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Abstract. In this paper, we present deterministic parallel algorithms

for the coarse grained multicomputer (CGM) and bulk-synchronous par-

allel computer (BSP) models which solve the following well known graph

problems: (1) list ranking, (2) Euler tour construction, (3) computing the

connected components and spanning forest, (4) lowest common ancestor

preprocessing, (5) tree contraction and expression tree evaluation, (6)

computing an ear decomposition or open ear decomposition, (7) 2-edge

connectivity and biconnectivity (testing and component computation),

and (8) cordal graph recognition (�nding a perfect elimination ordering).

The algorithms for Problems 1-7 require O(log p) communication rounds

and linear sequential work per round. Our results for Problems 1 and 2

hold for arbitrary ratios n

p
, i.e. they are fully scalable, and for Problems

3-8 it is assumed that n

p
� p�, � > 0, which is true for all commercially

available multiprocessors. We view the algorithms presented as an im-

portant step towards the �nal goal of O(1) communication rounds. Note
that, the number of communication rounds obtained in this paper is in-

dependent of n and grows only very slowly with respect to p. Hence,

for most practical purposes, the number of communication rounds can

be considered as constant. The result for Problem 1 is a considerable

improvement over those previously reported. The algorithms for Prob-

lems 2-7 are the �rst practically relevant deterministic parallel algorithms
for these problems to be used for commercially available coarse grained

parallel machines.
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1 Introduction

The Models: Speedup results for theoretical PRAM algorithms do not neces-

sarily match the speedups observed on real machines [2] [31]. Given su�cient

slackness in the number of processors, Valiant's BSP approach [34] simulates

PRAM algorithms optimally on distributed memory parallel systems. Valiant

points out, however, that one may want to design algorithms that utilize local

computations and minimize global operations [33] [34]. The BSP approach re-

quires that g (= local computation speed / router bandwidth) is low, or �xed,

even for increasing number of processors. Gerbessiotis and Valiant [17] describe

circumstances where PRAM simulations can not be performed e�ciently, among

others, if the factor g is high. Unfortunately, this is true for most currently avail-

able multiprocessors. The parallel algorithms presented in this paper consider

this case for graph problems.

As pointed out in [34], the cost of a message also contains a constant overhead

cost s. The value of s can be fairly large and the total message overhead cost

can have a considerable impact on the speedup observed (see e.g. [8]). We are

therefore also using a more practical version of the BSP model, referred to as

the coarse grained multicomputer model (CGM) [8], [9], [10]. It is comprised

of a set of p processors P1; : : : ; Pp with O(n=p) local memory per processor

and an arbitrary communication network (or shared memory). All algorithms

consist of alternating local computation and global communication rounds. Each

communication round consists of routing a single h-relation with h = O(n=p),

i.e. each processor sends O(n=p) data and receives O(n=p) data. We require

that all information sent from a given processor to another processor in one

communication round is packed into one long message, thereby minimizing the

message overhead. In the BSP model, a computation/communication round is

equivalent to a superstep with L = n

p
g (plus the above \packing requirement").

Finding an optimal algorithm in the coarse grained multicomputer model

(CGM) is equivalent to minimizing the number of communication rounds as well

as the total local computation time.This considers all parameters discussed above

that are a�ecting the �nal observed speedup and it requires no assumption on

g. Furthermore, it has been shown that minimizing the number of supersteps

also leads to improved portability across di�erent parallel architectures ([33]

[34] [13]). The above model has been used (explicitly or implicitly) in parallel

algorithm design for various problems ([4], [8], [9], [14], [12], [22], [10]) and shown

very good practical timing results.

The Results: In this paper, we study deterministic parallel graph algorithms

for the CGM and BSP models. We consider the following well known graph

problems:

1. list ranking

2. Euler tour construction

3. computing the connected components and spanning forest

4. lowest common ancestor preprocessing



5. tree contraction and expression tree evaluation

6. computing an ear decomposition or open ear decomposition

7. 2-edge connectivity and biconnectivity (testing and component computation)

8. cordal graph recognition, �nding a perfect elimination ordering

These problems have been extensively studied for the PRAM (see e.g. [28])

and for �ne-grained parallel network models of computation (see e.g. [1]). However,

for the practically much more relevant CGM/BSP model there exist, to the best

of our knowledge, only a few results on parallel graph algorithms.

Reid-Miller's [27] presented an empirical study of parallel list ranking for the

Cray C-90. The paper followed essentially the CGM/BSP model and claimed

that this was the fastest list ranking implementation so far. The algorithm in [27]

required O(logn) communication rounds. In [11], an improved algorithm was

presented which required, with high probability, only O(k logp) rounds, where

k � log� n. In [13], O(log p) communication rounds are achieved by a random-

ized algorithm. B�aumker and Dittrich [3] presented a randomized connected

components algorithm for planar graphs using O(log p) communication rounds.

They suggest an extension of this algorithm for general graphs with the same

number of communication rounds.

We improve these results by giving the �rst deterministic algorithms for list

ranking and computing connected components using O(log p) rounds. This im-

provement is an important step towards the ultimate goal, a deterministic al-

gorithm with only O(1) communication rounds. In fact, it is an open problem

whether this is possible for these graph problems. Algorithms with O(1) rounds

have been presented for various Computational Geometry problems [8, 9, 10, 11,

16], but the graph problems studied in this paper have considerably less \in-

ternal structure" which could be exploited to obtain such solutions. Note that,

in practice, the number of processors is usually �xed. In contrast to the previous

deterministic results, the improved number of communication rounds obtained

in this paper, O(log p), is independent of n and grows only very slowly with

respect to p. Hence, for most practical purposes, the number of communication

rounds can be considered as constant. We expect, that this will be of considerable

practical relevance.

As in [27] we will, in general, assume that n >> p (coarse grained), because

this is usually the case in practice. Note, however, that our results for Problems

1 and 2 hold for arbitrary ratios n

p
. Goodrich [18] calls such algorithms fully

scalable. For Problems 3-8 we will assume that n

p
� p

�, � > 0, which is true for

all commercially available multiprocessors.

2 List Ranking

Let L be a list represented by a vector s s.t. s[i] is the node following i in the list

L. The last element l of the list L is the one with s[l] = l. The distance between

i and j, dL(i; j), is the number of nodes between i and j plus 1 (i.e. the distance

is 0 i� i = j, and it is one if and only if one node follows the other). The list



ranking problem consists of computing for each i 2 L the distance between i and

l, referred to as rankL(i) = dL(i; l).

For our algorithm, we need the following de�nitions. A r-ruling set is de�ned

as a subset of selected list elements that has the following properties: (1) No two

neighboring elements are selected. (2) The distance of any unselected element to

the next selected element is at most r.

An overview of our CGM list ranking algorithm is as follows. First, we com-

pute a O(p2)-ruling set R with jRj = O(n=p) and broadcast R to all processors.

More precisely, the O(p2)-ruling set R is represented as a linked list where each

element i is assigned a pointer to the next element j of R with respect to the

order implied by L as well as the distance between i and j in L. Then, every

processor sequentially performs a list ranking of R, computing for each i 2 R

its distance to the last element of L. All other list elements have at most dis-

tance O(p2) from the next element of R in the list. Their distance is determined

by simulating standard PRAM pointer jumping until the next element of R is

reached.

All steps, except for the computation of the O(p2)-ruling set R, can be easily

implemented in O(logp) communication rounds.

In the remainder of this section we introduce a new technique, called determ-

inistic list compression, which will allows us to compute a O(p2)-ruling set in

O(logp) communication rounds.

The basic idea behind deterministic list compression is to have an alternating

sequence of compress and concatenate phases. In a compress phase, we select a

subset of list elements, and in a concatenate phase we use pointer jumping to

work our way towards building a linked list of selected elements.

For the compress phase, we apply the deterministic coin tossing technique

of [7] but with a di�erent set of labels. Instead of the memory address used

in [7], we use the number of the processor storing list item i as its label l(i).

During the computation, we select sequentially the elements of R in the sublists

of subsequent nodes in L which are stored at the same processor. The term

\subsequent" refers to successor with respect to the current value of s.

Note that, there are at most p di�erent labels, and subsequent nodes in those

parts of L that are not processed sequentially have di�erent labels. We call list

element s[i] a local maximum if l(i) < l(s[i]) > l(s[s[i]]). We apply deterministic

coin tossing to those parts of L that are not processed sequentially.

The naive approach of applying this procedure O(logp) times would yield

a O(p2)-ruling set, but unfortunately it would require more than O(log p) com-

munication rounds. Note that, when we want to apply it for a second, third,

etc. time, the elements selected previously need to be linked by pointers. Since

two subsequent elements selected by deterministic coin tossing can have distance

O(p), this may require O(logp) communication rounds, each. Hence, this straight

forward approach requires a total of O(log2 p) communication rounds.

Notice, however, that if two selected elements are at distance �(p) at a given

moment, then it is unnecessary to further apply deterministic coin tossing in order

to reduce the number of selected elements. The basic approach of our algorithm is



therefore to interleave pointer jumping and deterministic coin tossing operations

with respect to our new labeling scheme. More precisely, we will have only one

pointer jumping step between subsequent deterministic coin tossing steps, and

such pointer jumping operations will not be applied to those list elements that

are pointing to selected elements.

This concludes the high level overview of our deterministic list compression

techniques. The following describes the algorithm in detail.

Algorithm 1 CGM Algorithm for computing a p2-ruling set.

Input: A linked list L and a vector s where s[i] is the node following i in the

list L. L and s are stored on a p processor CGM with total O(n) memory.

Output: A set of selected nodes of L (which is a p2-ruling set).

(1) Mark all list elements as not selected.

(2) FOR EVERY list element i IN PARALLEL:

IF l(i) < l(s[i]) > l(s[s[i]]) THEN mark s[i] as selected.

(3) Sequentially, at each processor, process the sublists of subsequent list ele-

ments which are stored at the same processor. For each such sublist, mark

every second element as selected. If a sublist has only two elements, and not

both neighbors have a smaller label, then mark both elements of the sublist

as not selected.

(4) FOR k = 1 : : : logp DO

(4.1) FOR EVERY list element i IN PARALLEL:

IF s[i] is not selected THEN set s[i] := s[s[i]].

(4.2) FOR EVERY list element i IN PARALLEL:

IF (i, s[i] and s[s[i]] are selected) AND NOT (l(i) < l(s[i]) >

l(s[s[i]])) AND (l(i) 6= l(s[i])) AND (l(s[i]) 6= l(s[s[i]])) THEN mark

s[i] as not selected.

(4.3) Sequentially, at each processor, process the sublists of subsequent selec-

ted list elements which are stored at the same processor. For each such

sublist, mark every second selected element as not selected. If a sublist

has only two elements, and not both neighbors have a smaller label, then

mark both elements of the sublist as not selected.

(5) Select the last element of L.

| End of Algorithm |

We �rst prove that the set of elements selected at the end of Algorithm 1 is

of size at most O(n=p).

Lemma1. After the kth iteration in Step 4, there are no more than two selected

elements among any 2k subsequent elements of the original list L.



Proof. Due to space limitations, the proof is omitted. It can be found in the full

version of this paper [5].

In order to show that subsequent elements selected at the end of Algorithm 1

have distance at most O(p2), we need the following lemmas.

Lemma2. After every execution of Step 4.3, the distance of two subsequent

selected elements with respect to the current pointers (represented by vector s) is

at most O(p).

Proof. Due to space limitations, the proof is omitted. It can be found in the full

version of this paper [5].

Lemma3. After the k-th execution of Step 4.3, two subsequent elements with

respect to the current pointers (represented by vector s) have distance O(2k) with

respect to the original list L.

Proof. Obvious consequence of the fact that only k pointer jumping operations

were so far executed in Step 4.1.

Lemma4. No two subsequent selected elements have a distance of more than

O(p2) with respect to the original list L.

Proof. Follows from Lemma 2 and Lemma 3.

In summary, we obtain

Theorem5. The list ranking problem for a linked list with n vertices can be

solved on a CGM with p processors and O(n
p
) local memory per processor using

O(logp) communication rounds and O(n
p
) local computation per round.

3 Euler Tour in a Tree

Let T = (V;E) be an undirected tree and T
� = (V;E�) be a directed graph with

E
� = f(v; w); (w; v)jfv; wg 2 Eg. Thus, T � is Eulerian because indegree(v) =

outdegree(v) for each vertex v. The Euler Tour problem for T consists of com-

puting for T � a path that traverses each edge exactly once and returns to its

starting point, as well as for each vertex its rank in this path.

Theorem6. The Euler Tour of a tree T with n vertices can be computed on

a CGM with p processors and O(n
p
) local memory per processor using O(log p)

communication rounds and O(n
p
) local computation per round.

Proof. Due to space limitations, the algorithm and proof are omitted. They can

be found in the full version of this paper [5].



4 Connected Components and Spanning Forest

Consider an undirected graph G = (V;E) with n vertices and m edges. Each

vertex v 2 V has a unique label between 1 and n. Two vertices u and v are

connected if there is an undirected path of edges from u to v. A connected

subset of vertices is a subset of vertices where each pair of vertices is connected.

A connected component of G is de�ned as a maximal connected subset.

In this section, we study the problem of computing the connected compon-

ents of G on a CGM with p processors and O(n+m
p

) local memory per processor.

We introduce a new technique, called clipping, which refers to the idea of tak-

ing a PRAM algorithm for the same problem but running it for only O(logp)

rounds and then �nishing the computation with some other O(log p) rounds CGM

algorithm. (See also JaJa's accelerated cascading technique for the PRAM [19].)

Steps 1 and 2 of Algorithm 2 simulate Shiloch and Vishkin's PRAM algorithm

[30], but for logp phases only. Each vertex v has a pointer to a vertex parent(v)

such that the parent(v) pointers always form trees. The trees are also referred

to as a supervertices. A tree of height one is called a star. An edge (u; v) is

live if parent(u) 6= parent(v). Shiloch and Vishkin's PRAM algorithm merges

supervertices along live edges until they equal the connected components. When

simulated on a CGM or BSP computer, Shiloch and Vishkin's PRAM algorithm

results in logn communication rounds or supersteps, respectively.

Our CGM algorithm requires O(log p) rounds only. It simulates only the

�rst log p iterations of the main loop in the PRAM algorithm by Shiloch and

Vishkin and then completes the computation in another log p communication

rounds (Steps 3 - 7).

Algorithm 2 CGM Algorithm for Connected Component Computation

Input: An undirected graph G = (V;E) with n vertices and m edges stored

on a p processor CGM with total O(n + m) memory. Output: The connected

components of G represented by the the values parent(v) for all vertices v 2 V .

(1) FOR all v 2 V IN PARALLEL DO parent(v) := v.

(2) FOR k := 1 to log p DO

(2.1) FOR all v 2 V IN PARALLEL DO parent(v) := parent(parent(v)).

(2.2) FOR every live edge (u; v) IN PARALLEL DO (simulating concurrent

write)

(a) IF parent(parent(v)) = parent(v) AND parent(parent(u)) = parent(u)

THEN f IF parent(u) > parent(v) THEN parent(parent(u)) :=

parent(v) ELSE parent(parent(v)) := parent(u) g

(b) IF parent(u) = parent(parent(u)) AND parent(u) did not get new

links in steps 2.1 and 2.2(a) THEN parent(parent(u)) := parent(v)

(c) IF parent(v) = parent(parent(v)) AND parent(v) did not get new

links in steps 2.1 and 2.2.1 THEN parent(parent(v)) := parent(u)

(2.3) FOR all v 2 V IN PARALLEL DO parent(v) := parent(parent(v)).



(3) Use the Euler Tour algorithm in Section 3 to convert all trees into stars.

For each v 2 V , set parent(v) to be the root of the star containing v. Let

G
0 = (V 0

; E
0) be the graph consisting of the supervertices and live edges

obtained. Distribute G
0 such that each processor stores the entire set V

0

and a subset of m

p
edges of E0. Let Ei be the edges stored at processor i,

0 � i � p� 1.

(4) Mark all processors as active.

(5) FOR k := 1 to log p DO

(5.1) Partition the active processors into groups of size two.

(5.2) FOR each group Pi; Pj of active processors, i < j IN PARALLEL DO

(a) processor Pj sends it's edge set Ej to processor Pi.

(b) processor Pj is marked as passive.

(c) processor Pi computes the spanning forest (V 0
; Es) of the graph

SF = (V 0
; Ei [Ej) and sets Ei := Es.

(6) Mark all processors as active and broadcast E0.

(7) Each processor i computes sequentially the connected components of the

graph G
00 = (V 0

; E0). For each vertex v of V 0 let parent0(v) be the smallest

label parent(w) of a vertex w 2 V
0 which is in the same connected component

with respect to G00 = (V 0
; E0). For each vertex u 2 V stored at processor Pi

set parent(u) := parent
0(parent(u)). (Note that parent(u) 2 V

0.)

| End of Algorithm |

Lemma7. [30] The number of di�erent trees after iteration k of Step 2 is

bounded by (2
3
)kn.

We obtain

Theorem8. Algorithm 2 computes the connected components and spanning forest

of a graph G = (V;E) with n vertices and m edges on a CGM with p processors

and O(n+m
p

) local memory per processor,
n+m

p
� p

� (� > 0), using O(log p)

communication rounds and O(n+m
p

) local computation per round.

Proof. Due to space limitations, the proof is omitted. It can be found in the full

version of this paper [5].

5 Other Graph Problems

In the remainder, we summarize our solutions for Problems 4-8. Due to space

limitations, the algorithms and proofs are omitted. They can be found in the full

version of this paper [5].



Lowest Common Ancestor: The lowest common ancestor,LCA(u; v), of two

vertices u and v of a rooted tree T = (V;E) is the vertex w that is an ancestor

to both u and v, and is farthest from the root. The problem of preprocessing T

in order to answer a query LCA(u; v) quickly for any pair (u; v) is called the

lowest-common-ancestor (LCA) problem.

Theorem9. Consider a rooted tree T = (V;E) with n vertices. The LCA prob-

lem can be solved on a CGM with p processors and O(n
p
) local memory per

processor using O(logp) communication rounds and O(n
p
) local computation per

round.

Tree Contraction and Expression Tree Evaluation: We observe that the

classical tree contraction and expression tree evaluation algorithm of [24] can be

easily implemented on a CGM to run in O(logp) communication rounds.

Observation 1 Tree contraction and expression tree evaluation on a tree T with

n nodes can be performed on a CGM with p processors and O(n
p
) local memory

per processor,
n

p
� p

� (� > 0), using O(logp) communication rounds and O(n
p
)

local computation per round.

Open Ear Decomposition and Biconnected Components: Consider an

undirected graph G = (V;E) with n vertices and m edges. For the remainder, we

assume that G is connected. An ear decomposition of G is an ordered partition of

E into r simple paths P1; : : : ; Pr such that P1 is a cycle, and, for each 2 � i � r,

Pi is a simple path with endpoints belonging to P1 [ : : : [ Pi�1 but with none

of its internal vertices belonging to Pj, j < i. The paths Pi are called ears. If

none of the Pi; i > 1, is a cycle, then the decomposition is called an open ear

decomposition. For an edge e in Pi, let i be the ear number of e. An edge e 2 E

is a cut-edge if e does not lie on a cycle in G. A connected undirected G is

2-edge connected if it contains no cut-edge. G has an ear decomposition if and

only if G is 2-edge connected. A cut-vertex is a vertex whose removal leaves G

disconnected. G is biconnected if it contains at least three vertices and has no

cut-vertex.

Theorem10. For a graph G = (V;E) with n vertices and m edges, the ear de-

composition, open ear decomposition, as well as its 2-edge connected and bicon-

nected components can be computed on a CGM with p processors and O(n+m
p

)

local memory per processor using O(log p) communication rounds and O(n
p
) local

computation per round.

Chordal Graph Recognition: A graph G = (V;E) is chordal, if every cycle of

length greater than three has a chord, i.e., an edge connecting two non-consecutive

nodes of the cycle. A simplicial node is a node whose neighbors form a clique.

Dirac [15] showed that every chordal graph has a simplicial node. It is easy to

see that removing an arbitrary node from a chordal graph yields another chordal



graph. Therefore, after removing the simplicial node of a chordal graph, the new

graph has another simplicial node. Successively removing all simplicial nodes

gives an ordering of the nodes of G. This ordering is called perfect elimination

ordering (PEO).

Theorem11. Finding the PEO of a given graph G = (V;E) with n vertices and

m edges can be solved on a CGM with p processors and O(n+m
p

) local memory

per processor,
n+m

p
� p

� (� > 0), using O(logn logp) communication rounds and

O(n+m
p

) local computation per round.
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