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Parallel Virtual Memory 

F. Dehne* IV. Dittricht D. Hutchinson” A. Maheshwari*$ 

1 Motivation operation. 
Parallel algorithms for the Bulk Synchronous Parallel 
(BSP) and closely related Coarse Gained Multicom- 
puter (CGM) programming model assume that all 
data can be distributed over the main memories of 
the processors involved. In practice, this may not be 
the case. For large scale applications where parallel 
processing is helpful, the total amount of data often 
exceeds the total main memory available and parallel 
disk I/O becomes a necessity. A common scenario for 
distributed memory parallel machines assumes that 
each processor has multiple local hard disks available, 
where each disk is only accessible by the respective 
local processor. Parallel disk I/O has been identi- 
fied as a critical component of a suitable high perfor- 
mance computer for a number of the Grand Challenge 
problems see for instance the Scalable I/O Initiative 
project [5] \ . 

For sequential computing, the virtual memory 

The Bulk-Synchronous Parallel (BSP) parallel 
computing model was introduced by Valiant [6]. It 
is intended as a bridging model; a standard model on 
which both hardware and software designs can agree. 
It is neither a hardware nor a programming model, 
but somewhere in between. A dominant feature of 
BSP is the superstep, which is an interval of time 
in which the processors compute independently, and 
then communicate results. Before the next superstep 
begins, the processors synchronize to ensure that they 
have all completed the current superstep. 

concept has long been established as a standard 
method for managing external memory. Its main ad- 
vantage is that it allows the application programmer 
to access a large virtual memory without having to 
deal with the intricacies of blocked secondary memory 
accesses. We present a similar, transparent, parallel 
virtual memory programming environment for BSP- 
style parallel computing. 

A BSP algorithm A on a problem P and com- 
puter configuration C can be characterized by the 
parameters (N, v, g, L, X, p, cr), where N is the 
problem size (in problem items), v is the number of 
processors, g is the time required for a communica- 
tion operation, L is the minimum time required for 
the processors to synchronize, X is the number of BSP 
supersteps required, fi is the computation time of (the 
busiest) processor, and Q is the number of communi- 
cation operations performed by a processor. In all 
cases, “time” is measured in “number of processor 
cycles”. The time required by a BSP algorithm un- 
derthemodelisptg-cr+x.L. 

A stringent goodness criterion used with BSP is 
the c-optima&y criterion. In order for A to be c- 
optimal, (1) & is in c+o(l), where p’ is the time 
for an optimal sequential algorithm which solves P, 
and (2) the computation time of A asymptotically 
dominates its communication time. 

2 Definitions 

We give a brief introduction to the PDM (Parallel 
Disk Model), BSP, CGM, and EM-CGM (external 
memory CGM). For more details and references con- 
sult [2,3]. 

The Parallel Disk Model (PDM) introduced by 
Vitter and Shrives is used to model a two level mem- 
ory hierarchy consisting of D parallel disks connected 
to v > 1 processors which communicate via a shared 
internal memory or a network. The PDM uses the 
following additional parameters: N = problem size, 
it4 = internal memory size, B = block transfer size, 
where M < N, and 1 5 DB s M/2. The PDM cost 
measure is the number of I/O operations required 
by an algorithm, where DB items can be transferred 
between internal memory and disk in a single I/O 
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An h-relation is a BSP communication operation 
in which the amount of data sent or received by any 
processor is at most h items. A CGM algorithm is a 
special case of a BSP algorithm where the communi- 
cation part of each superstep consists of exactly one 
h-relation with h = Q($). An algorithm for a CGM 
with multiple disks attached to each processor is re- 
ferred to as an EM-CGM algorithm. The cost of an 
EM-CGM algorithm is ,8 + g - cy + G - K + X. L, where 
G is the time required for a parallel I/O operation to 
a processor’s local disks, and IC is the number of such 
operations required. Goodness criteria proposed [2,4] 
for the EM-CGM model include (1) an extended ver- 
sion of c-optimality, where the computation time is 
also required to dominate the I/O time, (2) relaxed 
criteria I/O-efficiency and communication-efficiency, 
where the I/O and communication times may be 
asymptotically the same as the computation time, 
and (3) I/O-optimality, where the I/O time may be 
necessarily larger than the computation time, but the 
number of I/O operations meets the lower bound for 
the problem. 
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3 Theoretical Results 
The ACM Workshop on Strategic Directions in Com- 
puting Research recently issued a challenge [I] to 
combine the PDM model with the BSP and related 
models. In [2] we proposed instances of such a com- 
bined model, which we call EM-BSP, EM-BSP*, and 
EM-CGM. The new models measure the time for 
computation, communication and I/O, not just the 
number of I/O operations used. 

In [2] we also presented randomized simulation 
methods for mapping BSP like algorithms written 
for large parallel virtual memory to external mem- 
ory algorithms for a multi disk, multi processor ma- 
chine. The results showed that a v-processor CGM 
algorithm A with communication time go + XL, com- 
putation time /3 + XL, and local memory p can be 
simulated as a pprocessor EM-CGM algorithm with 
computation time (1 +o(l))$p+O(LX$), communi- 

cation time O(gl(%o +X v) + LX%), and I/O 

time O(GZ$(&)) with probability 1-exp(-R(1 logI* 

log%)) for suitable I _> 1, p = w(Xp), M = O(kp), 
v = R(pkD . log $$), M/B 1 p’ and arbitrary con- 
stants k, E > 0. Conditions for meeting the extended 
c-optimality criterion were also identified. 

Our newest results include deterministic simula- 
tion methods for mapping a CGM algorithm with 
parallel virtual memory to an external memory envi- 
ronment (see [3] for details). 
(1) A v-processor CGM algorithm A with X super- 
steps, local memory size ~1, computation time /3 + XL 
and communication time ga + XL can be simulated, 
deterministically, as a pprocessor EM-CGM algo- 
rithm A’ with computation time %(p+O(Xp))+ $ti, 
communication time gga + :XL, and I/O time %G. 
0(X&) -t- ;XL for v 2 p, M = 8(p), N = R(vDB), 
B = 0( 5). 
(2) The above deterministic simulation, applied to 
known BSP and CGM algorithms, yields EM-CGM 
algorithms with (a) I/O complexity 0( fi) for sort- 
ing, permutation, matriz transpose, lower envelope of 
line segments (N denotes the size of the input plus 
output), area of union’ of rectangles, 3D-maxima, 
weighted dominance counting for planar point set, 
(b) I/O complexity 6( &) for 3-dimensional con- 
vex hull and planar Voronoi diagram (the underly- 
ing CGM algorithms are probabilistic), nearest neigh- 
bor problem for planar point set, (c) I/O complexity 
0( 9) for trapezoidal decomposition and trian- 

gulation, and (d) I/O complexity O(s) for list 
ranking, Euler tour of a tree, connected components, 
spanning forest, lowest common ancestor in a tree, 
tree contraction, expression tree evaluation, open ear 
decomposition, and biconnected components. 

Superhcially, some of these results appear to 
contradict known lower bounds, but this is not the 
case, and can be explained by our constraints on the 
parameters. In [3] we show that such constraints are 
not restrictive in practice. 

4 Experimental Results 
We are implementing a prototype system on a net- 
work of Pentium processors connected via a 2 GB 
Ethernet switch and with multiple disks per pro- 
cessor. Preliminary experiments confirm that our 
approach outperforms the standard virtual memory 
techniques used by the Linux operating system. Fig- 
ure 1 shows a performance comparison between an 
original CGM sorting algorithm and the correspond- 
ing EM-CGM code. For small data size, the overhead 
for the external memory mapping makes the CGM al- 
gorithm outperform the EM-CGM algorithm. How- 
ever, once the main memory is all utilized, the perfor- 
mance of the CGM algorithm degenerates. The CGM 
timings for larger problem size were obtained by us- 
ing the standard UNIX paging mechanism. The EM- 
CGM algorithm obtained through our parallel virtual 
memory method continues “smoothly” and clearly 
outperform the CGM code. Figure 2 shows how 
our EM-CGM simulation reacts to multiple disks. It 
shows that the method converts additional, parallel, 
disks into a significant performance increase. 
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