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Abstract

We present a parallel algorithm for solving the next
element search problem on a set of line segments, using a
BSP like model referred to as the Coarse Grained
Multicomputer (CGM). The algorithm requires O(1)
communication rounds (h-relations with h=0(n/p)), O((n/
p) log n) local computation, and O((n/p) log n) storage per
processor. Our result implies solutions to the point
location, trapezoidal decomposition and polygon
triangulation problems. A simplified version for axis Figure 1: lllustration of Next Element Search
parallel segments requires only O(n/p) storage per

processor, and we discuss an implementation of thisgpq needsO((n/p) log n) storage per processor. A

version. _ , simplified version for axis parallel segments requires only
As in a previous paper by Develliers and Fabri[11], our O(n/p) storage per processor.

algorithm is based on a distributed implementation of The next element search algorithm presented here

segment trees which are of size O(n log n). This papefimplies immediately solutions for the point location,

improves on [11] which presented a CGM algorithm for yane70idal decomposition and triangulation problems.

the _spemal case of trapzoidal decomposmo_n only and  agina previous paper by Develliers and Fabri [11], our

requires O((n/p) * log p * log n) local computation. algorithm is based on a distributed implementation of
segment trees which are of si@én log n). This paper

. improves on [11] which presented a CGM algorithm for

1. Introduction the special case of trapzoidal decomposition only and
requiresO((n/p) * log p * log n) local computation.

The next element search problem is a well known  The organization of this paper is as follows: Section 2
problem in computational geometry with many and Section 3 define the coarse grained multicomputer
applications[1]. Given a set af non-intersecting line  model and segment tree, respectively. The algorithm is
segmentsy, ..., s, and a directiorD,e,; (Without loss of  presented in Section 4 and Section 5. In Section 6 we
generality we can assume thi3e,;is the direction of the  outline a simplified version for axis parallel segments and
positive Y-axis), the next element search problem consistsdiscuss an implementation of this version. Section 7
of finding for each query poiwf of a set o query points  concludes the paper and outlines some important
dy, ---, Om the line segmeny, first intersected by the ray applications.
starting atg; in directionDpey; (MTFO(N)); see Figure 1. A
sequential solution require®(n log n) time and O(n) 2. The coarse grained multicomputer model
space[17].

In this paper, we present a parallel algorithm for  gpeedup results for theoretical PRAM algorithms do
solving the next element search problem on a coarsgg; npecessarily match the speedups observed on real
grained multicomputer, CGM (see Section 2 for a machines [2][8]. Given sufficient slackness in the number
discussion of the model). The algorithm requi®8)  of processors, Valiants BSP approach [20] simulates

communication round<Q((n/p) log n) local computation
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PRAM algorithms optimally on distributed memory data items per processor, with respect to the CGM’s
parallel systems. Valiant points out, however, that one mayprocessor numbering[14].
want to design algorithms that utilize local computations  All-to-all broadcast: Every processor sends one
and minimize global operations [19][20]. The BSP message to all other processors[6].
approach requires tha (= local computation speed / Personalized all-to-all broadcast Every processor (in
router bandwidth) is low, or fixed, even for increasing parallel) sends a different message to every other
number of processors. Gerbessiotis and Valiant [13]processor[6].
describe circumstances where PRAM simulations cannot Partial sum (Scan) Every processor stores one value,
be performed efficiently, among others if the fagjois and all processors compute the partial sums of these
high. Unfortunately, this is true for most currently values with respect to some associative operator[6].
available multiprocessors. The algorithms presented here
consider this case for the next element search problem3. Segment tree definition
Furthermore, as pointed out in [20], the cost of a message
also contains a constant overhead sosfThe value of A well known method for solving the next element
can be fairly large and the total message overhead cost cagearch problem is to apply a plane sweep in dire@jn;
have a considerable impact on the speedup observed (seRing a segment tree [3][16][17]. th(x)[qi(x)] be the
e.g. [6]). projection of the line segmens [query point g

We are therefore using a variation of the BSP mOdeLrespectiver] onto the-axis, and letxy, X, ..., Xor) be the
referred to asoarse Grained Multicompute€GM. Itis  sorted sequence of the projections of theeidpoints of
comprised of a set gf processor®, ..., P, with O(m/p) 5, ..., 5, onto thex-axis. The segment tré&S) = (Vg, EJ
local memory per processor and an arbitrary js a complete binary tree with leavies Xy, ..., Xopn. FOr

communication network (or shared memory). The term every nodev of T($ an inter\/ab(range(v) is defined as
“coarse grained” refers to the fact that we assume that theg|lows:

sizeO(m/p) of each local memory is “considerably larger” « if vis a leafx;, thenxrangdv) = [x;, X;,1), assuming

thanO(1). Our definition of “considerably larger” will be that Kon, Xon+1) = XonsXon]-

thatm/p = p. « if vis an internal node, themanggv) is the union
All algorithms consist of alternating local computation of all intervalsxrangdV’) such thatv' is a leaf of

and global communication rounds. Each communication the subtree of(S) rooted aw.

round consists of routing a singdherelation withh=0O(m/ With every nodev of the segment tre&(S) there is

p), i.e. each processor sen@m/p) data and receives associated a catal@(v) 0 Sdefined as follows:
O(m/p) data. We require that all information sent from a « C(v) = {s0OS|xrangdv) O s(x) and
given processor to another processor in one not (xrangdfather ofv) 0 s(x))}.
communication round is packed into one message. In the Note that each line segment can occurOflog n)
BSP model, a computation/communication round is catalogs. The size of the segment fF&®), denotedT|(S),
equivalent to a superstep with= (m/p)g (plus the above s equal to the number of nodes and edgég$fplus the
“packing” and “coarse grained” requirement). total size of all catalogs. Therefof§($)| = O(n log n).
Finding an optimal algorithm in the coarse grained Hence, storing the segment tree with all of its catalogs
multicomputer model is equivalent to minimizing the requiresN = O(n |Og n) space. Also note that the sum of
number of communication rounds as well as the total localthe lengths of all catalogs of all nodes with the same level
computation time. This considers all parameters discussegheight) is O(n)[16]. For the remainder, define
above that are affecting the final observed speedup, and rangdgT(S)) = xrangdr) wherer is the root off(S). Also

requires no assumption an Furthermore, it has been define xrangds) and xrangdg) to be s(x)[qi(x)]
shown that minimizing the number of supersteps alsorespectively.

leads to improved portability across different parallel
architectures [9][19][20]. The above model has been usedq. pgrallel segment tree construction
(explicitly or implicitly) in parallel algorithm design for
various problems ([4][5][6][7][8][10][12][15]) and shown
very good practical timing results.

We now list the basic operations required by our
algorithms. Each of these operations requi@gL)
communication round€)((n/p) log n) local computation,

In this section we will show how to construct a
distributed representation of a segment g, called a
parallel segment treefor a set ofn line segments on a
CGM such that the resulting data structure can be
: efficiently used to process next element search queries in
and requires/p 2 p. _ parallel. The approach will be to partition the segment tree

Global sort: SortO(n) data items stored ona CGMp  (yithout associated catalogs) into substructures of size
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O(n/p) such that no processor stores more 1Bék) such

with nodes inv,.

substructures; see Figure 2. The catalogs for nodes in Observation 1If a line segment contains xrangg(T

level 1
To

iy

Figure 2: Decomposition of the Segment Tree

level logp

Ty Tp level h=logn

subtreesTy, ..., T, will be stored with their associated
subtrees, while the catalogs for nodes in geawill be
partitioned, when necessary, into lists of sizdd p) / p)

then it is not contained in any catalog qf (Except for
possibly the root).

Observation 2S(T) is of size O(n/p).

A consequence of Observation 2 is that each subset
ST (1 <i < p) with its catalogs can be stored in the
memory of a single processor. The tigeonsists 0O(p)
nodes and catalogs whose combined siz&(is log p).
ThereforeTy is too big to be stored on a single processor.
Instead, each processor will store a copyl@f(without
catalogs) and a lig§ which is a portion, or all, of the
catalog of a node of Ty. LetL denote the list formed by
concatenating the catalogs associated with nodeg,),of
where catalogs are ordered by level and then rank in level
and all catalogs are padded to be of a length evenly

and distributed such that no processor stores more thadivisible by (f log p) / p). The listl; consisting of

O(1) such lists; see Figure 3. We first describe ourelementsin/p, ...

P1 P, Ps
h|h|h
Py Ps P
Is | I
Pz P1o
l ho

firstg | | lastg

Figure 3: The tree Ty with catalogs partitioned into
lists /;, where list /;is of size |l{<n/p

distributed segment tree representation and then give an

, (i(+1)n/p from L will be stored on

processoP;; see Figure 3.

Observation 3 Since | has height log p and a line
segment can appear in at most 2 catalogs,@tthe same
level, the total size of list L is O(n log p).

Algorithm 1: “Parallel Segment Tree Construction”.
Input ProcessoiP; (1 <i < p) stores a subs& of n/p
elements of Output ProcessoP; (1<i < p) storesyT;),
the treeT without catalogs but with the valugsanggv)
for eachv O V, and the list; which is a portion, or all, of
the catalog of a nodeof T,

(1) Create for eacts [0 S two copies, one for each
endpoint. Refer to the new set 8s Sort S by x-
coordinate, such that each procesBprcontains a
subset§ of size O(n/p). Now, processolP; stores
T;) andxrang€T;). From Observation 25(T;)| =
Oo(n/p).

algorithm that efficiently constructs such a segment tree on (2) Use an all-to-all broadcast to distributexainggT;)

a CGM.

A parallel segment tre@(S (without catalogs) is a
complete tree witim leaves which consists &f = log n
levels where the level of a nodés defined recursively as
follows: levelv) = 1, if v is the root, andevelv) =
levelparen{v)) + 1, otherwise. Letrank(v) denote the
rank of the vertex in the left to right ordering of the level
for v. Forv OV, let subtre¢v) 00 1..p be defined as
follows: subtregv) = p, if 1 < levelv) < log p-1 and
subtre€v) = rank(V') otherwise, where’ is the ancestor of
v such thatlevelv) = log p. LetV, = {v OV |
subtrev)=i}. Let T, denote the subtree af with vertex
set V; and edge setg = {(vw) O E |
subtregv)=subtre€v’)=i}. Let YT;) be the set of segments
of Swhose endpoint is irrang&T;).

In our distributed representation of a segmentT(Sg
every subtred; (1 <i < p) will be stored on processéy.
Each processadpP; will also store the catalogs associated
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(1<i<p)to all processors. Each processor computes
To without any catalogues but wiktanggv) values
for all v O V.

(3) ProcessoP; computes the catalogs ©f with respect
to § only. We refer to this reduced versionf as
To,- Note thatTyp;| = O((n/p) log p).

(4) Assume that all nodes df; have a unigue index.
Consider a line segmesin the catalog of the node
in Tg with indexj. Let| be the left vertical boundary
of the vertical slab defined byrang€gv); see Figure
4. Lety(s) denote theg-coordinate of the intersection
of s andl. We defingl andy(s) as the primary and
secondary key fos, respectively. Using a global sort,
all line segments in the catalogs of Bfl, (1<i<p),
are sorted with respect to their primary and secondary
key in such a way that no processor stores two line
segments with different primary keys. The latter can
be achieved by usingZirtual processors.



g on Tp. The problem reduces to solving for each

! / nodev of Ty a next element search problem for a

certain numberX, of line segments and a certain

S numberY, of queries. Note that, each such problem

n9) requiresO((X, + Y,) log (X, + Y,)) computation.

Sincey X, = n/p and },Y, = p, it follows that the
; total local time is Off log n) / p).

(3)Using global sort and partial sum operations,
determine for each sublitthe number of queries,
Theorem 1 Algorithm 1 constructs a parallel segment g(l;), that have to be searched;irLetk(l;) =g(l;,) p/

tree on a CGM using O((n/p) log n) memory per processor, nCl

O(1) communication rounds and O((n/p) log n) local (4)Createk(l;) copies ofl; (1 <i < p). Note that, this

computation. requires P virtual processors. Broadcast the new
Proof. The memory bound follows from Observation 2 addresses of the sublists

and Observation 3. The algorithm uses a constant number (5) Each processd; makes logo copies of its query set

of the basic communication operations of Section 2. The Q; and routes the queries to the respective sublists

Figure 4: The vertical slab defined by xrange(v)

local computation time is bounded by the local time for using sort.

sorting (Steps 1 and 4). O (6) The queries are processed on the sublists to which
they were sent in Step 5, and the pogsults for each

5. Parallel query processing guery are collected in a single processor by using a
global sort operation. (Note that, lpgs n/p)

Given a segment tréKS) and a query poirg 0 Q, the (7) Determine for eacfi; the numbera(T;), of queries
next element ofy in S can be determined by a simple whose search path includes the roofjofl < i < p).
search inT(S) from the root ofT(S) to the leafv whose This can be computed by using global sort and partial
xrangecontaing (see e.g. [17] for details). sum operations. LéX(T;) = [a(T;) / (n/p) [

Recall that, at the end of Algorithm 1, proces®ofl < (8) Createb(T;) copies ofY(T;). Note that, this requires
i < p) storesYT,), the treeT, without catalogs but with the 2p virtual processors. Route/p queries to each
valuesxrangdv) for eachv 0 V;, and a list; which is a processor such that a processor sto8fig) receives
portion, or all, of the catalog of a nodeof Ty, Let first; n/p queries whose search path contains the rogt of
and last refer to the first and last element &f (9) Each processor processes the queries for its sdbtree
respectively (see Figure 3). (1 <i < p) by applying the standard sequential next

The following algorithm uses the parallel segment tree  element search algorithm [17] f§(T;) and its query
to answer all queries in parallel. Each individual query is set.
first “routed” throughT,, and then through the respective (10) Combine the results of Step 9 with those obtained in
Ti. In Ty, the tree structure is used to schedule the  Step 6, using sort.
computation. However, the catalog lookups are reduced to Theorem 2Algorithm 2 solves the next element search
sequential next element search problems. For the subtreggoblem for n line segments on a CGM with O((n/p) log n)
T, a load balancing scheme is used to ensure equalemory per processor using O(1) communication rounds
distribution of work. In eacfl;, all search processes are and O((n/p) log n) local computation.
reduced to a single sequential next element search Proof. The memory bound follows from Theorem 1.

problem. The algorithm uses a constant number of the basic
Algorithm 2: “Parallel Query Processing”. Input A communication operations of Section 2. The local
parallel segment treES) as produced by Algorithm 1 and computation time is bounded by the local time for sorting
a setQ of n queries, where each proces®rstores a  and sequential next element search. O
subseQ); of sizen/p. Output Each Processa?; (1<i<p)
stores for each O Q; its next elemer. 6. A simplified algorithm for axis parallel line
(1) Using an all-to-all broadcast, sendfalit; andlast; to segments
all processor®;. Recall that every procesdgr(1<i
< p) storesTp without catalogs but with values If we limit the segments to be axis parallel (i.e. they are
xrangg.). all horizontal), we can reduce the space requirement to
(2) Using thefirstj and Iasii values of all processors, O(n/p) per processor by app|y|ng the lower enve|0pe
processoP; computes for each U Q; the sublistd; algorithm presented in [6].

(1<i<p)that have to be searched in order to process  Algorithm 3: “Next Element Search for Axis
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Parallel Line Segments”.Input A setS of n axis parallel
line segments and a query §gtwhere each processBy 5
storesn/p line segments and queries, respectiveiytput
The next element i for each query poirg O Q, where
each processor storagp next element results. Note:
During the algorithm, queries will be handled like line
segments of zero length.

(1)Sort S O Q by increasing y-coordinate. Each

4 p=2

2 p=4

Time : Seconds
N
ol

processorP; solves, both, the next element search 1 p=8
problem and lower envelope problem sequentially for 0.5
the data§ O Q; it has received. L&D’ be all queries 0

2000 4000 6000 8000 10000

whose next element has not yet been found, ar@l let
Number of Segments

be the union of all lower envelopes.

(2)SortS O Q by x-coordinate of the right endpoints Figure 5: Runing time of Algorithm 3 on an Intel

and the x-coordinates of the query points, IPSC/860
respectively. it gives a very good indication of the running time
(3) Letly, ... Igq be the vertical lines that separate the observed in an actual implementation.  Our

sorted segments in tipedifferent processors. Perform implementation on an Intel iPSC/860 hypercube obtained
an all-to-all broadcast where procesBpisendd; to a very close to linear speedup. As demonstrated in

all other processors. [5][6][7], coarse grained parallel algorithms wi@(1)

(4) Perform a personalized all-to-all broadcast, wherecommunication rounds are also portable across very
processoiP; sends segmerstl] S to processoiP; if different parallel platforms. Therefore, we expect that our
and only ifsintersects the vertical lirle algorithm presented here will also run well on other

(5) Each processoP; solves locally the next element parallel machines.
search problem for its subset @ and the line Next element search can be used to solve many other
segments o8 received in Steps 2 and 4. geometric problems. Some of the more important

Theorem 3Algorithm 3 solves the next element search examples include the following:
problem for n axis parallel line segments on a CGM with 1. Planar subdivision search problem Given a plane
O(n/p) memory per processor using O(1) communication graphG=(V,E) with vertex coordinates, and a setof

rounds and O((n/p) log n) local computation. query pointsy; (1< i <n), find for each query poirm,
Proof. The correctness follows from the fact that for the face ofG containingg.

eachq [ Q;, its next element is either & or in the lower 2. Trapezoidal map problem Given a set of segments

envelope of ai§ with j >i. The algorithm uses a constant in the plane, decompose the plane into a set of trape-

number of the basic communication operations of Section  ,4igs based on the arrangement of the segments.

2 and duplicates no data. U 3. Triangulation problem for a simple polygon Parti-
Algorithm 3 was implemented on an Intel iPSC/860 tion the interior of a simple polygon into a set of trian-

hypercube and tested fpr= 2, 4 and 8 processors. For gles.

each value op, we ran tests fon = 100, 200, 500, 1000, The above three problems can be reduced(1) next

2000, 5000 and 10000. We used 10 sets of data on eacfiement search problems (obvious for 1 and 2; see [21] for

combination ofp andn. In 5 of them the line segments 3y Hence, Theorem 1 applies to these problems as well

were evenly distributed in a unit square and in the other 5,4 we obtain

the line segments were evenly distributed in a unit circle. Corollary 1 The planar subdivision search problem,

The average length of the segments are 1/10 unit length. 55670idal map problem, and triangulation problem for a
The re_sult is summanzed_ in the Figure 5. Observe thesimple polygon can be solved on a CGM with O((n/p) log

close to linear speedup obtained. n) memory per processor in O(1) communication rounds

L . and O((n/p) log n) local computation.
7. Applications and conclusions
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