
Randomized Parallel List Ranking For

Distributed Memory Multiprocessors

Frank Dehne1 and Siang W. Song2

1 School of Computer Science, Carleton University, Ottawa, Canada K1S 5B6
2 Dept. of Computer Science, IME, Universidade de S~ao Paulo, S~ao Paulo, Brazil

Abstract. We present a randomized parallel list ranking algorithm for

distributed memory multiprocessors. A simple version requires, with

high probability, log(3p) + log ln(n) = ~O(log p + log log n) communi-

cation rounds (h-relations with h = ~O(n
p
)) and ~O(n

p
) local computa-

tion. An improved version requires, with high probability, only r �

(4k + 6) log(2
3
p) + 8 = ~O(k log p) communication rounds where k =

minfi � 0j ln(i+1) n � (2
3
p)2i+1g. Note that k < ln�(n) is an extremely

small number. For n � 1010
100

and p � 4, the value of k is at most 2. For

a given number of processors, p, the number of communication rounds

required is, for all practical purposes, independent of n. For n � 1010
100

and 4 � p � 2048, the number of communication rounds in our algorithm

is bounded, with high probability, by 118. We conjecture that the actual

number of communications rounds will not exceed 50.

1 Introduction

The Model Speedup results for theoretical PRAM algorithms do not neces-

sarily match the speedups observed on real machines [3] [21]. Given su�cient

slackness in the number of processors, Valiant's BSP approach [23] simulates

PRAM algorithms optimally on distributed memory parallel systems. Valiant

points out, however, that one may want to design algorithms that utilize local

computations and minimize global operations [22] [23]. The BSP approach re-

quires that g (= local computation speed / router bandwidth) is low, or �xed,

even for increasing number of processors. Gerbessiotis and Valiant [14] describe

circumstances where PRAM simulations can not be performed e�ciently, among

others if the factor g is high. Unfortunately, this is true for most currently avail-

able multiprocessors. Furthermore, as pointed out in [23], the cost of a message

also contains a constant overhead cost s. The value of s can be fairly large and

the total message overhead cost can have a considerable impact on the speedup

observed (see e.g. [8]).

We use a slightly enhanced version of the BSP model, referred to as coarse

grained multicomputer model [8], [9], [10]. It is comprised of a set of p processors

P1; : : : ; Pp with O(n=p) local memory per processor and an arbitrary commu-

nication network. All algorithms consist of alternating local computation and

global communication rounds. Each communication round consists of routing a

F D
F. Dehne and S. W. Song, "Randomized parallel list ranking for distributed memory multiprocessors," in Proc. Asian Computer Science Conference (ASIAN '96), Singapore, 1996, Springer Verlag Lecture Notes in Computer Science, Vol. 1179, pp. 1-10.

single h-relation with h = ~O(n=p) 3, i.e. each processor sends ~O(n=p) data and

receives ~O(n=p) data. We require that all information sent from a given processor

to another processor in one communication round is packed into one message.

Finding an optimal algorithm in the coarse grained multicomputer model is

equivalent to minimizing the number of communication rounds as well as the to-

tal local computation time. Furthermore, it has been shown that minimizing the

number of supersteps also leads to improved portability across di�erent parallel

architectures ([13] [22] [23]). The above model has been used (explicitly or im-

plicitly) in parallel algorithm design for various problems ([6], [8], [9], [11], [12],

[16], [10]) and shown very good practical timing results.

The List Ranking Problem Consider a linear linked list consisting of a set

S of n nodes and, for each node x 2 S, a pointer (x! next(x)) to its successor,

next(x), in the list. Let � 2 S be the last list element and next(�) = �. The

list ranking problem consist of computing for each x 2 S the distance of x to

�, referred to as dist(x). We assume that, initially, every processor stores n=p

nodes and, for each of these nodes the pointer (x ! next(x)) to the next list

element. See Figure 1. As output we require that every processor stores for each

of its n=p nodes x 2 S the value dist(x).

Proc.1 Proc.2 Proc.3 Proc.4

Fig. 1. A Linear Linked List Stored In A Distributed Memory Multiprocessor

Several PRAM list ranking algorithms have been proposed [15] [20]. The

�rst optimal O(logn) EREW PRAM algorithm is due to Cole and Vishkin [7].

Another optimal deterministic algorithm is given by Anderson and Miller [2].

Parallel list ranking algorithms using randomization were proposed by Miller

and Reif [17] [18]. The algorithms use O(n) processors. The optimal algorithm by

Anderson and Miller [1] improves this by using an optimal number of processors.

A O(
p
(n)) time mesh algorithm is described in [4].

3 ~O(n) denotes O(n) \with high probability". More precisely, X = ~O(f(n)), if and

only if (8c > c0 > 1) ProbfX � cf(n)g � 1

ng(c)
where c0 is a �xed constant and g(c)

is a polynomial in c with g(c)!1 for c!1 [19].

2 Random Sampling in Linear Linked Lists

Consider a linear linked list with a set S of n nodes. In this section we will show

that if we select n

p
random elements (pivots) of S then, with high probability,

these pivots will split S into sublists whose maximum size is bound by 3p ln(n).

Lemma1. xk � n randomly chosen elements of S (pivots) partition list S into

sublists Si such that the size of the largest sublist is at most n

x
with probability

at least 1� 2x(1� 1
2x
)xk:

Proof. (Analogous to [6]) Assume that the nodes of S are sorted by their

rank. This sorted list can be viewed as 2x segments of size n

2x
. If every segment

contains at least one pivot (chosen element), then max1�j�xk jSj j �
n

x
: Consider

one segment. Since the pivots are chosen randomly, the probability that a speci�c

pivot is not in the segment is (1� 1
2x
). Since xk pivots are selected independently,

the probability that none of the pivots are in the segment is (1� 1
2x
)xk. Therefore,

even assuming mutual exclusion, the probability that there exists a segment which

contains no pivot is at most 2x(1� 1
2x
)xk. Hence, every segment contains at least

one pivot with probability at least 1� 2x(1� 1
2x
)xk.

Corollary 2. xk � n randomly chosen pivots partition list S into xk+1 sublists

Si such that there exists a sublist Si of size larger than c
n

x
with probability at

most 2x
c
(1� c

2x
)xk � 2x

c
e�

1
2
ck.

Lemma3. Consider xk � n randomly chosen pivots which partition S into

xk + 1 sublists Si, and let m = max0�i�xk jSij. If k � ln(x) + 2 ln(n) then

Probfm > c
n

x
g � 1

nc
, c > 2.

Proof. Corollary 2 implies that Probfm > c
n

x
g � 2x

c
e�

1
2
ck
:

We observe that, for c > 2; ln(x) + 2 ln(n) � k) 2
c
ln(2x

c
) + 2 ln(n) � k

) ln(2x
c
) + c ln(n) � ck

2
) 2x

c
n
c � e

ck

2) Probfm > c
n

x
g � n

�c

Theorem4. n

p
randomly chosen pivots partition S into n

p
+ 1 sublists Sj with

m = max0�j�p jSj j such that Probfm � c3p ln(n)g � 1
nc
; c > 2

Proof. Let x = n

3p ln(n)
, k = ln(x) + 2 ln(n) = 3 ln(n)� ln(3p ln(n)).

Then xk = n

p

3 ln(n)�ln(3p ln(n))

3 ln(n)
� n

p
, and Theorem 4 follows from Lemma 3.

3 A Simple Algorithm Using A Single Random Sample

We present a simple list ranking algorithm which requires, with high probability,

at most log(3p) + log ln(n) = ~O(log p + log logn) communication rounds. This

algorithm is based on a single random sample of nodes.

Consider a random set S0 � S of pivots. For each x 2 S let nextP ivot(x; S0)

refer to the closest pivot following x in the list S. (W.l.o.g. assume that the

last element, �, of S is selected as a pivot and let nextP ivot(�; S0) = �. Note

that for x 6= �, nextP ivot(x; S0) 6= x.) Let distToP ivot(x; S0) be the dis-

tance between x and nextP ivot(x; S0) in list S. Furthermore, let m(S; S0) =

maxx2S distToP ivot(x; S
0).

The modi�ed list ranking problem for S with respect to S0 refers to the prob-

lem of determining for each x 2 S its next pivot nextP ivot(x; S0) as well as the

distance distToP ivot(x; S0). The input/output structure for the modi�ed list

ranking problem is the same as for the list ranking problem.

Algorithm 1

(1) Select a set S0 � S of ~O(n
p
) random pivots as follows: Every processor Pi

makes for each x 2 S stored at Pi an independent biased coin
ip which

selects x as a pivot with probability 1
p
.

(2) All processors solve collectively the modi�ed list ranking problem for S with

respect to S
0.

(3) Using an all-to-all broadcast, the values nextP ivot(x; S0) and

distToP ivot(x; S0) for all pivots x 2 S
0 are broadcast to all processors.

(4) Using the data received in Step 3, each processor Pi can solve the list ranking

problem for the nodes stored at Pi sequentially in time ~O(n
p
).

For the correctness of Step 1, we recall the following

Lemma5. [19] Consider a random variable X with binomial distribution. Let

n be the number of trials, each of which is successful with probability q. The

expectation of X is E(X) = nq, ProbfX > cnqg � e�
1
2
(c�1)2nq

; for any c > 1

In order to implement Step 2, we simply simulate the standard recursive dou-

bling technique. From Theorem 4 it follows that, with high probability,m(S; S0) �

3p ln(n). Hence, Step 2 requires, with high probability, at most log(3p ln(n))

= log(3p) + log ln(n) communication rounds. Step 3 requires 1 communication

round, and Step 4 is straightforward. In summary, we obtain

Theorem6. Algorithm 1 solves the list ranking problem using, with high prob-

ability, at most 1 + log(3p) + log ln(n) communication rounds and ~O(n
p
) local

computation.

4 Improving The Maximum Sublist Size

We now present an improved algorithm that solves the list ranking problem by

using, with high probability, only r � (4k+6) log(2
3
p)+8 communication rounds

and ~O(n
p
) local computation where k := minfi � 0j ln(i+1)

n � (2
3
p)2i+1g:

Note that k < ln�(n) is an extremely small number (see Table 1).

The basic idea of the algorithm is that any two pivots should not be closer

than O(p) because this creates large \gaps" elsewhere in the list. If two pivots

are closer than O(p), then one of them is \useless" and should be \relocated".

The non-trivial part is to perform the \relocation" without too much overhead

and such that the new set of pivots has a considerably better distribution. The

algorithm uses three colors to mark nodes: black (pivot), red (a node close to a

pivot), and white (all other nodes).

Algorithm 2

(1) Perform Step 1 of Algorithm 1. Mark all selected pivots black and all other

nodes white.

(2) For i = 1; : : : ; k do

(2a) For each black node x, all nodes which are to the right of x (in list S) and

have distance at most 2
3
p are marked red. Note: previously black nodes

(pivots) that are now marked red are no longer considered pivots.

(2b) For each black node x, all nodes which are to the left of x (in list S) and

have distance at most 2
3
p are marked red.

(2c) Every processor Pi makes for each white node x 2 S stored at Pi an

independent biased coin
ip which selects x as a new pivot, and marks

it black, with probability 1
p
.

(2d) Every processor Pi marks white every red node x 2 S stored at Pi.

(3) Let S0 2 S be the subset of black nodes obtained after Step 2. Continue with

Steps 2 { 4 of Algorithm 1.

Observe that Steps 2a and 2b have to be performed in a left-to-right scan,

respectively, as if executed sequentially. We can simulate this sequential scanning

process in the parallel setting because the number of pivots is bounded by n=p.

For Step 2a, we build linked lists of pivots by computing for each of them a pointer

to the next pivot of distance at most 2 p/3, if any, and the distance. These linked

lists of pivots are compressed into one processor and we run on these lists a

sequential left-to-right scan to mark pivots red. We return the pivots to their

original location and mark every non-pivot red for which there exists a non-red

pivot that attempts to mark it red. Step 2b is performed analogously.

Let r be the number of communication rounds required by Algorithm 2. We

will now show that, with high probability, r � (4k+ 6) log(2
3
p) + 8 = ~O(k log p):

Let ni be the maximum length of a contiguous sequence of white nodes after

the ith execution of Step 2b, and de�ne n0 = n. Let Si be the set of black nodes

after the ith execution of Step 2c, 1 � i � k, and let S0 be the set of black nodes

after the execution of Step 1. Note that, in Step 3, S0 = Sk. De�ne mi = m(Si)

for 0 � i � k.

Lemma7. With high probability, the following holds:

(a) n0 = n and ni � 3p ln(ni�1); 1 � i � k

(b) mi � 3p ln(ni); 0 � i � k

Proof. It follows from Theorem 4 that, with high probability, n0 = n and m0 �

3p ln(n) and, for a �xed 1 � i � k ni � mi�1 and mi � 3p ln(ni):

Since k � ln�(n) and log�(n) 1
nc
� 1

nc��
; � > 0; the above bounds for ni and mi

hold, with high probability, for all 1 � i � k.

Lemma8. With high probability, for all 1 � i � k,

(a) ni � 3p(2 ln(3p) + ln(i)(n))

(b) mi � 6p ln(3p) + 3p ln(i+1)(n)

Proof.

(a) Applying Lemma 7 we observe that

n1 � 3p ln(n)

n2 � 3p ln(3p ln(n)) = 3p(ln(3p) + ln ln(n))

n3 � 3p ln(n2) � 3p(ln(3p) + ln(ln(3p) + ln ln(n)))

� 3p(ln(3p) + ln ln(3p) + ln ln ln(n))

n4 � 3p ln(n3) � 3p(ln(3p) + ln ln(3p) + ln ln ln(3p) + ln ln ln ln(n))

...

ni � 3p(2 ln(3p) + ln(i)(n))

(b) It follows from Lemma 7 that mi � 3p ln(ni) � 3p ln(3p(2 ln(3p) + ln(i)(n)))

� 3p(ln(3p) + ln(2) + ln
(2)(3p) + ln

(i+1)(n)) � 6p ln(3p) + 3p ln(i+1)(n).

Theorem9. With high probability, Algorithm 2 solves the list ranking problem

with r � (4k+6) log(2
3
p)+8 = ~O(k log p) communication rounds and ~O(n

p
) local

computation.

Proof. With high probability, the total number of communication rounds in

Algorithm 2 is bounded by 2k log(2
3
p) + log(mk) + 1

� 2k log(2
3
p) + log(6p) + log ln(3p) + log(3p) + log ln(k+1)(n) + 1

� (2k + 3) log(2
3
p) + log 9 + log 4:5 + log ln(k+1)(n) + 1

� (2k + 3) log(2
3
p) + log ln(k+1)(n) + 8

� log((2
3
p)2k+3) + log ln(k+1)(n) + 8 � 2 log((2

3
p)2k+3) + 8

[if (*) ln(k+1)(n) � (2
3
p)2k+3] � (4k + 6) log(2

3
p) + 8 = ~O(k log p)

Condition (*) is true because we selected k = minfi � 0j ln(i+1)
n � (2

3
p)2i+1g.

Note that, this bound is not tight.

5 Simulation and Experimental Results

We simulated the behaviour of Algorithm 2. In particular, we simulated how

our above method improves the sample by reducing the maximum distance,

mi, between subsequent pivots. We examined the range of 4 � p � 2048 and

100; 000 � n � 1; 500; 000 as shown in Table 2 and applied Algorithm 2 for each

n; p combination shown 100 times with di�erent random samples. Table 2 shows

the values of k and the upper bound R on the number of communication rounds

required according to Theorem 9. We then measured the maximum distance,

m
obs

k
, observed between two subsequent pivots in the sample chosen at the end

of the algorithm, as well as the number, robs, of communication rounds actually

required. Each of the numbers shown is the worst case observed in the respective

100 test runs.

According to Theorem 9, for the range of test data used, the number of

communication rounds in our algorithm should not exceed 78. This is an upper

bound, though. The actual number of communication rounds observed in Table 2

is 25 in the worst case. The number of rounds observed is usually around 30%

of the upper bound according to Theorem 9. We also observe that for a given p

(i.e. in a vertical column), the values of mobs

k
and r

obs are essentially stable and

show no monotone increase or decrease with increasing n.

In Table 3 we show the actual number of communication rounds needed by

Algorithm 1 on the Parsytec PowerXplorer machine, with 16 nodes (each with a

PowerPC601 processor and a T805 transputer).

6 Applications

The problem of list ranking is a special case of computing the su�x sums of the

elements of a linked list. The above algorithm can obviously be generalized to

compute pre�x or su�x sums for associative operators. List ranking is a very

popular tool for obtaining numerous parallel tree and graph algorithms [4] [5].

An important application outlined in [4] is to use list ranking for applying Euler

tour techniques to tree problems: for an undirected forest of trees, rooting every

tree at a given vertex chosen as root, determining the parent of each vertex in

the rooted forest, computing the preorder (or postorder) traversal of the forest,

computing the level of each vertex, and computing the number of descendants of

each vertex. All these problems can be easily solved with one or a small constant

number of list ranking operations.

7 Conclusion

We presented a randomized parallel list ranking algorithm for distributed mem-

ory multiprocessors, using the coarse grained multicomputer model. The algo-

rithm requires, with high probability, r � (4k + 6) log(2
3
p) + 8 = ~O(k log p)

communication rounds. For all practical purposes, k � 2. Therefore, we expect

that our result will have considerable practical relevance.

Acknowledgments

This research was partially supported by NSERC (Natural Sciences and Engi-

neering Research Council of Canada), FAPESP (Funda�c~ao de Amparo �a Pesquisa

do Estado de S~ao Paulo) Proc. 95/0767-0, 95/1367-5, CNPq (Conselho Nacional

de Desenvolvimento Cient���co e Tecnol�ogico) Proc. 523778/96-1 and PROTEM,

and the Commission of the European Communities (ITDC-207). We also wish

to thank the referees for their comments.

p = 4 8 16 32 64 128 256 512 1024 2048

n k;R k;R k;R k;R k;R k;R k;R k;R k;R k;R

1010 1;18 0;26 0;32 0;38 0;44 0;50 0;56 0;62 0;68 0;74

10100 1;18 1;38 0;32 0;38 0;44 0;50 0;56 0;62 0;68 0;74

101000 1;18 1;38 1;48 0;38 0;44 0;50 0;56 0;62 0;68 0;74

10(10
4) 1;18 1;38 1;48 1;58 0;44 0;50 0;56 0;62 0;68 0;74

10(10
5) 1;18 1;38 1;48 1;58 1;68 0;50 0;56 0;62 0;68 0;74

10(10
6) 1;18 1;38 1;48 1;58 1;68 1;78 0;56 0;62 0;68 0;74

10(10
7) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 0;62 0;68 0;74

10(10
8) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 1;98 0;68 0;74

10(10
9) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 0;74

10(10
10) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
11) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
12) 1;18 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
14) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
16) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
18) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
20) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
30) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
40) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
50) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
60) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
70) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
80) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
90) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

10(10
100) 2;22 1;38 1;48 1;58 1;68 1;78 1;88 1;98 1;108 1;118

Table 1. Values Of k and R := (4k + 6) log(2
3
p) + 8 [Upper Bound On r] For Various

Combinations Of n And p.

p = 4 8 16 32 64 128 256 512 1024 2048

n k k k k k k k k k k

R R R R R R R R R R

m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k m
obs

k

r
obs

r
obs

r
obs

r
obs

r
obs

r
obs

r
obs

r
obs

r
obs

r
obs

100,000 1 1 1 1 1 0 0 0 0 0

18 38 48 58 68 50 56 62 68 74

28 59 119 238 409 1400 2421 5900 9136 17158

8 13 16 19 22 12 13 14 15 16

500,000 1 1 1 1 1 1 0 0 0 0

18 38 48 58 68 78 56 62 68 74

32 72 117 264 474 860 3150 6144 11179 21552

8 14 16 20 22 25 13 14 15 16

1,000,000 1 1 1 1 1 1 0 0 0 0

18 38 48 58 68 78 56 62 68 74

40 69 127 264 440 851 3406 7924 11861 21552

9 14 16 20 22 25 13 14 15 16

1,500,000 1 1 1 1 1 1 0 0 0 0

18 38 48 58 68 78 56 62 68 74

33 89 172 270 551 903 3893 6120 11938 23631

9 14 17 20 23 25 13 14 15 16

Table 2. k, R := (4k + 6) log(2
3
p) + 8, mobs

k and r
obs For Various Combinations of

n and p, Where mobs

k and r
obs Are The Observed Worst Case Values Of mk and r,

Respectively. (For each shown combination of n and p, the mobs

k
and robs shown are the

worst case values observed during 100 test runs.)

NProc/n 4 8 16 64 128 256 512 1024 2048 4096 16384 32768 65536 131072 262144

4 5 6 7 7 8 8 8 9 9 9 9 9 10 9 9

8 - 6 7 8 9 10 10 10 10 10 10 10 10 10 11

Table 3. No. of communication rounds on the PowerXplorer (worst values in 5 runs.)

References

1. J. R. Anderson and G. L. Miller, \A simple randomized parallel algorithm for list

ranking". Information Processing Letters, Vol. 33, No. 5, 1990, pp. 269 { 273.

2. J. R. Anderson and G. L. Miller, \Deterministic parallel list ranking", J. H. Reif

(ed.), VLSI Algorithms and Architectures: 3rd Aegean Workshop on Computing,

Springer Verlag, Lecture Notes in Computer Science, Vol. 319, 1988, pp. 81 {90.

3. R.J. Anderson, and L. Snyder, \A Comparison of Shared and Nonshared Memory

Models of Computation," in Proc. of the IEEE, 79(4), pp. 480-487.

4. M. J. Atallah, S. E. Hambrusch, \Solving tree problems on a mesh-connected pro-

cessor array," Information and Control, Vol. 69, 1986, pp. 168-187.

5. S. Baase, \Introduction to parallel connectivity, list ranking, and Euler tour tech-

niques". J. H. Reif (ed.) Synthesis of Parallel Algorithms. Morgan Kaufmann Pub-

lisher, 1993.

6. G.E. Blelloch, C.E. Leiserson, B.M. Maggs, C.G. Plaxton, \A Comparison of Sort-

ing Algorithms for the Connection Machine CM-2.," in Proc. ACM Symp. on Par-

allel Algorithms and Architectures, 1991, pp. 3-16.

7. R. Cole and U. Vishkin, \Approximate parallel scheduling, Part I: the basic tech-

nique with applications to optimal parallel list ranking in logarithmic time. SIAM

J. Computing, Vol. 17, No. 1, 1988, pp. 128 { 142.

8. F. Dehne, A. Fabri, and A. Rau-Chaplin, \Scalable Parallel Geometric Algorithms

for Coarse Grained Multicomputers," in Proc. ACM Symp. Computational Geom-

etry, 1993, pp. 298-307.

9. F. Dehne, A. Fabri, and C. Kenyon, \Scalable and Architecture Independent Paral-

lel Geometric Algorithms with High Probability Optimal Time," in Proc. 6th IEEE

Symposium on Parallel and Distributed Processing, 1994, pp. 586-593.

10. F. Dehne, X. Deng, P. Dymond, A Fabri, A. A. Kokhar, \A randomized parallel

3D convex hull algorithm for coarse grained parallel multicomputers," in Proc.

ACM Symp. on Parallel Algorithms and Architectures, 1995.

11. X. Deng and N. Gu, \Good Programming Style on Multiprocessors," in Proc. IEEE

Symposium on Parallel and Distributed Processing, 1994, pp. 538-543.

12. X. Deng, \A Convex Hull Algorithm for Coarse Grained Multiprocessors," in Proc.

5th International Symposium on Algorithms and Computation, 1994.

13. X. Deng and P. Dymond, \E�cient Routing and Message Bounds for Optimal

Parallel Algorithms," in Proc. Int. Parallel Proc. Symp., 1995.

14. A.V. Gerbessiotis and L.G. Valiant, \Direct Bulk-Synchronous Parallel Algo-

rithms," in Proc. 3rd Scandinavian Workshop on Algorithm Theory, Lecture Notes

in Computer Science, Vol. 621, 1992, pp. 1-18.

15. J. J�aJ�a, An introduction to parallel algorithms. Addison Wesley, 1992.

16. Hui Li, and K. C. Sevcik, \Parallel Sorting by Overpartitioning," in Proc. ACM

Symp. on Parallel Algorithms and Architectures, 1994, pp. 46-56.

17. G. L. Miller and J. H. Reif, \Parallel tree contraction part 1: Fundamentals". Ad-

vances in Computing Research, Vol. 5, 1989, pp. 47 {72.

18. G. L. Miller and J. H. Reif, \Parallel tree contraction part 1: Further applications".

SIAM J. Computing, Vol. 20, No. 6, December 1991, pp. 1128 { 1147.

19. K. Mulmuley, Computational Geometry: An Introduction Through Randomized Al-

gorithms, Prentice Hall, New York, NY, 1993.

20. M. Reid-Miller, C. L. Miller, F. Modugno, \List ranking and parallel tree com-

paction". J. H. Reif (ed.) Synthesis of Parallel Algorithms. Morgan Kaufmann Pub-

lisher, 1993.

21. L. Snyder, `'Type architectures, shared memory and the corollary of modest poten-

tial," Annu. Rev. Comput. Sci. 1, 1986, pp. 289-317.

22. L.G. Valiant, \A Bridging Model for Parallel Computation," Communications of

the ACM, 33, 1990, pp. 103{111.

23. L.G. Valiant et. al., \General Purpose Parallel Architectures," Handbook of Theo-

retical Computer Science, J. van Leeuwen (ed.), MIT Press, 1990, pp.943-972.

This article was processed using the LATEX macro package with LLNCS style

