
Coarse Grained Parallel Monte Carlo
Algorithms for Solving SLAE Using PVM

V. Alexandrov1, F. Dehne2, A. Rau-Chaplin3, and K. Taft1

1 Department of Computer Science, University of Liverpool,
Chadwick Building, Peach Street, Liverpool, L69 7ZF, UK

{vassil, keitht} @csc.liv.ac.uk
2 School of Computer Science, Carleton University,

Ottawa, Canada, K1S 5B6
dehne@scs.carleton.ca

3 Faculty of Computer Science, DalTech, Dalhousie University,
P.O. Box 1000, Halifax NS, Canada B3J 2X4

arc@cs.dal.ca

Abstract. The problem of solving System of Linear Algebraic Equati-
ons (SLAE) by parallel Monte Carlo numerical methods is considered.
Three Monte Carlo algorithms are presented. In case when copy of the
matrix is sent to each processor the execution time for solving SLAE by
Monte Carlo on p processors is bounded by O(nNT/p) (excluding the
initial loading of the data) where N is the number of chains and T is the
length of the chain in the stochastic process, which are independent of
matrix size n.
Numerical tests are performed for a number of dense and sparse test
matrices using PVM on a cluster of workstations.

1 Introduction

It is known that Monte Carlo methods give statistical estimates for the com-
ponents of the solution vector of SLAE by performing random sampling of a
certain random variable whose mathematical expectation is the desired solution
[9,10]. We consider Monte Carlo methods for solving SLAE since: firstly, only
O(NT) steps are required to find an element of the inverse matrix (MI) or com-
ponent of the solution vector of SLAE (N is a number of chains and T is a
measure on the chains length in the stochastic process, which are independent
of n) and secondly, the sampling process for stochastic methods is inherently
parallel. In comparison, the direct methods of solution require O(n3) sequen-
tial steps when the usual elimination or annihilation schemes (e.g non-pivoting
Gaussian Elimination, Gauss-Jordan methods) are employed [3]. Consequently
the computation time for very large problems or for real-time problems can be
prohibitive and prevents the use of many established algorithms. Therefore due
to their properties, their inherent parallelism and loose data dependencies Monte
Carlo algorithms can be implemented on parallel machines very efficiently and
thus may enable us to solve large-scale problems which are sometimes difficult
or prohibitive to be solved by the well-known numerical methods.

V. Alexandrov and J. Dongarra (Eds.): PVM/MPI’98, LNCS 1497, pp. 323–330, 1998.
c© Springer-Verlag Berlin Heidelberg 1998

324 V. Alexandrov et al.

Generally three Monte Carlo methods for Matrix Inversion (MI) and finding a
solution vector of System of Linear Algebraic Equations (SLAE) can be outlined:
with absorption, without absorption with uniform transition frequency function,
and without absorption with almost optimal transition frequency function.

In the case of fine grained setting, recently Alexandrov, Megson and Dimov
have shown that an n×n matrix can be inverted in 3n/2+N +T steps on regular
array with O(n2NT) cells [8]. Alexandrov and Megson have also shown that a
solution vector of SLAE can be found in n + N + T steps on regular array
with the same number of cells [2]. A number of bounds on N and T have been
established, which show that these designs are faster than the existing designs
for large values of n [8,2].

The coarse grained case for MI is considered in [1]. In this paper we extend
this implementation approach for SLAE in MIMD environment, i.e. a cluster
of workstations under PVM in our case. We also derive an estimate on time
complexity using CGM model.

The Coarse Grained Multicomputer model, or CGM(n, p) for short,
which is the architectural model to be used in this paper is a set of p processors
with O(n

p) local memory each, connected to some arbitrary interconnection net-
work or a shared memory. The term “coarse grained” refers to the fact that
(as in practice) the size O(n

p) of each local memory is defined to be “considerably
larger” than O(1). Our definition of “considerably larger” will be that n

p ≥ p.
This is clearly true for all currently available coarse grained parallel machines.
For determining time complexities we will consider both, local computation time
and inter-processor communication time, in the standard way.

For parallel algorithms for SLAE to be relevant in practice, such algorithms
must be scalable, that is, they must be applicable and efficient for a wide range
of ratios n

p . The use of CGM helps to ensure that the parallel algorithms designed
are not only efficient in theory, but also they result in efficient parallel software
with fast running time on real data . Experiments have shown that in addition to
the scalability, the CGM algorithms typically quickly reach the point of optimal
speedup for reasonable data sets. Even with modest programming efforts the
actual results obtained for other application areas have been excellent [4].

In this paper we focus mainly on the case when a copy of the matrix is
sent to each processor. We are currently testing different strategies for efficiently
parallelising Monte Carlo algorithms for the case of large matrices when the
matrix is partitioned and distributed among the processors as well as different
ways of minimising the number of chains required to find the solution. We expect
to report these results in the near future.

2 Stochastic Methods and SLAE

Assume that the system of linear algebraic equations (SLAE) is presented in the
form:

x = Ax + ϕ (1)

Coarse Grained Parallel Monte Carlo Algorithms 325

where A is a real square n×n matrix, x = (x1, x2, ..., xn)t is a 1×n solution vector
and ϕ = (ϕ1, ϕ2, ..., ϕn)t is a given vector. (If we consider the system Lx = b,
then it is possible to choose non-singular matrix M such that ML = I − A and
Mb = ϕ, and so Lx = b can be presented as x = Ax+ϕ.) Assume that A satisfies
the condition max1≤i≤n

∑n
j=1 |aij | < 1, which implies that all the eigenvalues of

A lie in the unit circle. The matrix and vector norms are determined as follows:
‖A‖ = max1≤i≤n

∑n
j=1 |aij |, ‖ϕ‖ = max1≤i≤n |ϕi|.

Suppose that we have Markov chains with n - states. The random trajectory
(chain) Ti of length i starting in state k0 is defined as k0 → k1 → · · · → kj →
· · · → ki where kj is the number of the state chosen, for j = 1, 2, · · · , i. The
following probability definitions are also important: P (k0 = α) = pα, P (kj =
β|kj−1 = α) = pαβ where pα is the probability that the chain starts in state α
and pαβ is the transition probability to state β from state α. Probabilities pαβ

define a transition matrix P . We require that
∑n

α=1 pα = 1 ,
∑n

β=1 pαβ = 1
for any α = 1, 2, ..., n, the distribution (p1, ..., pn)t is acceptable to vector g and
similarly the distribution pαβ is acceptable to A [9].

Consider the problem of evaluating the inner product of a given vector g with
the vector solution of (1)

(g, x) =
∑n

α=1 gαxα (2)

It is known [9] that the mathematical expectation EΘ∗[g] of random variable
Θ∗[g] is:

EΘ∗[g] = (g, x)

where Θ∗[g] = gk0
pk0

∑∞
j=0 Wjϕkj

and W0 = 1 , Wj = Wj−1
akj−1kj

pkj−1kj

(3)

We use the following notation for a partial sum (3) θi[g] = gk0
pk0

∑i
j=0 Wjϕkj

.
According to the above conditions on the matrix A, the series

∑∞
j=0 Wjϕkj

converges for any given vector ϕ and Eθi[g] tends to (g, x) as i −→ ∞. Thus
θi[g] can be considered an estimate of (g, x) for i sufficiently large.

Now we define the Monte Carlo method. To find one component of the solu-
tion, for example the r-th component of x, we choose g = e(r) = (0, ..., 0, 1, 0, ..., 0)
where the one is in the r-th place. It follows that (g, x) =

∑n
α=1 eα(r)xα = xr

and the corresponding Monte Carlo method is given by

xr ≈ 1
N

N∑

s=1

θi[e(r)]s (4)

where N is the number of chains and θi[e(r)]s is the value of θi[e(r)] in the s-th
chain.

The probable error of the method, is defined as rN = 0.6745
√

Dθ/N ,
where P{|θ̄ − E(θ)| < rN} ≈ 1/2 ≈ P{|θ̄ − E(θ)| > rN}, if we have N indepen-
dent realizations of random variable (r.v.) θ with mathematical expectation Eθ
and average θ̄ [9].

326 V. Alexandrov et al.

It is clear from the formula for rN that the number of chains N can be reduced
by a suitable choice of the transition probabilities that reduces the variance for
a given probable error. This idea leads to Monte Carlo methods with minimal
probable error.

The key results concerning minimization of probable error and the definition
of almost optimal transition frequency for Monte Carlo methods applied to the
calculation of inner product via iterated functions are presented in [8]. Accor-
ding to [8,7] and the principal of collinearity of norms [8] we can choose pαβ

proportional to the |aαβ |.
In case of Monte Carlo with absorption, assuming as before ‖A‖ < 1, we

have [1,2,7]:

pαβ = |aαβ | for α, β = 1, 2, ..., n.

and the absorption probability

pαn+1 = pα = 1 −
n∑

β=1

pαβ

is the probability that the trajectory ends in state α.
In case of Monte Carlo without absorption we have two possibilities [1,2] :

– Almost Optimal Monte Carlo method:

pαβ =
|aαβ |∑
β |aαβ | for α, β = 1, 2, ..., n.

– Usual Monte Carlo method:

pαβ = 1/n for α, β = 1, 2, ..., n

In case of ‖A‖ ≥ 1 or very close to 1 we can use the Resolvent Monte Carlo
method [5] to reduce the matrix norm and to speedup the computations.

3 Parameters Estimation and Discussion

We will outline the method of estimation of N and T in case of Monte Carlo
method without absorbing states since it is known that these methods
require less chains than the methods with absorption to reach the same precision
[2,1]. In case of Monte Carlo with absorption the parameter estimation can be
done in the same way. We will consider Monte Carlo methods with uniform (UM)
and with almost optimal (MAO) transition frequency function. Let us consider
Monte Carlo method with almost optimal (MAO) transition frequency function.
We assume that the following conditions

∑n
β=1 pαβ = 1 for any α = 1, 2, ..., n

Coarse Grained Parallel Monte Carlo Algorithms 327

must be satisfied and transition matrix P might have entries pαβ = |aαβ |∑
β

|aαβ | for

α, β = 1, 2, ..., n.

The estimator Θ∗ for SLAE was defined as follows

EΘ∗[g] = (g, x),

where Θ∗[g] = gk0
pk0

∑∞
j=0 Wjϕkj

and W0 = 1 , Wj = Wj−1
akj−1kj

pkj−1kj
.

(5)

The sum for Θ∗ must be dropped when |Wiϕki | < δ [9].
Note that

|Wiϕki | = | aα0α1 · · · aαi−1αi

|aα0α1 |
‖A‖ · · · |aαi−1αi

|
‖A‖

||ϕki | = ‖A‖i‖ϕ‖ < δ.

Then it follows that

T = i ≤ log (δ/‖ϕ‖)
log ‖A‖ .

It is easy to find [9] that |Θ∗| ≤ ‖ϕ‖
(1−‖A‖) , which means that variance of r.v.

Θ∗ is bounded by its second moment: DΘ∗ ≤ EΘ∗2 = ‖ϕ‖2

(1−‖A‖)2 ≤ f2

(1−‖A‖)2 .

According to the Central Limit Theorem for the given error ε

N ≥ 0.67452Dη∗[g]
ε2

and thus N ≥ 0.67452

ε2
f2

(1−‖A‖)2 (6)

is a lower bound on N which is independent of n.
It is clear that T and N depend only on the matrix norm and precision.

Furthermore, the size of N can be controlled by an appropriate choice of ε once
P and A are known.

Consider N and T as functions of 1
(1−‖A‖) . It is obvious from (6) that T =

O(
√

(N)). In addition there are computational experiments in [8] showing this
fact that for sufficiently large N we can take T ≈ √

N .

4 Parallel Implementation

We implement parallel Monte Carlo algorithms on a cluster of workstations under
PVM. We assume virtual star topology and we apply master/slave approach.

Inherently, Monte Carlo methods for solving SLAE allow us to have minimal
communication, i.e. to pass the full matrix A to every processor, to run the algo-
rithm in parallel on each processor computing dn/pe components of the solution
vector and to collect the results from slaves at the end without any communica-
tion between sending A and receiving partitions of x. The only communication
is at the beginning and at the end of the algorithm execution which allows us to
obtain very high efficiency of parallel implementation. Therefore, by allocating

328 V. Alexandrov et al.

the master in the central node of the star and the slaves in the remaining nodes,
the communication is minimized.

Therefore since we need to compute n components of the vector solution each
requiring N chains of length T on p processors in parallel the time is O(nNT/p)
excluding the initial loading of the data.

5 Numerical Tests

The numerical tests are made on a cluster of 48 Hewlett Packard 900 series
700 Unix workstations under PVM. The workstations are networked via 10Mb
switched ethernet segments and each workstation has at least 64Mb RAM and
run at least 60 MIPS.

The numerical tests are made using methods without absorption, since they
require less chains to reach given precision in comparison with methods with
absorption [1]. We have used dense and sparse balanced matrices (which have
nearly equal sums of elements per row). In the example presented, the matrix is
dense with norm 0.98 when the convergence of the method is slow. The results
for the average time and efficiency are given in tables 1 and 2. The relative
accuracy is 10−2.

Table 1. Time in seconds

Processors 1 2 3 4 6 8 10
Matrix Size

50 36.108 18.159 12.359 9.153 7.427 5.419 4.006
100 286.318 143.397 104.428 72.178 52.302 40.271 32.93
200 581.628 286.244 192.719 144.356 105.609 80.828 62.699
300 855.506 445.109 358.114 229.093 162.159 124.316 103.430
400 1150.567 574.193 385.461 302.706 219.099 174.823 166.83
500 1494.473 741.936 564.527 409.003 280.916 224.696 210.679

The experiments show that the computation time is a linear function of
the matrix size n which is in accordance with the theoretical estimates.

The parallel efficiency E as, a measure that characterize the quality of the
proposed algorithms is defined as:

E(X) =
ET1(X)
pETp(X)

,

where X is a Monte Carlo algorithm, ETp(X) is the expected value of the com-
putational time for implementation the algorithm X on a system of p processors.

Coarse Grained Parallel Monte Carlo Algorithms 329

Table 2. Efficiency

Processors 1 2 3 4 6 8 10
Matrix Size

50 1 0.994 0.974 0.986 0.810 0.833 0.9013
100 1 0.9985 0.914 0.992 0.912 0.889 0.869
200 1 1.016 1.006 1.007 0.918 0.8995 0.928
300 1 0.961 0.796 0.9335 0.879 0.86 0.827
400 1 1.0015 0.995 0.95 0.875 0.823 0.6897
500 1 1.007 0.891 0.9135 0.877 0.831 0.7094

6 Conclusion

In our parallel implementation we have to compute n components of the solution
vector of SLAE in parallel. To compute a component of the solution vector we
need N independent chains with length T , and for n components in parallel we
need nN such independent chains of length T , where N and T are the mathe-
matical expectations of the number of chains and chain length, respectively. So
the execution time on p processors for solving SLAE by Monte Carlo is bounded
by O(nNT/p) (excluding initialization communication time). According to the
discussion and results above N and T depend only on the matrix norm and
precision and do not depend on the matrix size. Therefore the Monte Carlo me-
thods can be efficiently implemented on MIMD environment and in particular
on a cluster of workstations under PVM.

In particular it should be noted that the Monte Carlo methods are well suited
to large problems where other solution methods are impractical or impossible
for computational reasons, for calculating quick rough estimate of the solution
vector, and when only a few components of the solution vector are desired.
Consequently, if massive parallelism is available and if low precision is acceptable,
Monte Carlo algorithms could become favourable for n >> N.

7 Acknowledgements

Thanks to the British Council for the partial support.

References

1. V.Alexandrov and S. Lakka Comparison of three Parallel Monte Carlo Methods for
Matrix Inversion, Proc. of EUROPAR96, Lyon, France, Vol II, pp. 72-80.

2. V.Alexandrov and G.M. Megson Solving Sytem of Linear algebraic Equations by
Monte Carlo Method on Regular Arrays, Proc. of PARCELLA96, 16-20 September,
Berlin, Germany, pp. 137-146, 1996.

3. Bertsekas D.P. and Tsitsiklis , Parallel and Distributed Computation , Prentice
Hall, 1989

330 V. Alexandrov et al.

4. F. Dehne, A. Fabri, and A. Rau-Chaplin, Scalable parallel geometric algorithms
for multicomputers, Proc. 7th ACM Symp. on Computational Geometry, 1993.

5. I. Dimov and V.Alexandrov A New Highly Convergent Monte Carlo Method for
Matrix Computations, Proc. of IMACS Monte Carlo Seminar, April 1-4, 1997,
Belgium (in print).

6. G. H. Golub, Ch. F. Van Loon, Matrix Computations, The Johns Hopkins Univ.
Press, Baltimore and London, 1996.

7. J.H. Halton, Sequential Monte Carlo Techniques for the Solution of Linear Systems,
TR 92-033, University of North Carolina at Chapel Hill, Department of Computer
Science, 46 pp., 1992.

8. G.M.Megson, V.Aleksandrov, I. Dimov Systolic Matrix Inversion Using Monte
Carlo Method, J. Parallel Algorithms and Applications , Vol.3, pp.311-330, 1994.

9. Sobol’ I.M. Monte Carlo numerical methods. Moscow, Nauka, 1973 (Rus-
sian)(English version Univ. of Chicago Press 1984).

10. Westlake J.R., A Handbook of Numerical Matrix Inversion and Solution of Linear
Equations, John Wiley and Sons, New York, 1968.

	Introduction
	Stochastic Methods and SLAE
	Parameters Estimation and Discussion
	Parallel Implementation
	Numerical Tests
	Conclusion
	Acknowledgements

