee, simulating the existivg results on a coarse grained machine gives O /)
time coarse prained methods. Our wmethods for the above problems vin in tiwe (,)('Z—’( logn 4 /i), a
considerable improvement over the existing methods. For the hygporeebe, our algorithms are optimal for
n > p°? in which case they also yield a cousiderabic improvement over previous methods.

High Probability Methods For Scalable Parallel Computational Geometry

In [3} we present faster aud more general high probability methods. T'hev can be applied to any p-processor
coarse gramed wilticomputer with arbifrary interconmection network and local memories of size O(2)
where ;} > p® and a > 0 is a fixed constant 'Uhe following problems were studied:

(7) Lower cnvelope of non-intersecting line scgments in [0, 1]%

= O{1). For d=3, Problem & is the well known

-
o

{(8) Visible portion ot parallelepipeds o [0, 1{¢, «

,d
visibility problem for parallel rectangles o {0, 1

j
(9) Convex hull of points in d-space., d == O(1)
(10) Maximal elements of points in d space, d = O(1},
(11) Voronoi diagrain of points in [0, 1]4, d = O(1).
{(12) All nearcst neighbors for points in [0, 1%, d = O(1 .
(13) Largest erupty cirele for points in [0, 1%, d = O(1).
(14) Largest ctupty hyperrectangle for points in [0, 14, d = O(1)
Our solutions for Problems 7-10 have, with high probability, a time cormplexity of

quential .
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Tpsum (p) and T, {n, p) denote the paiaiic) time complexity to compute the partial sums of p
h brocessor) and compress a subsct of data, respectively. Owr solutions for

integers (one stored at ¢
Problems 11-14 have, with bigh probability, a tiime complexity of
bl (] v v
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Experimental Results




Our algorithms are simple and easy to implenient. The constants in the time cowplesity analysis are
aiall. Except for a small (fixed) munber of communication ronnds, ali other computation is sequentiol
and consists essentially of solving on each processor a small (fixed ) nummber of snbproblems of size n/p.
Hence, it allows to use existing sequential code for the respective problem. For the comumminication rounds,
we can use well studied existing code for data compression, partial sum, and sorting.

For coarse grained machines, onr methods imply commimication throngh few large messages rather
than having wany small inessages. This is important for machines hke the Intel iPRC where cach message
creates a considerahle overhead. Note, however. that our analysis accounts for the length of messages.

We implemented some of onr methods on an Intel iPSC/860 and a CM-5 and obtained very good tim-
ing results (even without mnch programming efforts). They indicate that onr methods are of considerable

practical relevaice.
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