
5889

Parallel Virtual Memory

F. Dehne* IV. Dittricht D. Hutchinson” A. Maheshwari*$

1 Motivation operation.
Parallel algorithms for the Bulk Synchronous Parallel
(BSP) and closely related Coarse Gained Multicom-
puter (CGM) programming model assume that all
data can be distributed over the main memories of
the processors involved. In practice, this may not be
the case. For large scale applications where parallel
processing is helpful, the total amount of data often
exceeds the total main memory available and parallel
disk I/O becomes a necessity. A common scenario for
distributed memory parallel machines assumes that
each processor has multiple local hard disks available,
where each disk is only accessible by the respective
local processor. Parallel disk I/O has been identi-
fied as a critical component of a suitable high perfor-
mance computer for a number of the Grand Challenge
problems see for instance the Scalable I/O Initiative
project [5] \ .

For sequential computing, the virtual memory

The Bulk-Synchronous Parallel (BSP) parallel
computing model was introduced by Valiant [6]. It
is intended as a bridging model; a standard model on
which both hardware and software designs can agree.
It is neither a hardware nor a programming model,
but somewhere in between. A dominant feature of
BSP is the superstep, which is an interval of time
in which the processors compute independently, and
then communicate results. Before the next superstep
begins, the processors synchronize to ensure that they
have all completed the current superstep.

concept has long been established as a standard
method for managing external memory. Its main ad-
vantage is that it allows the application programmer
to access a large virtual memory without having to
deal with the intricacies of blocked secondary memory
accesses. We present a similar, transparent, parallel
virtual memory programming environment for BSP-
style parallel computing.

A BSP algorithm A on a problem P and com-
puter configuration C can be characterized by the
parameters (N, v, g, L, X, p, cr), where N is the
problem size (in problem items), v is the number of
processors, g is the time required for a communica-
tion operation, L is the minimum time required for
the processors to synchronize, X is the number of BSP
supersteps required, fi is the computation time of (the
busiest) processor, and Q is the number of communi-
cation operations performed by a processor. In all
cases, “time” is measured in “number of processor
cycles”. The time required by a BSP algorithm un-
derthemodelisptg-cr+x.L.

A stringent goodness criterion used with BSP is
the c-optima&y criterion. In order for A to be c-
optimal, (1) & is in c+o(l), where p’ is the time
for an optimal sequential algorithm which solves P,
and (2) the computation time of A asymptotically
dominates its communication time.

2 Definitions

We give a brief introduction to the PDM (Parallel
Disk Model), BSP, CGM, and EM-CGM (external
memory CGM). For more details and references con-
sult [2,3].

The Parallel Disk Model (PDM) introduced by
Vitter and Shrives is used to model a two level mem-
ory hierarchy consisting of D parallel disks connected
to v > 1 processors which communicate via a shared
internal memory or a network. The PDM uses the
following additional parameters: N = problem size,
it4 = internal memory size, B = block transfer size,
where M < N, and 1 5 DB s M/2. The PDM cost
measure is the number of I/O operations required
by an algorithm, where DB items can be transferred
between internal memory and disk in a single I/O

‘school Of Computer Science, Carleton University,
Ottawa, Canada KlS 5B6. ldehne. hutchins, ma-
heshwa&s.carleton.ca. R&e&h p&ally supported
by the Natural Sciences and Engineering Research Council of
Canada.

+Bosch Telecom, B=k=w, Germany, wolf-
gang.dittrichObk.bosch.de.

*Part of this work was done while visiting the MPI Infor-
matik, Saarbriicken, Germany

An h-relation is a BSP communication operation
in which the amount of data sent or received by any
processor is at most h items. A CGM algorithm is a
special case of a BSP algorithm where the communi-
cation part of each superstep consists of exactly one
h-relation with h = Q($). An algorithm for a CGM
with multiple disks attached to each processor is re-
ferred to as an EM-CGM algorithm. The cost of an
EM-CGM algorithm is ,8 + g - cy + G - K + X. L, where
G is the time required for a parallel I/O operation to
a processor’s local disks, and IC is the number of such
operations required. Goodness criteria proposed [2,4]
for the EM-CGM model include (1) an extended ver-
sion of c-optimality, where the computation time is
also required to dominate the I/O time, (2) relaxed
criteria I/O-efficiency and communication-efficiency,
where the I/O and communication times may be
asymptotically the same as the computation time,
and (3) I/O-optimality, where the I/O time may be
necessarily larger than the computation time, but the
number of I/O operations meets the lower bound for
the problem.

F D
F. Dehne, W. Dittrich, D. Hutchinson, and A. Maheshwari, "Parallel virtual memory," in Proc. 10th Annual ACM-SIAM Symposium on Discrete Algorithms, Baltimore, MD, 1999, pp. 889-890.

F D

5890

3 Theoretical Results
The ACM Workshop on Strategic Directions in Com-
puting Research recently issued a challenge [I] to
combine the PDM model with the BSP and related
models. In [2] we proposed instances of such a com-
bined model, which we call EM-BSP, EM-BSP*, and
EM-CGM. The new models measure the time for
computation, communication and I/O, not just the
number of I/O operations used.

In [2] we also presented randomized simulation
methods for mapping BSP like algorithms written
for large parallel virtual memory to external mem-
ory algorithms for a multi disk, multi processor ma-
chine. The results showed that a v-processor CGM
algorithm A with communication time go + XL, com-
putation time /3 + XL, and local memory p can be
simulated as a pprocessor EM-CGM algorithm with
computation time (1 +o(l))$p+O(LX$), communi-

cation time O(gl(%o +X v) + LX%), and I/O

time O(GZ$(&)) with probability 1-exp(-R(1 logI*

log%)) for suitable I _> 1, p = w(Xp), M = O(kp),
v = R(pkD . log $$), M/B 1 p’ and arbitrary con-
stants k, E > 0. Conditions for meeting the extended
c-optimality criterion were also identified.

Our newest results include deterministic simula-
tion methods for mapping a CGM algorithm with
parallel virtual memory to an external memory envi-
ronment (see [3] for details).
(1) A v-processor CGM algorithm A with X super-
steps, local memory size ~1, computation time /3 + XL
and communication time ga + XL can be simulated,
deterministically, as a pprocessor EM-CGM algo-
rithm A’ with computation time %(p+O(Xp))+ $ti,
communication time gga + :XL, and I/O time %G.
0(X&) -t- ;XL for v 2 p, M = 8(p), N = R(vDB),
B = 0(5).
(2) The above deterministic simulation, applied to
known BSP and CGM algorithms, yields EM-CGM
algorithms with (a) I/O complexity 0(fi) for sort-
ing, permutation, matriz transpose, lower envelope of
line segments (N denotes the size of the input plus
output), area of union’ of rectangles, 3D-maxima,
weighted dominance counting for planar point set,
(b) I/O complexity 6(&) for 3-dimensional con-
vex hull and planar Voronoi diagram (the underly-
ing CGM algorithms are probabilistic), nearest neigh-
bor problem for planar point set, (c) I/O complexity
0(9) for trapezoidal decomposition and trian-

gulation, and (d) I/O complexity O(s) for list
ranking, Euler tour of a tree, connected components,
spanning forest, lowest common ancestor in a tree,
tree contraction, expression tree evaluation, open ear
decomposition, and biconnected components.

Superhcially, some of these results appear to
contradict known lower bounds, but this is not the
case, and can be explained by our constraints on the
parameters. In [3] we show that such constraints are
not restrictive in practice.

4 Experimental Results
We are implementing a prototype system on a net-
work of Pentium processors connected via a 2 GB
Ethernet switch and with multiple disks per pro-
cessor. Preliminary experiments confirm that our
approach outperforms the standard virtual memory
techniques used by the Linux operating system. Fig-
ure 1 shows a performance comparison between an
original CGM sorting algorithm and the correspond-
ing EM-CGM code. For small data size, the overhead
for the external memory mapping makes the CGM al-
gorithm outperform the EM-CGM algorithm. How-
ever, once the main memory is all utilized, the perfor-
mance of the CGM algorithm degenerates. The CGM
timings for larger problem size were obtained by us-
ing the standard UNIX paging mechanism. The EM-
CGM algorithm obtained through our parallel virtual
memory method continues “smoothly” and clearly
outperform the CGM code. Figure 2 shows how
our EM-CGM simulation reacts to multiple disks. It
shows that the method converts additional, parallel,
disks into a significant performance increase.

5 References

PI

PI

[31

PI

151

[‘51

T. H. Cormen and M. T. Goodrich, “Position State-
ment, ACM Workshop on Strategic Directions in
Computing Research: Working Group on Storage
I/O for Large-Scale Computing,”
http://www.cs.dartmouth.edu/ thc/SDCR96/ Cor-
menModel/index.html, 1996.

F. Dehne, W. Dittrich and D. Hutchinson, “Efficient
External wemory Algorithms by Siiulathg Coarse-
Grained Parallel Algorithms.” Proc. ACM Svm~.
on Parallel Algorith& and Architectures, 1997,*106-
115

F. Dehne, W. Dittrich, D. Hutchinson, A. Ma-
heshwari, “Reducing I/O complexity by simulating
coarse grained parallel algorithms_ Technical Re-
port, http://www.scs.carleton.ca/ dehnejpapers

W. Dittrich, D. Hutchinson, and A. ,Maheshwari,
“Blocking in Parallel Multisearch Problems,” Proc.
ACM Syrup. on Parallel Algorithms and Arcbitec-
hues, 1998.

J. Poole et al., “Survey of I/O Intensive Applica-
tions* , Scalable I/O Initiative, Applications WG,
SIO WP-1, http://www.cacr.caltech.edu/SIO/

L. G. Valiant, “A Bridging Model for Parallel Com-
putation”, Communications of the ACM, 33(8),
1990, 103-111

