
Abstract
We present a parallel algorithm for solving the next
element search problem on a set of line segments, using a
BSP like model referred to as the Coarse Grained
Multicomputer (CGM). The algorithm requires O(1)
communication rounds (h-relations with h=O(n/p)), O((n/
p) log n) local computation, and O((n/p) log n) storage per
processor.  Our result implies solutions to the point
location, trapezoidal decomposition and polygon
triangulation problems. A simplified version for axis
parallel segments requires only O(n/p) storage per
processor, and we discuss an implementation of this
version.
As in a previous paper by Develliers and Fabri[11], our
algorithm is based on a distributed implementation of
segment trees which are of size O(n log n). This paper
improves on [11] which presented a CGM algorithm for
the special case of trapzoidal decomposition only and
requires O((n/p) * log p * log n) local computation.

1. Introduction

The next element search problem is a well known
problem in computational geometry with many
applications[1]. Given a set ofn non-intersecting line
segmentss1, …, sn and a directionDnext (without loss of
generality we can assume thatDnext is the direction of the
positiveY-axis), the next element search problem consists
of finding for each query pointqi of a set ofm query points
q1, …, qm the line segmentsj first intersected by the ray
starting atqi in directionDnext (m=O(n)); see Figure 1. A
sequential solution requiresO(n log n) time andO(n)
space[17].

In this paper, we present a parallel algorithm for
solving the next element search problem on a coarse
grained multicomputer, CGM (see Section 2 for a
discussion of the model). The algorithm requiresO(1)

communication rounds,O((n/p) log n) local computation
and needsO((n/p) log n) storage per processor. A
simplified version for axis parallel segments requires only
O(n/p) storage per processor.

The next element search algorithm presented here
implies immediately solutions for the point location,
trapezoidal decomposition and triangulation problems.

As in a previous paper by Develliers and Fabri [11], our
algorithm is based on a distributed implementation of
segment trees which are of sizeO(n log n). This paper
improves on [11] which presented a CGM algorithm for
the special case of trapzoidal decomposition only and
requiresO((n/p) * log p * log n) local computation.

The organization of this paper is as follows: Section 2
and Section 3 define  the coarse grained multicomputer
model and segment tree, respectively. The algorithm is
presented in Section 4 and Section 5. In Section 6 we
outline a simplified version for axis parallel segments and
discuss an implementation of this version. Section 7
concludes the paper and outlines some important
applications.

2. The coarse grained multicomputer model

Speedup results for theoretical PRAM algorithms do
not necessarily match the speedups observed on real
machines [2][8]. Given sufficient slackness in the number
of processors, Valiant’s BSP approach [20] simulates
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Figure 1: Illustration of Next Element Search
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PRAM algorithms optimally on distributed memory
parallel systems. Valiant points out, however, that one may
want to design algorithms that utilize local computations
and minimize global operations [19][20]. The BSP
approach requires thatg (= local computation speed /
router bandwidth) is low, or fixed, even for increasing
number of processors. Gerbessiotis and Valiant [13]
describe circumstances where PRAM simulations cannot
be performed efficiently, among others if the factorg is
high. Unfortunately, this is true for most currently
available multiprocessors. The algorithms presented here
consider this case for the next element search problem.
Furthermore, as pointed out in [20], the cost of a message
also contains a constant overhead costs . The value ofs
can be fairly large and the total message overhead cost can
have a considerable impact on the speedup observed (see
e.g. [6]).

We are therefore using a variation of the BSP model,
referred to asCoarse Grained Multicomputer, CGM. It is
comprised of a set ofp processorsP1, …, Pp with O(m/p)
local memory per processor and an arbitrary
communication network (or shared memory). The term
“coarse grained” refers to the fact that we assume that the
sizeO(m/p) of each local memory is “considerably larger”
thanO(1). Our definition of “considerably larger” will be
thatm/p ≥ p.

All algorithms consist of alternating local computation
and global communication rounds. Each communication
round consists of routing a singleh-relation withh=O(m/
p), i.e. each processor sendsO(m/p) data and receives
O(m/p) data. We require that all information sent from a
given processor to another processor in one
communication round is packed into one message. In the
BSP model, a computation/communication round is
equivalent to a superstep withL = (m/p)g (plus the above
“packing” and “coarse grained” requirement).

Finding an optimal algorithm in the coarse grained
multicomputer model is equivalent to minimizing the
number of communication rounds as well as the total local
computation time. This considers all parameters discussed
above that are affecting the final observed speedup, and it
requires no assumption ong. Furthermore, it has been
shown that minimizing the number of supersteps also
leads to improved portability across different parallel
architectures [9][19][20]. The above model has been used
(explicitly or implicitly) in parallel algorithm design for
various problems ([4][5][6][7][8][10][12][15]) and shown
very good practical timing results.

We now list the basic operations required by our
algorithms. Each of these operations requiresO(1)
communication rounds,O((n/p) log n) local computation,
and requiresn/p ≥ p.

Global sort: SortO(n) data items stored on a CGM,n/p

data items per processor, with respect to the CGM’s
processor numbering[14].

All-to-all broadcast: Every processor sends one
message to all other processors[6].

Personalized all-to-all broadcast: Every processor (in
parallel) sends a different message to every other
processor[6].

Partial sum (Scan): Every processor stores one value,
and all processors compute the partial sums of these
values with respect to some associative operator[6].

3. Segment tree definition

A well known method for solving the next element
search problem is to apply a plane sweep in directionDnext
using a segment tree [3][16][17]. Letsi

(x)[qi
(x)] be the

projection of the line segmentsi [query point qi,
respectively] onto thex-axis, and let (x1, x2, …, x2n) be the
sorted sequence of the projections of the 2n endpoints of
s1, …, sn onto thex-axis. The segment treeT(S) = (Vs, Es)
is a complete binary tree with leavesx1, x2, …, x2n. For
every nodev of T(S) an intervalxrange(v) is defined as
follows:

• if v is a leafxi, thenxrange(v) = [xi, xi+1), assuming
that [x2n, x2n+1) = [x2n,x2n].

• if v is an internal node, thenxrange(v) is the union
of all intervalsxrange(v’) such thatv’ is a leaf of
the subtree ofT(S) rooted atv.

With every nodev of the segment treeT(S) there is
associated a catalogC(v) ∈ Sdefined as follows:

• C(v) = {s ∈ S | xrange(v) ⊆ s(x) and
not (xrange(father ofv) ⊆ s(x))}.

Note that each line segment can occur inO(log n)
catalogs. The size of the segment treeT(S), denoted |T(S)|,
is equal to the number of nodes and edges ofT(S) plus the
total size of all catalogs. Therefore |T(S)| = O(n log n).
Hence, storing the segment tree with all of its catalogs
requiresN = O(n log n) space. Also note that the sum of
the lengths of all catalogs of all nodes with the same level
(height) is O(n)[16]. For the remainder, define
xrange(T(S)) = xrange(r) wherer is the root ofT(S). Also
define xrange(s) and xrange(q) to be si

(x)[qi(x)]
respectively.

4. Parallel segment tree construction

In this section we will show how to construct a
distributed representation of a segment treeT(S), called a
parallel segment tree, for a set ofn line segments on a
CGM such that the resulting data structure can be
efficiently used to process next element search queries in
parallel. The approach will be to partition the segment tree
(without associated catalogs) into substructures of size
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O(n/p) such that no processor stores more thanO(1) such
substructures; see Figure 2. The catalogs for nodes in

subtreesT1, …, Tp will be stored with their associated
subtrees, while the catalogs for nodes in treeT0 will be
partitioned, when necessary, into lists of size ((n log p) / p)
and distributed such that no processor stores more than
O(1) such lists; see Figure 3. We first describe our

distributed segment tree representation and then give an
algorithm that efficiently constructs such a segment tree on
a CGM.

A parallel segment treeT(S) (without catalogs) is a
complete tree withn leaves which consists ofk = log n
levels where the level of a nodev is defined recursively as
follows: level(v) = 1, if v is the root, andlevel(v) =
level(parent(v)) + 1, otherwise. Letrank(v) denote the
rank of the vertexv in the left to  right ordering of the level
for v. For v ∈ V, let subtree(v) ∈ 1...p be defined as
follows: subtree(v) = p, if 1 ≤ level(v) ≤ log p-1 and
subtree(v) = rank(v’) otherwise, wherev’ is the ancestor of
v such that level(v’) = log p.  Let Vi = {v ∈ V |
subtree(v)=i}. Let Ti denote the subtree ofT with vertex
set Vi and edge set Ei = {(v,v’) ∈ E |
subtree(v)=subtree(v’)= i}. Let S(Ti) be the set of segments
of S whose endpoint is inxrange(Ti).

In our distributed representation of a segment treeT(S),
every subtreeTi (1 ≤ i ≤ p) will be stored on processorPi.
Each processorPi will also store the catalogs associated

T0
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Figure 2: Decomposition of the Segment Tree
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Observation 1 If a line segment contains xrange(Ti)

then it is not contained in any catalog of Ti (except for
possibly the root).

Observation 2S(Ti) is of size O(n/p).
A consequence of Observation 2 is that each subset

S(Ti) (1 ≤ i ≤ p) with its catalogs can be stored in the
memory of a single processor. The treeT0 consists ofO(p)
nodes and catalogs whose combined size isO(n log p).
ThereforeT0 is too big to be stored on a single processor.
Instead, each processor will store a copy ofT0 (without
catalogs) and a listli which is a portion, or all, of the
catalog of a nodev of T0. Let L denote the list formed by
concatenating the catalogs associated with nodes ofT0,
where catalogs are ordered by level and then rank in level
and all catalogs are padded to be of a length evenly
divisible by ((n log p) / p). The list li consisting of
elementsin/p, …, (i+1)n/p from L will be stored on
processorPi; see Figure 3.

Observation 3 Since T0 has height log p and a line
segment can appear in at most 2 catalogs of T0 at the same
level, the total size of list L is O(n log p).

Algorithm 1: “Parallel Segment Tree Construction”.
Input: ProcessorPi (1 ≤ i ≤ p) stores a subsetSi of n/p
elements ofS. Output: ProcessorPi (1 ≤ i ≤ p) storesS(Ti),
the treeT0 without catalogs but with the valuesxrange(v)
for eachv ∈ V0, and the listli which is a portion, or all, of
the catalog of a nodev of T0.

(1) Create for eachs ∈ S two copies, one for each
endpoint. Refer to the new set asS’. Sort S’ by x-
coordinate, such that each processorPi contains a
subsetSi of size O(n/p). Now, processorPi stores
S(Ti) and xrange(Ti). From Observation 2, |S(Ti)| =
O(n/p).

(2) Use an all-to-all broadcast to distribute allxrange(Ti)
(1 ≤ i ≤ p) to all processors. Each processor computes
T0 without any catalogues but withxrange(v) values
for all v ∈ V0.

(3) ProcessorPi computes the catalogs ofT0 with respect
to Si only. We refer to this reduced version ofT0 as
T0,i. Note that |T0,i| = O((n/p) log p).

(4) Assume that all nodes ofT0 have a unique index.
Consider a line segments in the catalog of the nodev
in T0 with index j. Let l be the left vertical boundary
of the vertical slab defined byxrange(v); see Figure
4. Lety(s) denote they-coordinate of the intersection
of s and l. We definej andy(s) as the primary and
secondary key fors, respectively. Using a global sort,
all line segments in the catalogs of allT0,i, (1≤ i ≤ p),
are sorted with respect to their primary and secondary
key in such a way that no processor stores two line
segments with different primary keys. The latter can
be achieved by using 2p virtual processors.
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Theorem 1Algorithm 1 constructs a parallel segment
tree on a CGM using O((n/p) log n) memory per processor,
O(1) communication rounds and O((n/p) log n) local
computation.

Proof. The memory bound follows from Observation 2
and Observation 3. The algorithm uses a constant number
of the basic communication operations of Section 2. The
local computation time is bounded by the local time for
sorting (Steps 1 and 4). ❏

5. Parallel query processing

Given a segment treeT(S) and a query pointq ∈ Q, the
next element ofq in S can be determined by a simple
search inT(S) from the root ofT(S) to the leafv whose
xrange containsq (see e.g. [17] for details).

Recall that, at the end of Algorithm 1, processorPi (1 ≤
i ≤ p) storesS(Ti), the treeT0 without catalogs but with the
valuesxrange(v) for eachv ∈ V0, and a listli which is a
portion, or all, of the catalog of a nodev of T0. Let firsti
and lasti refer to the first and last element ofli,
respectively (see Figure 3).

The following algorithm uses the parallel segment tree
to answer all queries in parallel. Each individual query is
first “routed” throughT0 and then through the respective
Ti. In T0, the tree structure is used to schedule the
computation. However, the catalog lookups are reduced to
sequential next element search problems. For the subtrees
Ti, a load balancing scheme is used to ensure equal
distribution of work. In eachTi, all search processes are
reduced to a single sequential next element search
problem.

Algorithm 2: “Parallel Query Processing”. Input: A
parallel segment treeT(S) as produced by Algorithm 1 and
a setQ of n queries, where each processorPi stores a
subsetQi of sizen/p. Output: Each ProcessorPi (1 ≤ i ≤ p)
stores for eachq ∈ Qi its next elements.

(1) Using an all-to-all broadcast, send allfirsti andlasti to
all processorsPi. Recall that every processorPi (1 ≤ i
≤ p) stores T0 without catalogs but with values
xrange(.).

(2) Using thefirstj and lastj values of all processors,
processorPi computes for eachq ∈ Qi the sublistslj
(1 ≤ i ≤ p) that have to be searched in order to process

Figure 4: The vertical slab defined by xrange(v)
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q on T0. The problem reduces to solving for each
node v of T0 a next element search problem for a
certain numberXv of line segments and a certain
numberYv of queries. Note that, each such problem
requiresO((Xv + Yv) log (Xv + Yv)) computation.
Since∑vXv = n/p and ∑vYv = p, it follows that the
total local time is O((n log n) / p).

(3) Using global sort and partial sum operations,
determine for each sublistli the number of queries,
g(li), that have to be searched inli. Letk(li) = g(li) p /
n.

(4) Createk(li) copies ofli (1 ≤ i ≤ p). Note that, this
requires 2p virtual processors. Broadcast the new
addresses of the sublistsli.

(5) Each processorPi makes logp copies of its query set
Qi and routes the queries to the respective sublists
using sort.

(6) The queries are processed on the sublists to which
they were sent in Step 5, and the logp results for each
query are collected in a single processor by using a
global sort operation. (Note that, logp ≤ n/p)

(7) Determine for eachTi the number,a(Ti), of queries
whose search path includes the root ofTi (1 ≤ i ≤ p).
This can be computed by using global sort and partial
sum operations. Letb(Ti) = a(Ti) / (n/p) .

(8) Createb(Ti) copies ofS(Ti). Note that, this requires
2p virtual processors. Routen/p queries to each
processor such that a processor storingS(Ti) receives
n/p queries whose search path contains the root ofTi.

(9) Each processor processes the queries for its subtreeTi
(1 ≤ i ≤ p) by applying the standard sequential next
element search algorithm [17] forS(Ti) and its query
set.

(10) Combine the results of Step 9 with those obtained in
Step 6, using sort.

Theorem 2Algorithm 2 solves the next element search
problem for n line segments on a CGM with O((n/p) log n)
memory per processor using O(1) communication rounds
and O((n/p) log n) local computation.

Proof. The memory bound follows from Theorem 1.
The algorithm uses a constant number of the basic
communication operations of Section 2. The local
computation time is bounded by the local time for sorting
and sequential next element search. ❏

6. A simplified algorithm for axis parallel line
segments

If we limit the segments to be axis parallel (i.e. they are
all horizontal), we can reduce the space requirement to
O(n/p) per processor by applying the lower envelope
algorithm presented in [6].

Algorithm 3: “Next Element Search for Axis
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Parallel Line Segments”.Input: A setS of n axis parallel
line segments and a query setQ, where each processorPi
storesn/p line segments and queries, respectively.Output:
The next element inS for each query pointq ∈ Q, where
each processor storesn/p next element results. Note:
During the algorithm, queries will be handled like line
segments of zero length.

(1) Sort S ∪ Q by increasing y-coordinate. Each
processorPi solves, both, the next element search
problem and lower envelope problem sequentially for
the dataSi ∪ Qi it has received. LetQ’ be all queries
whose next element has not yet been found, and letS’
be the union of all lower envelopes.

(2) Sort S’ ∪ Q’ by x-coordinate of the right endpoints
and the x-coordinates of the query points,
respectively.

(3) Let l1, … lp-1 be the vertical lines that separate the
sorted segments in thep different processors. Perform
an all-to-all broadcast where processorPi sendsli to
all other processors.

(4) Perform a personalized all-to-all broadcast, where
processorPi sends segments ∈ S’ to processorPj if
and only ifs intersects the vertical linelj.

(5) Each processorPi solves locally the next element
search problem for its subset ofQ’ and the line
segments ofS’ received in Steps 2 and 4.

Theorem 3Algorithm 3 solves the next element search
problem for n axis parallel line segments on a CGM with
O(n/p) memory per processor using O(1) communication
rounds and O((n/p) log n) local computation.

Proof. The correctness follows from the fact that for
eachq ∈ Qi, its next element is either inSi or in the lower
envelope of anSj with j > i. The algorithm uses a constant
number of the basic communication operations of Section
2 and duplicates no data. ❏

Algorithm 3 was implemented on an Intel iPSC/860
hypercube and tested forp = 2, 4 and 8 processors. For
each value ofp, we ran tests forn = 100, 200, 500, 1000,
2000, 5000 and 10000. We used 10 sets of data on each
combination ofp andn. In 5 of them the line segments
were evenly distributed in a unit square and in the other 5
the line segments were evenly distributed in a unit circle.
The average length of the segments are 1/10 unit length.

The result is summarized in the Figure 5. Observe the
close to linear speedup obtained.

7. Applications and conclusions

In this paper, we presented a BSP like coarse grained
parallel algorithm for the next element search problem
which requiresO(1) h-relations (h = O(n/p)), O((n log n) /
p) memory per processor andO((n/p) log n) local
computation. An important advantage of our model is that

it gives a very good indication of the running time
observed in an actual implementation. Our
implementation on an Intel iPSC/860 hypercube obtained
a very close to linear speedup. As demonstrated in
[5][6][7], coarse grained parallel algorithms  withO(1)
communication rounds are also portable across very
different parallel platforms. Therefore, we expect that our
algorithm presented here will also run well on other
parallel machines.

Next element search can be used to solve many other
geometric problems. Some of the more important
examples include the following:
1. Planar subdivision search problem. Given a plane

graphG=(V,E) with vertex coordinates, and a set ofn
query pointsqi (1 ≤ i ≤ n), find for each query pointqi,
the face ofG containingqi.

2. Trapezoidal map problem. Given a set of segments
in the plane, decompose the plane into a set of trape-
zoids, based on the arrangement of the segments.

3. Triangulation problem for a simple polygon. Parti-
tion the interior of a simple polygon into a set of trian-
gles.

The above three problems can be reduced toO(1) next
element search problems (obvious for 1 and 2; see [21] for
3). Hence, Theorem 1 applies to these problems as well
and we obtain

Corollary 1 The planar subdivision search problem,
trapezoidal map problem, and triangulation problem for a
simple polygon can be solved  on a CGM with O((n/p) log
n) memory per processor in O(1) communication rounds
and O((n/p) log n) local computation.
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Figure 5: Runing time of Algorithm 3 on an Intel
iPSC/860
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