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Abstract

External memory (EM) algorithms are designed for compu-
tational problems in which the size of the internal memory
of the computer is only a small fraction of the problem size.
For certain large scale applications this is necessarily true.
Typiccdly, the cost models proposed for external memory al-
gorithms have measured only the number of 1/0 operations,
and the algorithms have been specially crafted for the EM
situation. In the past, several attempts have been made to
relate the large body of work based on parallel algorithms
to EM, but with limited success.

In this paper we provide simulation techniques which
produce efficient EM algorithms from efficient algorithms
developed under BSP-like parallel computing models. Our
techniques can accommodate one or multiple processors on
the EM target machme, each with one or more disks, and
they also adapt to the disk blocking factor of the target
machine. In addition to the main simulation result we obtain
a more comprehensive cost model for EM algorithms, which
considers the total costs incurred by the algorithm including
computation, 1/0 and communication costs.

1 Introduction

1.1 Overview

External memory (EM) algorithms are designed for compu-
tational problems in which the size of the interred memory
of the computer is only a small fraction of the size of the
problem. For certain large scale applications this is necessar-
ily true. Important applications in Geographic Information
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Systems (GIS), Virtual Reality, VLSI Design, Weather Pre-
diction, Computerized Medical Treatment, 3D Simulation
and Modelling, Visualization and Computational Geometry
fall naturally into this category.

With few exceptions, previous authors focussed on a
uniprocessor EM model. When parallelism was introduced,
it was either in terms of a PR.AM-like interconnection, or
involved parallel disks rather than parallel processors. We
believe that parallel processing should be an important is-
sue for EM algorithms (extremely large problems) for the
same re~ons that parallel processing is of practical interest
in non-EM algorithm design.

In many cases, previous EM algorithms were “new”,
carefully hand-crafted to work optimally in the EM environ-
ment. Exist ing “internal memory” algorithmic techniques
and data structures were often found to be unsuitable for
EM. We believe that this is due to the need for locality on
data references, which is not generally present when algo-
rithms are designed for internal memory, due to the per-
missive nature of the RAM and PRAM models. However,
there are some obvious similarities between formulating an
efficient algorithm for a parallel computer and formulating
one for EM. The possibility of using the vaat body of algo-
rithms developed for parallel computers instead of reinvent-
ing new algorithms for EM is intriguing. In this paper we
exploit a natural correspondence between external memory
algorithms and BSP-like parallel models such as BSP[23],
BSP*[7, 8, 6] and CGM[13, 14, 15]. We provide simulation
techniques that map BSP-like algorithms to EM algorithms,
and we further show how, using a randomized approach, an
EM machine can take full advantage of parallel disk 1/0 and
multiple processors.

Accessing the main memory of a computer can be orders
of magnitude fwder than accessing an element of data in sec-
ondary memory such as a hard disk. This large difference
is typicidly made less significant in practice by carefully en-
suring that data on disk is accessed in a block-wise fashion.
Thus the overheads of rotational delay and disk arm move-
ment are amortized over the number of items in a disk block.
Ensuring that 1/0 is fully blocked is therefore an important
issue in reducing the runtime of an algorithm. A second im-
portant issue, when more than one disk is present, is fully
parallel disk 1/0. If there are D disks present, and the disk
block size is 1?, DB data items can be transferred at the
cost of a single 1/0 operation. These two issues are funda-
mental to our approach, since if 1/0 is not fully blocked, the
runtime can typically be up to a factor of 103 (the block-
ing factor) too high, and if parallel disks are not properly
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utilized, the runtime can be a factor of D too high. More
discussion of the traditional EM system model and related
issues can be found in [27].

We identify coarse-gratned communication as a desirable
property of parallel algorithms for our simulation. Coarse
grained communication occurs when the average message
size of the parallel algorithm is Q(B).l This permits the
EM algorithm to take advantage of the disk block size on
the target machine, a fundamental requirement of efficient
disk 1/0. The BSP* model is an extension of the BSP model
which rewards blockwise communication. This feature of
BSP* ensures that the 1/0 operations necessary to simulate
message passing can also be done in a blockwise fashion. In
Section 4 we describe how BSP and CGM algorithms can
be made into BSP* algorithms, and as a result inherit the
blockwise 1/0 property during our simulation.

Much of the EM work to date has used the criterion
of I/ O-optimality to discriminate between competing EM
algorithms. An EM algorithm A is I/O-optimal iff the num-
ber of 1/0 operations used matches the lower bound for the
number of 1/0s required to solve the problem. This is a
rather strong criterion and it ignores internal computation
cost completely. However, work efficiency is a crucial factor
for the efficiency of algorithms.

The criterion of c-optimality was introduced in [16] for
the BSP model. It gives an incentive to devise algorithms for
which communication time is asymptotically smaller than
computation time and the computation time is only by a
factor c+o(l) larger than that of an optimal RAM algorithm.
For large enough problems the communication overhead is
small compared to the computation time which guarantees
reasonable speed-ups, around p/c, on an actual p processor
machine.

In Section 3.1 we propose an extension to the definition
of c-optimality. The new definition additionally provides in-
centives to devise algorithms for which 1/0 costs are asymp-
totically smaller than the computation time. We propose the
extended c-optimality criterion w an alternative to the old
EM criterion of I/O-optimality.

The introduction of communication cost and computa-
tion time makes the new EM goodness criterion more prac-
tical on one side, as it measures the run time directly, but on
the other side it is a bit weaker than I/O-optimality, as we do
not insist on the optimrdity of either communication or 1/0.
We only require that they be asymptotically smaller than
the computation time. We feel that our criterion is useful,
because if the communication and 1/0 cost have been con-
trolled such that they do not influence the overall runtime,
it is the computation overhead that, controls the efficiency
of the rdgorithm.

We extend the BSP* parallel computing model to include
a component which measures 1/O as well as communication
cost. We shall refer to the new model as EM-BSP*. Simi-
lar extensions to BSP (EM-BSP) and CGM (EM-CGM) can
clearly be made, but we restrict ourselves to the BSP* case
in the interests of brevity and ease of exposition. Using our
new model we prove that our simulation techniques trans-
form certain c-optimal BSF)* algorithms to c-optimal EM
algorithms running on a single or multiple processor ma-
chine. One use of these techniques is as an efficient “parallel

lIn this paper we treat the parameters of the model, including
the blocksize El as growing functions of the problem size n. While a
given machine will typically have a fixed blocksize, it is reasonable to
assume that larger blocks can be written without a further overhead
penalty.

virtual memory” implementation. An algorithm utilizing v
processors can be efficiently executed using our techniques
on a real machine with p = iv/r] real processors each one
wit h multiple disks for a large range of integers r.

1.2 Previous Work

Sorting, permutation and related problems in EM have been
extensively studied [1, 12, 27, 26, 20]. I/O-optimal ap
preaches to many computational geometry problems [17]
and graph problems [11] have also been described. Data
structures [3, 5, 22] and a number of applications [4] have
been examined in this context. Some implementation work
has also been done [24, 25, 10]. A recent survey is included

~ [51.
The classical EM model is described in [1]. More com-

plex models have been proposed as well, incorporating a hi-
erarchy of memory layers rather than the two-level memory
model of [1]. One such model is described in [2], and sorting
for this model is studied in [26]. Such models are interesting
because modern computers typically have several layers of
memory which include main memory and caches ~~ well as
disks. We restrict ourselves to the two-level model because
the speed difference between disk and main memory is much
more significant than between the other layers of memory,
and the multilayer models are more complex.

Chiang et al.[11] explored simulation of PRAM algo-
rithms as a source of new EM techniques. Their approach
involves an EM sort with every PRAM step. They showed
that certain PRAM algorithms with a “geometrically de-
creasing size” property could be simulated as EM algorithms
in an I/O-optimal way. However, most problems do not have
a geometrically decreasing size. Examples include problems
like sorting, matrix multiplication, convex hull and Voronoi
diagram construction; see [21].

Concurrent to the work presented in this paper, Sibeyn
and Kaufmann [21] have developed a technique for simulat-
ing l-optimal BSP algorithms to produce efficient EM algor-
ithms. Their work is presented in the context of a single
disk uniprocessor EM machine, but they suggest that the
concept can be extended to multiple d~ks. They simulate
a superstep of one virtual processor at a time, saving the
context and generated messa es in a v x v array on disk,

fwhere each cell is of size 3P. They do not explain, how-
ever, how to accommodate the blocking factor, which is an
intrinsic issue in efficient 1/0 design, nor do they provide
mechanisms for handling multiple disks or multiple physical
processors on the target EM machine.

2 New Results

In this section we highlight the contributions of th~ paper.
A major contribution of our work is to exploit a natural

correspondence between external memory algorithms and
parallel models such as BSP, BSP* and CGM whose cost
metric is sensitive to communication costs. We identify the
blockwise communication characteristic of the BSP* model
as an example of a general requirement for coarse-grained
communication which permits the generated EM algorithm
to take full advantage of the disk block size. We provide
a simulation technique that implements this mapping from
BSP-like algorithms to EM algorithms, and we further show

2We use our notation here: u is the number of virtual (BSP) pro-
cessors, and p is the size of the context of a processor.
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how, using a randomized technique, an EM machine can
take full advantage of parallel disk 1/0 and multiple pro-
cessors. Further, our technique can take full advantage of
the physical memory available by simulating a superstep of
more than one virtual processor concurrently.

We extend the parallel computation model BSP* [7] to
include a component which measures 1/0 as well as commu-
nication cost, and we propose a corresponding extension to
the notion of c-optimality as an optimality criterion. Our
new c-optimality definition additionally provides incentives
to devise algorithms for which 1/0 time is asymptotically
smaller than the computation time.

Using our new model we prove (Theorems 1 and 2 re-
spectively) that our simulation techniques transform certain
c-optimal BSP * algorithms to c-optimal EM algorithms run-
ning on a single or multiple processor machine.

We stress that the proposed extensions to c-optimality
and BSP* apply equally well to the BSP and CGM models,
and that our simulation technique preserves the property of
c-optimality in these cases.

3 A New EM Model

Due to lack of space we only describe here the BSP* and its
EM version in detail, however the corresponding extensions
of BSP and CGM are analogous. We begin with a short de-
scription of the BSP *, see also [7]. The BSP* model consists
of p processor/memory components, a router that delivers
messages in a point to point fashion, and a facility to syn-
chronize all processors in a barrier style. Each processor
has a unique label in the range 0,1, . . . . p – 1, where the
processor with label i is denoted by Pi.

A computation proceeds in a succession of supersteps sep
arated by synchronizations, usually divided into communi-
cation and computation supemteps. In computation super-
steps processors perform local computations on data that is
available locally at the beginning of the superstep and issue
send operations. In communication supersteps the send op
erations are implemented, i.e., the exchange of data between
the processors is done by the router.

An instance of the p processor BSP* model is character-
ized by the parameters g, b and L. L is the minimum time
(in number of operations) between successive synchroniza-
tion operations. Thus L is the minimum time for a super-
step. The parameter g is the time (in number of operations)
the router needs to deliver a packet of size b (in number
of machine words) when in continuous use. The parameter
b reflects the “optimal” packet size that has to be send in
order to achieve almost optimal throughput. There is a nat-
ural upper bound for b namely the size of the processor’s
memory. Further, we assume, L z 1 and g ~ 1.

We now modify the BSP* model to include secondary
local memories. The basic idea is illustrated in Figure 1.
Each processor has in addition to its local memory an ex-
ternal memory in the form of a set of hard disks. We apply
this idea to extend the BSP* model to its external memory
version EM- BSP*, with the following additional parame-
ters:

● M is the local memory size of each processor,

● D is the number of disk drives of each processor,

● B is the transfer block size of a local disk drive, and

●

Figure 1: Illustration of a Parallel Ma-
chine with External Memory

G is the ratio of local computational capacity (number
of local computation operations) divided by the local
1/0 capacity (number of blocks of size B that can be
transferred between the local disks and memory) per
unit time.

In many practical cases, all processors have the same
number of disks, thus we restrict ourselves to that case, al-
though the model does not forbid explicitly diiTerent num-
bers of drives and memory sizes for each processor. We de-
note the disk drives of each processor by Do, D1, . . . DD-l.
Each drive consists of a sequence of tracks (consecutively
numbered starting with O) which can be accessed by direct
random access using their unique track number.

Each processor can use SU of its D disk drives concur-
rently, and transfer D x B items from the local disks to its
local memory in a single 1/0 operation and at cost G. We
assume further only one track per disk can be accessed with-
out posing any restriction on which track is accessed on each
disk. It takes roughly the same amount of time to access and
transfer one block or one word. This reflects the fact that
the seek time for a record dominates the time to transmit a
record, the transfer delay. We also assume that a processor
can store in its local memory at least one block from each
local disk at the same time, i.e., A4 z DB. We allow a single
processor version of the EM-BSP* model, which resembles
the one processor version of the model found in [27] when
L=g=b=l.

Like a computation on the BSP* model, the compu-
tation on the EM-BSP* model proceeds in a succession
of supersteps. We adapt communication and computation
supersteps from the BSP* model and allow multiple I/O-
operations during a single computation superstep. For the
EM-BSP* model, the computation cost and communica-
tion cost are the same as for the BSP* model. For each
local operation we use the RAM uniform cost measure,
For an h-relation, i.e., a routing request where each pro-
cessor sends and receives at most h messages of size b, we
charge g . h + L time units in a communication superstep.
The I/O-cost (or I/O-time) of a computation superstep is

trJo = max~=l {~~/o} where w~,o is the I/O-cost incurred
by processor j, remember each 1/0 operation costs G time
steps. For a computation superstep with at most tcomp lo-
crd operations on each processor we charge t.o~P + tI/o + ~
time units. As in the BSP* model, it is worthwhile to send
messages of size at least b, and further the model gives in-
centives to access all disk drives using block transfers. For
instance, a single processor EM-BSP* with D disks is ca-
pable of transferring a block of B items to or from each
d~k in a single 1/0 operation. An operation involving fewer
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elements incurs the same cost.

3.1 The c-optimality Criterion

Since even small multiplicative constant factors in runtime
are important, we characterize the performance of an EM-
BSP* algorithm by comparing its run time with an optimal
sequential or PRAM algorithm. We measure ratios between
runtimes on pairs of models that have the same set of lo-
cal instructions and adapt the optimality criteria proposed
in [16].

Definition 1 Let A be the best sequential aigorithm on the
RAM for the problem under consideration, and let T(A) be
its worst case runtime. Let c be a constant with c ~ 1. A
c-optimal EM algorithm A* meets the following criteria:

● The ratio ~ between the computation times oj A* and
T(A)/p iS C+ 0(1).

● The ratio ( between the communication time of A* and
the computation time T(A)/p is o(1).

● The ratio q between the 1/0-time of A ● and the com-
putation time 7’(A)/p is o(l).

All asymptotic bounds refer to the problem size n as n d cc.

This definition applies equally well to EM-BSP, EM-BSP*
and EM-CGM algorithms. In the interests of brevity and
ease of exposition, we restrict ourselves to the EM-BSP*
caae. Conditions on the input size n and the EM-BSP*
parameters, p, b, g, B, G, L and M are specified that are
sufficient for the algorithm to make sense and the bounds
on ~, ( and q to hold. The restrictions on the parameters p,
b, g, B, G, L and M are functions that grow with the input
size n. Thii guarantees that the algorithms run efficiently
on real parallel machines, from those with large parameter
values, i.e., large bandwidth and large latency which require
large messages to operate efficiently, to those with small
network bandwidth and small latency. We shall say that a
EM algorithm is one-optimal if it fulfills the requirements of
the above definition for c = 1.

4 The Simulation

4.1 Overview of the Technique

We describe herein generaI terms how a BSP-like algorithm
can be executed as an EM algorithm on a single processor
machine with multiple disks.

We adopt the following terminology: The processors of
the BSP-like machine will be called virtual processors, and
v will denote their number. Each communication super-
step will be divided into a 9ending superstep and a receiving
superstep. During a sending superstep, messages are gener-
ated, and during a receiving superstep they are received. A
compound superstep is composed of a receiving, a computa-
tion, and a sending superstep.

The execution of a BSP-like algorithm proceeds as a se-
ries of compound supersteps, and can therefore be simulated
by repeated application of the simulation steps for a single
compound superstep.

Outine of the simulation for a compound super-
step: A compound superstep for the w virtual processors of
a BSP-like machine is simulated by performing the following
steps in a round-robin fashion, for k z 1 virtual processors
at a time.

1,

2.

3.

The

Fetching Phase: Read the context(s) and the messages
to be received by the current virtual processors from
disk into memory.

Computation Phase: Perform the computations indi-
cated by the BSP * algorithm for these k processors in
this compound superstep.

Writing Phase: Save the current contexts and the mes-
sages sent by the current virtual processors on sec-
ondary storage.

Fetching Phase (Computation Phase, Writing Phase)
performs th~ operations necessary to simulate the- sending
superstep (computation superstep, receiving superstep) of
a compound superstep. A compound superstep produces
messages which are received in the following compound su-
perstep. The simulation must store the generated messages
on disk in such a way that they can be fetched efficiently
during the Fetching Phase of the next compound superstep.
By efficiently we mean in this context that both input and
output operations are fully blocked to the disk block size
B and that if parallel disk.. are present they are utilized in
parallel, i.e. for D parallel disks, input and output opera-
tions are performed D blocks at a time. These requirements
can easily be met for the contexts, as we know their max-
imum size and can preallocate a dedicated area for each,
spread across the D disks. For the generated message traf-
fic, however, these requirements are more difficult, as we do
not know the communication pattern for a particular com-
pound superstep. We describe in Section 4.2 a randomized
approach which allows us to efficiently write the messages
to disk and efficiently retrieve them in the next compound
super step. For communication of predetermined size, such
as occurs in a CGM or a network of processors, we can de-
vise a deterministic approach. We show in Theorems 1 and
2 that we if we perform our simulation on a c-optimal BSP*
algorithm the resulting EM algorithm is c-optimal with high
probability.

We will describe the BSP* simulation in detail. How-
ever, we first show how to ensure that BSP and CGM algo-
rithms have the blockwise communication property required
for efficient, blocked 1/0 during their simulation as EM al-
gorithms.

Lemma 1 A v-processor BSP algorithm A with communi-

cation time ga + ,1~, computation time @+ AI and context
size p can be simulated on a p-processor BSP * in communi-
cation time O(g~ ~+AL), computation time ~~+O(~+AL)

and context size 0( ~~) for b ~ (v/p)t, suitable constant

[ >0, and v > Pi+’ for constant ~ >0, .
In the case A is c-optimal on the BSP for the conditions

j < g(n), ~ < L(n) and v s p(n) the simulation results in
a c-optimal BSP* algorithm for the conditions g < b . g(n),

L s L(n), b S (V/P)t andp S
(>0.

‘+mfor suitable constant

We can simulate a CGM using the same approach as for
the BSP* model, which results in the following lemma.

Lemma 2 A v-processor CGM algorithm A with A commu-
nication rounds, computation time r and context size p can
be simulated on a p-processor BSP* in communication time
O(g~~ + AL), computation time ~#?+ O(Y + AL) and con-

text size 0( ~p) for b ~ (v/p)t, suitable constant ( >0, and

v > p’+’ for constant e >0.
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4.2 Details of the Simulation

We now describe the BSP* to Ehf simulation in more detail.

Definition 2 Given a collection of records, we say that the
records are in blocked format i~ they are assembled into
units o~ a minimum size B. B is called the block size.

The following definition applies to a collection of records
on a machine with multiple disks:

Definition 3 We say that the records are in standard con-
secutive format on the disks iff (i) the records are in blocked
format, and (ii) the number of blocks on each disk is ~ 1+
rein{ the number of blocks on any disk}, and (iii) the blocks
on a disk are stored in consecutive tracks of the disk.

In general, the communication time of a BSP* superstep
is 0(9 ~ + L). We use ~ to refer to the size of the commu-
nicated data, and p to the size of the context of a processor
(the number of words in its memory image). In our anal-
ysis, we assume ~ = O(p). In the following, the context
and messages generated by a virtual processor are divided
into packets (we may use the term blocks) and the packets
are spread in standard consecutive format (evenly) over the
available disks.

Algorithm CompoundSuperstep simulates a single com~
pound superstep of a v processor BSP* on a uniprocessor
EM-BSP* machine. We simulate k ~ 1 BSP* virtual pro-
cessors at a time. We refer to such a collection of processors
as a group. We also use this term to refer to the messages
associated with a group of processors. To maximize the use
of available memory, we choose k = [;], so M z p,

Algorithm 1 : CompoundSuperstep
Input: For each i the packets of the contexts and arriving
messages of the currently simulated processors ik, . . . . (i +
l)k – 1 are spread over the D disks in standard consecutive
format, so that they can be accessed in parallel. See the
right hand side of Figure 2 for an example.
Output: (i) The (changed) contexts oft he k simulated pro-
cessors spread across the disks in standard consecutive for-
mat (ii) The messages generated during the compound su-
perstep are grouped by destination into ~ groups, and each
group is stored in standard consecutive format on the disks.

(1)

(2)

fori=Oto~–1

(a)

(b)

(c)

(d)

(e)

Read the contexts wk to ~,+~)k_l from the disks
into memory.

Read the packets received by the k virtual proces-
sors (in the receiving phase of the current com-
pound superstep) from the disks.

Simulate the local computation of the k virtual
processors.

Write the packets which were sent by the k virtual
processors to the D disks. (Details below.)

Write the changed contexts K~ to ~,+l)~_l back
to the D disks.

Reorganize the blocks containing the generated mes-
sages into standard consecutive format for each group
of k processors so that they can be accessed in parallel
from the disks in the simulation of the next compound
superstep.

— End of .41gorithm —

Algorithm CompoundSuperstep simulates a single com-
pound superstep of the BSP* algorithm. Steps l(a) and l(b)
correspond to the Fetching Phase, Step I(C) is the Compu-
tation Phase, and steps 1(d) and l(e) comprise the Writing
Phase.

Details of Steps 1(a) and 1(e): Since we know the size
of the contexts of the processors, and the order in which we
simulate the virtual processors is static during the sirnnla-
tion, we can distribute the k contexts deterrainistically. We
reserve an area of total size VP on the disks, ~ blocks on
each disk, where we store the contexts. We split the context
of each virtual processor into blocks of size B and store the i-

th block of V~ on disk (i + j ~) mod D using track
[1

*

Since the context of each processor is now in standard con-
secutive format on the disks, we can easily read and write
the contexts of k consecutive processors using D disks in
parallel for every 1/0 operation.

Details of Step 1(b): Step (2) for the previous compound
superstep guaranteed that the blocks which contain the mes-
sages destined for the current processors are stored in a re-
served area evenly distributed over the disks. Therefore, we
can use a similar technique to fetch the messages as we used
to fetch the contexts.

Detaiis of Step 1(d): After the Computation Phase, all
messages sent by the current group of k processors in the
current compound superstep have been generated and stored
in internal memory. The coarse-grained nature of the BSP*
algorithm results in large messages, which are as long or
longer than the block size B. We cut the messages into
blocks of size B. Each block “inherits” the destination ad-
dress from its original message. In k ~ /D rounds, we write
the blocks out to the disks. In each round a group of D
blocks bi, O ~ i s (D – 1), is written in parallel to the disks
by choosing a random permutation n of {O, 1,.,., (D – 1)}
and writing block bi to disk rr(i).

The blocks are partitioned into D buckets on the disks,
depending on their destination address. Each bucket con-
tains the blocks destined for ~ consecutive virtual proces-
sors. In order to maintain the buckets, the simulation uses a
table of D pointers on each disk. The ith entry in the table
on a disk points to the head of a list of blocks of bucket i
that have been written to that disk. Whenever we write a
block of bucket i to disk Dj, we allocate a free track on Dj
and concatenate it to the list for bucket i.

Definition 4 For convenience, we shall refer to the format
just described for the blocks in a bucket as standard linked
format.

Clearly, we can read all the blocks composing a bucket
stored on D disks in standard linked format in 0(~) par-
allel 1/0 operations, provided each disk contains the same
number of blocks.

Since we write one block in each round to each disk, and
there are a total of v ~ /L1 rounds, the additional space re-
quired to store the table can be ignored because v ~ /D >

~log ~ = O(Dlog ~). In Lemma 4 we show that with
high probability the blocks of each bucket are uniformly dis-
tributed over the disks.

Algorithm SimnlateRouting provides the details of Step
2 in Algorithm CompoundSuperstep)
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Figure 2: Reorganization of the blocks

Algorithm 2 : SimulateRouting
Input: The D buckets (of messages) stored on the disks in
standard linked format.
Output: The ~ groups (of messages) stored on the disks in
standard consecutive format.

(1) Allocate space for a copy of bucket i on disk i, for
i = 0, . ..(D – I). Read the buckets from the disks in
parallel and write them back, one bucket per disk. For
the j-th parallel read/write we perform the following:

for d = O to D – 1 in parallel do

Read blocks bd belonging to buckets d from disks
((d -1-j) mod D). Write blocks bd to disks d on
the next available track.

(2) From each disk, in parallel, read a block of each bucket,
writing the blocks back to the disks so that each bucket
is in standard consecutive format.

forj=Oto~

ford =Oto D–linparaUeldo

read the jih block from disks d

write them to disks (d + j) mod D on track

i[fil + l.i/DJ

— End of Algorithm —

After Step 1 of Algorithm SimulateRouting, all messages
that will be received by a group of k processors are stored
in one region on the same disk. After Step 2, the blocks
are stored in standard consecutive format. In fact they are
stored in fixed locations like the blocks of the context. See
Figure 2. This is possible because we know that each virtual
processor receives and sends messages of total size < ~.

Lemma 3 Steps 1(a), 1 (b) and 1(e) of Algorithm Com-
poundSuperstep have computation time O(yv), memory
Q(k~), Z/O-time O(G~),, and disk space O(%) blocks per
disk.

Lemma 4 The blocks representing simulated message traf-
fic are divided into buckets by our simulation. Let R be the
number of blocks in each bucket. Let X,,k be a random vari-
able representing the number of tracks of disk k that belong
to bucket j (a track belongs to bucket j, when it contains a
record of bucket j). Then, for any fixed bucket j’ we have
the following:

‘+” 4 -+w”!v))
Proof. The proof is similar to one described in [27]. Details
can be found in the appendix. ❑

Lemma 5 For v z kD log ~, the computation time of
Algorithm SimulateRouting is 0(1-yv) and its 1/0 time is
O(Gl~) with probability 1- exp(-fl(i log 1. log(lf/13)))
for constant 1>1.

Proof. Each bucket contains R = # blocks since each of
the D buckets contains the messages ~estined for ~ virtual

processors. Hence, for M ~ DB, and ~ ~ D log ~,

By Lemma 4, each disk contains less than 1~ records of a

given bucket with probability at most exp(–f2(l . log is)).
There are D drives and D buckets, so the probability that
any disk contains more than i ~ blocks of any bucket is at

most D* . exp(–fl(llog l:)). Thus, with (2) and k~ ~ DB,
we have

D’ exp(–fl(llog 1$))

< D2exp(-fl(lIoglk710~~/B)))—

DB log(M/B) + log D))
< exp(–fl(llog 1 DB

~ exp (-fl(llog 1. log ~))

After D iterations of Step 1 in Algorithm SimulateR-
outing, D blocks per bucket have been moved. Each disk
contains less than ~ blocks of each bucket with high prob-
ability. Thus, after fi~ iterations, all blocks have been
moved.

IU Step 2, ~ iterations are performed. During each
iteration, a parallel read and a parallel write operation are
performed.

Thus, the total I/O-time of Algorithm SimulateRouting

is O(G&$) and the total computation time is O(hJ~) with
high probability. n

Result 1 A compound superstep of a u-processor BSP*
with computation time r + L, communication time gy/b+ L,
and local memory size p can be simulated on a single proces-
sor EM-BSP* in computation time vT+O(lvy) and I/O time
O(Glfi) with probability 1 – exp(–fl(t log 1.log(.W/B))) for

constant 1 ~ 1, v ~ kDlog $$, M = @(kp), b ~ B, and k
an arbitrary integer.

Proof. Since the local memory of a virtual processor is
large enough to store the incoming messages and we need p
memory to store the context, we need M ~ k~ memory in
the EM-BSP* machine.

The disk space needed by the simulation is the total con-
text size VP, which includes space for incoming messages. By
Lemma 4, the communicated data is evenly distributed over
the disks with high probability. Therefore we need in total
O(v~/(D13)) space on each disk.

Step 1(c) of Algorithm CompoundSuperstep consumes
VTcomputation time. For each batch of k virtual processors,
k~/b messages are generated. This adds 0(v7) computation
time overall.
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During Step l(d) of Algorithm CompoundSuper-step, a
permutation can be generated in O(D) time, so the com-
putation time for each batch is O(D ~ + k-y) and 1/0

time O(%), giving computation time O(rq) and 1/0 time
O(G ~ ) for the whole simulation.

By Lemma 3 and Lemma 5 the computation time and
I/O-time respectively for Steps 2, l(a), l(b) rmd l(d) are
O(v-y) and O(G .1 ~ ). Thus, overall, computation time is
TJr + O(ITU) and 1~0-time is O(G . l%) with probability

1 – exp(–fl(l Iogl . log ~)). ❑

Lemma 6 allows us toexploit the independence of the
random experiments performed during each compound su-
perstep in order to prove that the success probability for the
entire simulation is as large as for the simulation of a single
compound superstep.

Lemma 6 Given z independent random variables XL, X2,
. . . . X= with Pr[Xi < 1~ >1 –exp(–ilog 1. m) and Pr[X, >
ill ~ exp(–llog 1. m ~, where m > lnz and T~c s rT, we
have Pr[~~=l X, < e (1+ 1).z~ Z 1 – exp(–~(~log 1 “ m))
jor i >2.

Proof. Proof can be found in the appendix. n

Theorem 1 A c-optimal u-processor BSP* algorithm A
with communication time gcr/b + AL, computation time ~ +
AL, and local memory p can be simulated on a single proces-
sor EM-BSP* with computation time (1 + o(l))v~ and 1/0

time O(GA ~) with probability 1 – exp(-fl(i. log 1. log ~))

jor suitable 1 z 1, ,8 = u(JP), M = Q(kp), v ~ kDlog ~,
b z B, and arbitrary integer k.

In particular, the Jimtdation results in a c-optimal EM-
BSP* algorithm jor the additional condition G = BD.o(fi).

Proof. Since we assume that the amount of communica-
tion each BSP* processor performs per superstep is bounded
by its memory size p, we can conclnde that the commu-
nication time of each compound superstep is bounded by
gpfb -i- L.

Using Result 1, we can simulate on an EM-BSP* ma-
chine with D disks and iocal memory Q (kp) a compound
superstep with communication time T + L and computation
time g,u/b + L in computation time VT + O(lvp) and 1/0

time O(G~) with probability at least 1 – exp(–fl(llog 1.

log *)).
The computation time required to simulate the com-

putation steps of A is v~. The computational overhead
is O(iv~,l), which is asymptotically smaller than vPA for

~ = IJ@) and constant I.
Since the worst caae runtime of a compound superstep is

at most D times the average runtime, the theorem follows
from Lemma 6. a

4.3 The General Case p ~ I

In this section, we generalize the simulation to p ~ 1 pro-
cessors on the target EM machine.

We first describe the simulation of a compound superstep
of a v-processor BSP* with communication time g-y/b + L,
computation time T + L and context size p on a processor
EM-BSP*, for v z kpD log ~ and p ~ 1. We assume further
that b ~ f?, where b is the message block size of the BSP*
virtual machine.

Outline of the parallel simulation: As an initial step,
~ virtual processors i;, . . . . (i+ 1) # – 1 are assigned to each

simulating processor i. As before, we perform a stepwise
simulation which works in a round-robin fiwhion. During
the jth of ~ rounds processor i simulates the steps of the k

virtuaJ processors i; + jk, . . . . i; + (j + l)k – 1. Messages
sent between virtual processors on different real machines
require real communicant ion by the simulation. If these mes-
sages are sent directly to their destinations by the simulation
the traflic may be unbalanced, causing inefficiencies in com-
munication. Instead, therefore, we distribute the messages
randomly among the processors after each round. After the
last round each processor reorganizes the messages it haa re-
c~~d so that for every j during the Fetching Phase of the

J round of the next simulation it can read the messages
destined to the virtual processors jkp, . . . . (j + l)kp – 1 in
parallel from disk and send them to the correct simulating
processor.

We maintain * batches to store the generated messages.

The jth batch contains the messages destined to virtual pro-
cessors simulated in the jth round. Each processor Pi writes
its share of the ~ batches to its local disks. The main dii%-

culty is the efficient maintenance of the batches so that the
packets which are needed during the jth simulation round
can be read in parallel from the disks.

Algorithm 3 : Simulation of a v-processor BSP* on
a p-processor EM-BSP*
Input: Each processor holds ~ blocks of each batch. For
each j the blocks and the contexts of the virtual processors
jkp,.. ., (j + l)kp – 1 are distributed among the local disks
such that each disk cent sins ~ blocks of each.
Output: The changed contexts and generated messages dis-
tributed as required for the next round,

(1) In the j“ round, 1 ~ j < ~, for each processor i,

O<i<p–l, doinpara.llel:

(a)

(b)

(c)

(Fetching Phase): P; reads in parallel the blocks
for its share of batch j from disk and sends them
to the appropriate simulating processors.

(Computing Phase): Pi simulates the computa-
tion supersteps of its current virtual processors
and collects all generated messages in its local
memory.

(Writing Phase): Pi splits all generated messages
into packets of size b (the message size) and sends
each one to a randomly chosen processor.

(2) Pi reorganizes the received batches using Simtdate-
Routing so that each one is evenly distributed over the
disks.

— End of Algorithm —

Many of the details of Algorithm 3 are similar to ones
described for Algorithm 1. In each round a processor re-
ceives ~ blocks with high probability. In Step 1(c), each
processor cuts the messages it receives into blocks of size
B. The blocks are written to the disks, using a random
permutation of disk numbers as before. Depending on their
destination address, the blocks are maintained in D buck-
ets, which are distributed on the disks as in Step l(d) of
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the single-processor simulation. Each bucket cents.ins the
blocks destined to ~/D batches. The i’h bucket on each

dwk contains packets belonging to the same batch. As be-
fore, a table of D pointers is maintained on each disk. As
before, we can show that each disk will receive the same
number of blocks for every bucket with high probability.

Result 2 A compound super-step of a v-processor BSP*
with computation time r+ L, communication time gyjb + L,
and local memory size p can be simulated on a p-processor
EM-BSP* in computation time r; + O(l~(Y + ~) + L*),

communication time O(gl~( ~ + -) + L ~) and I/O-

time O(G . /#&) with probability 1 – exp(–~(llog 1 .

log(J4/B))) jor suitable 1 z 1, A4 = E3(kv), blog(14/13) =
O(M), v = Sl(kpD . log ~), M/B ~ p’, and arbitrary con-
stants k, t >0.

Theorem 2 states that a c-optimal BSP* algorithm is
transformed into a c-optimal EM algorithm by our simula-
tion for the general case of p ~ 1 simulating processors.

Theorem 2 A c-optimal v-processor BSP* algorithm A
with communication time gcxfb + AL, computation time 13+
AL, and local memory p can be simulated on a p-processor
EM-BSP* with computation time (1+ o(l))~~ + O(LA~)j

communication time O(gl( ~ ~ + ,1-) + LA $ ), and

1/0 time O(Gl~(&)) with probability 1 – exp(–fl(l log 1.

log ~)) jor 9uitaMe 1 ~ 1, B = W(AP), ~ = @(~P)j

v = Q(pkD . log ~), M/B ~ p’, blog(M/B) = O(M), and
arbitrar~ constants k, c >0.

In the case A is c-optimal on the BSP* for the additional
conditions g s g(n), b < b(n), L s L(n) and v s p(n)
the simulation results in a c-optimal EM-BSP * algorithm

for the conditions ,4- = O(;), g s g(n), b < b(n),

G= BD. o(fi) and L~L(n) .$.

The slackness ~ required by the simulation is controlled

by the number of processors and disks we want to employ
as well as the desired success probabfity. The condition
M/B ~ p’ is usually fulfilled for actual machines. The sim-
ulation increases the number of supersteps by a factor of
~. However we inherit the good communication time

from the BSP* algorithm which results in a c-optimal mul-
tiple processor EM-BSP* algorithm.

5 Conclusion

In thispaper we described simulation techniques which pro-
duce efficient EM algorithms from efficient algorithms devel-
oped under BSP-like parallel computing models. Our tech-
niques can accommodate one or multiple processors on the
EM target machine, each with one or more disks, and they
also adapt to the disk blocking factor of the target machine.
In addition to the main simulation result, we obtained a
more comprehensive cost model for EM algorithms which
considers the total costs incurred by the algorithm includ-
ing computation, 1/O and communication costs.

We note that our techniques apply to BSP-like algo-
rithms for which T = w(A,u), where r is the computation
time, A is the number of supersteps, and p is the size of
the local context of a processor. This is a large class of al-
gorithms. Examples include computational geometry prob-
lems such as area of the union of rectangles, 3D-maxima,

2D-nearest neighbors of a point set, lower envelope prob-
lems, 2D-weighted dominance counting, and 3D-convex hull
[13, 14, 15].

Algorithms which do not fall into this category are typ-
ically algorithms that maintain very large data structures.
An example of such an application is multisearch [7]. In such
cases, we suggest that classical EM techniques like distribu-
tion sweeping[17], batch filtering[17], and buffer tree[5] to
name a few must be employed by each virtual processor in
order to achieve efficiency by any cost measure that includes
1/0 costs. In these cases, the techniques in this paper pro-
vide a basis for pursuing efficient parallel implementations
of such algorithms. We are currently exploring these ideas
in the context of multisearch.

Our results show that for certain efficient BSP-like algo-
rithms, a corresponding efficient EM algorithm exists, and
that such algorithms can, in fact, be logically used in both
environments. This creates a scenario where an application
equipped with such an algorithm could adapt dynamically
to available resources such as processors, memory, and disks
in an efficient way, as dictated by the problem size. We are
in the process of implementing this idea on ASP, a Linux-
based multiprocessor with multiple disks recently built at
Carleton University.
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6 Appendix

We use the following tail estimates:

Lemma 7 If X is a non-negative random
O. we have

variabie and T ~

Proof. We use the following Markov inequality. Let X by
any random variable. Then, for all t E IR+,

For any positive real r,

Pr[X ~ u] = Pr[exp(rA’) ~ exp(ru)]

Applying the above Markov inequality to the right hand
side, we have

•1

Lemma 4 The blocks representing simulated message traf-
fic are divided into buckets by our simulation. Let R be the
number of blocks in each bucket. Let Xl ,k be a random vari-
able representing the number of tracks of disk k that belong
to bucket j (a track belongs to bucket j if it contains a record
of bucket j). Then, for any fixed bucket j’ we have the foi-
lowing:

‘r[xJ”+ -’(-wO%”R))
Proof. The proof is similar to one described in [27]. Let
g~ denote the number of disks (i.e. the number of records)
written to from bucket j’ during write cycle t, for 1 s t ~ C,
where C is the total number of write cycles used. We have

We define G, to be the number of tracks belonging to
bucket j’ that are assigned to track 1 in write cycle t. Since
only one track can be written to any disk in a write cycle,
G, is restricted to the values O and 1. We have Pr[Gt =
1] = gt/D and Pr[Gt = O] = 1 – gt/D. Let GG, (z) be the
probability y generating function for Gt:

~Gt(z) = pr[G = O]Zo+ F’r[Gt = l]z’ (4)
= ~_g+9tz

DD
(5)

= I+; (z–1) (6)

Let Gx,,,, (.z) be the probability generating function for
Xj f,1. We can bound XJt,1 by the sum of independent ran-
dom variables: Xjl,l ~ G1 + G2 + . ..+ Gc. For purpose of
bounding, let us consider that Xj),l = GI + G2 + . . . + Gc.
Since the sum of independent random variables corresponds
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to the product of the corresponding probability generating
functions and using (6), we have

!7xj,,l(z) = ~G, +G,++Gc(z)

= ~Gl(z) x ~G,(~) x “““ x ~Gc(z)

= ~(, +~(z-1)) (7)

I<t<c

By the tail estimate Lemma 7 we have

[

R

1

~[exp(~xjj,l)l
‘r ‘J’%’ ‘[~ 5 exp(rlR/D)

(8)

foreachr>O. Wecanexpress thenumerator in(8), us-
ing (?)and the definitions of expected value and probability
generating function, as

E[exp(rxf,l)] = ~ Pr[erx~’l = e“]e”
t>0

= ~Pr[X7,,1 = t].”
t>0

= ~x,,,, (e’)

= ~ (,+ ;(.” -l)) (9)

I<t<c

By (3) and convexity arguments, we can maximize (9) by
setting gt = RJC for each t.Thus

Substituting this bound into (8), we get

[ 1Pr X,7,1 ~ l; ~
{1+ R(e” - l)/DC)C

(11)
exp(riR/D)

From the bound (1+ a)b ~ e“b, for a > –1, we can approx-
imate the numerator in (11) and get for r = in 1

r
Pr [XjI,L ~ ~~] < ~

= exp
( ‘“’’r;’-r’R) ~o(exp (-w)) (12)

D

Fact 1 (Hoeffding [18]) Let XI, . ~, X/ be independent

random variables with X, E [0,.. ., k] and m = E[~~=l X,].

Then for u z ez:

TWC s xT. Then, we haue Pr[~~=l .Y, ~ ez(l + l)z~ >
1 – exp(–fl(llogl . m)) for 1 ~ 2.
Proof. We identify two csses: (1) z > xmc and (2) z <

xmcforc=l+e.

First, we consider the Case(1): The mean of the quantity

~~=, -~, can be bounded from above as follows for suitable
constant I ~ 2 and m ~ In z:

. z

E[~ X,] < ~ (Pr[X, < lTl . lT + Pr[X, > /T1 . TW.)
1=1 ,=1

< zIT(l – e-l]”gi””’) + zxTe–l LOgl”m

~ ziT + zTe–~ ‘“g~“m+lnz

< (/+ l)ZT (13)

Moreover, we can bound the mean E[~~=l X,] from below
as follows:

E[~ X,] > ~ (Pr[Xt < lTl . lT + Pr[.Y, > {T’1. T)
i=l ,=1

z (/ – I)ZT (14)

We can conclude from Fact 1 with k = T.C<zT, m=

E[z~=l X:] Z (~ – l)zT, and z z zinc:

Z(l – l)zT
Pr[~ X, > e2ml < exp(–e ~T )

,=1

(i- 1)2)< exp(-(l - l)rn’)< exp(– —

< exp(–(1 –xl) log 1. m)

Now, we consider the Case (2), remember z < zmc with
c = 1 + *. We repeat the experiment only z times, thus

we have with m ~ in x:

Pr[~X, S zlT’1 2 (1 – exp(–llog i. m))=
i=l

> 1 – zmcexp(–llog I . m)

~ 1 –exp(–llog l.m+clnm+ln z).

‘r[sxt-”mlsexp(-uf)
Lemma 6 Given z independent random variables
X1,X2,..., X= with P1[X1 < lT’1 ~ 1 – exp(–ilog 1. m)
and Pr[X, > lTl s exp(–1 log I . m), where m z in x and
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