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Abstract

Block-wise access to data is a central theme in the de-
sign of efficient external memory (EM) algorithms. A sec-
ond important issue, when more than one disk is present,
is fully parallel disk I/O. In this paper we present a de-
terministic simulation technique which transforms paral-
lel algorithms into (parallel) external memory algorithms.
Specifically, we present a deterministic simulation technique
which transforms Coarse Grained Multicomputer (CGM)
algorithms into external memory algorithms for the Parallel
Disk Model. Our technique optimizes block-wise data ac-
cess and parallel disk I/O and, at the same time, utilizes mul-
tiple processors connected via a communication network or
shared memory.

We obtain new improved parallel external memory al-
gorithms for a large number of problems including sorting,
permutation, matrix transpose, several geometric and GIS
problems including 3D convex hulls (2D Voronoi diagrams),
and various graph problems. All of the (parallel) external
memory algorithms obtained via simulation are analyzed
with respect to the computation time, communication time
and the number of I/O’s. Our results answer to the challenge
posed by the ACM working group on storage I/O for large-
scale computing [8].

1 Introduction

Cormen and Goodrich [8] posed the challenge of com-
bining BSP-like parallel algorithms with the requirements
for parallel disk I/O. Solutions based on probabilistic meth-
ods were presented in [11] and [14]. In this paper, we present
deterministic solutions which are based on a deterministic
simulation of parallel algorithms for the Coarse Grained
Multicomputer (CGM) model and answer to that challenge.
The analysis of the I/O complexity of our algorithms is done
as in the PDM model. In addition, we analyze the running
time and communication time.

We first review some definitions for the BSP and CGM
model; consult [11, 23, 13] for more details. A BSP algo-
rithmA on a fixed problem instanceP and computer config-
uration C can be characterized by the parameters (N , v, �,
g, L), where N is the problem size (in problem items), v is
the number of processors, g is the time required for a com-
munication operation, L is the minimum time required for
the processors to synchronize, and � is the number of BSP
supersteps required byA onP and C. (The times are in num-
ber of processor cycles.) A CGM algorithm is a special case
of a BSP algorithm where the communication part of each
superstep consists of exactly one h-relation with h = �(N

v
).

Such a superstep is called a round. The notion of an h-
relation is often used in the analysis of parallel algorithms
based on BSP-like models. An h-relation is a communica-
tion superstep in which each of the v processors sends and
receives at most h data items. An algorithm for a CGM with
multiple disks attached to each processor is referred to as an
EM-CGM algorithm.

The following outlines the results obtained.

1. We show that any v processor CGM algorithmAwith�
supersteps/rounds, local memory size �, computation
time � + �L, communication time g�+ �L and mes-
sage size �(N

v2
) can be simulated, deterministically, as

a p-processor EM-CGM algorithm A0 with computa-
tion time v

p
(� +O(��)) + v

p
�L, communication time

v
p
g� + v

p
�L, and I/O time v

p
G � O(� �

DB
) + v

p
�L for

v � p, M = �(�), N = 
(vDB) and B = O(N
v2
).

G is the time (in processor cycles) for a parallel I/O op-
eration.

Let g(N), L(N), v(N) be increasing functions of N .
If A is c-optimal (see [16, 11] for definition) on the
CGM for g � g(N), L � L(N) and v � v(N), then
A0 is a c-optimal EM-CGM algorithm for � = !(��),
g � g(N), G = BD � o( �

��
) and L � L(N) � p

v
.

A0 is work-optimal, communication-efficient, and I/O-
efficient (see [11] for definitions) if � = 
(��), g �
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g(N), G = BD �O( �

��
), and L � L(N) � p

v
.

While our parameter space is constrained to a coarse
grained scenario which is typical of the CGM con-
straints for parallel computation, we show that this pa-
rameter space is both interesting and appropriate for
EM computation. Once the expression for the general
lower bounds reported by [1, 26, 3] is specialized for
the subset of the parameter space that we consider, it
becomes fully compatible with our results. This an-
swers questions of Cormen [7] and Vitter [27] on the
apparent contradictions between the results of [11] and
the previously stated lower bounds.

2. We obtain new, simple, parallel EM algorithms for
sorting, permutation, and matrix transpose with I/O
complexity O( N

pDB
).

3. We obtain parallel EM algorithms with I/O complex-
ity O( N

pDB
) for the following computational geome-

try/GIS problems : (a) 3-dimensional convex hull and
planar Voronoi diagram (these results are probabilistic
since the underlying CGM algorithms are probabilis-
tic), (b) lower envelope of line segments (here, N de-
notes the size of the input plus output), (c) area of union
of rectangles, (d) 3D-maxima, (e) nearest neighbour
problem for planar point set, (f) weighted dominance
counting for planar point set, (g) uni-directional and
multi-directional separability.

4. We obtain parallel EM algorithms with I/O complex-
ity O(N logN

pDB
) for the following computational geom-

etry/GIS and graph problems: (a) trapezoidal decom-
position (b) triangulation (c) segment tree construction,
(d) batched planar point location,

5. We obtain parallel EM algorithms with I/O complex-
ity O(N log v

pDB
) for the following computational geome-

try/GIS and graph problems: (a) list ranking, (b) Euler
tour of a tree, (c) connected components, (d) spanning
forest, (e) lowest common ancestor in a tree, (f) tree
contraction, (g) expression tree evaluation, (h) open ear
decomposition, (i) biconnected components.

6. In contrast to previous work, all of our methods are also
scalable with respect to the number of processors.

The results for Items (2), (3) and (4) are subject to the
conditions N = 
(vDB), N � v2B + v2(v � 1)=2, and
N > v�, where � > 1 is a constant that depends on the
problem. The latter constraint arises in the CGM algorithm
which we simulate. For the problems examined in this pa-
per, � � 3.

Our results show that the EM-CGM is a good generic pro-
gramming model that facilitates the design of I/O-efficient
algorithms in the presence of multiple processors and mul-
tiple disks. It has relatively few parameters, generalizes the
PDM model, and answers to the challenge of [8].

Note that our results apply to a wide spectrum of paral-
lel algorithms. For example, several well known simulation

techniques map parallel algorithms designed for the PRAM
model to the BSP model. Furthermore, by generating pro-
grams for a single processor computer from coarse grained
parallel algorithms, our approach can also be used to control
cache memory faults. This supports a suggestion of Vishkin
[24, 25].

The parameter space for EM problems which we are
proposing in this paper is both practical and interesting. The
logarithmic term in the I/O complexity of sorting is bounded
by a constant c if (M

B
)c � N

B
, where M = N

v
. Since this

constraint involves the parameters v, B, N , c, we have a
four-dimensional constraint space. For practical purposes,
the parameter B can be fixed at about 103 for disk I/O [22].
This reduces the constraint to a surface Nc�1 = vcBc�1 in
three dimensional space. Any point on or above the surface
represents a valid set of parameters for the elimination of the
logarithmic factor. For 100 processors or less, for instance,
any problem size greater than about 10 mega-items is suffi-
cient.

Due to page restrictions for the conference proceedings,
some details are omitted in this paper. An extended ver-
sion with additional figures and charts can be found at
http://www.scs.carleton.ca/edehne.

2 Single Processor Target Machine

In this section we describe a deterministic simulation
technique that permits a CGM algorithm to be simulated as
an external memory algorithm on a single processor target
machine.We first consider the simulation of a single com-
pound superstep and, in particular, how the contexts and
messages of the virtual processors can be stored on disk, and
retrieved efficiently in the next superstep. The management
of the contexts is straightforward. Since we know the size of
the contexts of the processors, we can distribute the contexts
deterministically.

The main issue is how to organize the generated mes-
sages on the D disks so that they can be accessed using
blocked and fully parallel I/O operations. This task is sim-
pler if the messages have a fixed length. Although a CGM
algorithm has the property that �(N

v
) data is deemed to be

exchanged by each processor in every superstep, there is no
guarantee on the size of individual messages. Algorithm
BalancedRouting gives us a technique for achieving fixed
size messages.

Algorithm 1 BalancedRouting (from [4])
Input: Each of the v processors has �n

v
elements, which are

divided into v messages, each of arbitrary length � �n
v

. Let
msgij denote the message to be sent from processor i to pro-
cessor j, and let jmsgij j be the length of such a message.
Output: The v messages in each processor are delivered to
their final destinations in two balanced rounds of communi-
cation, and each processor then contains at most �h data.

Superstep A: For i = 0 to (v � 1) in parallel
Processor i allocates v local bins, one for each proces-
sor



For j = 0 to (v � 1)

1 For ` = 0 to jmsgij j
Processor i allocates the `th word of msgij
to local bin (i+ j + `) mod v

2 For j = 0 to (v � 1)
Processor i sends bin j to processor j

Superstep B: For j = 0 to (v � 1) in parallel
3 Processor j reorganizes the messages it received in

Step 2 into bins according to each element’s final des-
tination

4 Processor j routes the contents of bin k to processor k,
for 0 � k � v � 1

Observation 1 If binmin is the smallest bin created at a
processor in step (1) of Superstep A, then the other (v � 1)

bins can contain at most 1+2+ :::+(v�1) = v(v�1)
2 more

elements than does binmin.

Theorem 1 We are given v processors, and �n data items.
Each processor has exactly �n

v
data to be redistributed

among the processors, and no processor is to be the recipient
of more than �h data. The redistribution can be accomplished
in two communication rounds of balanced communication:
(A) Messages in the first round are at least �n

v2
� v�1

2 , and
at most �n

v2
+ v�1

2 in size, and (B) Messages in the second

round are at least
�h
v
� v�1

2 , and at most
�h
v
+ v�1

2 in size.

Proof. The proof of the maximum message sizes is given
in [4]. In the following, we give a proof for the minimum
message sizes. In Superstep A each processor initially has
�n
v

data. At the end of Superstep B, each processor will have
at most �h data.

First, we consider the minimum message size in Super-
step A. Due to the round robin allocation mechanism, a
given bin after Step 1 will contain at most one more ele-
ment of a message to processor j than does any other bin.
Let us fix any processor i. Consider the bin sizes after all
of the messages have been distributed among the bins by
processor i. Clearly, all of the bins will contain at least as
many elements as the smallest bin, binmin. Let ej be the
number of extra elements (more than this minimum) in bin
j at Step 2. The crucial observation is that if binmin is the
smallest bin, then the other (v � 1) bins can hold at most
1 + 2 + ::: + (v � 1) = v(v�1)

2 extra elements. Thus,
�n
v
= vjbinminj +

P
j ej . Since v(v�1)

2 �
P

j ej , we have
jbinminj �

�n
v2

� v�1
2 .

We now turn to the message sizes in Superstep B. The el-
ements which arrive at processor j as a result of Step 2 are
the contents of the jth local bins formed in Step 1 at each
of the processors 0 through v � 1. We can think of the jth

local bin of each of the v processors as a component of a
single, global superbin, which is the union of the jth local
bins of all v processors. Consider only the messages des-
tined for a fixed processor k which are held by each proces-
sor i, 0 � i � v � 1, prior to Step 1. These are allocated
among the superbins, starting with superbin (i + k) mod v

by Step 1. Superbin j now contains the message which is to
be sent from processor j to processor k in Step 4.

In a similar manner to the analysis of superstep A, let Ej

be the number of extra elements in superbin j after Step 1.
Let sbinmin be the superbin which contains the minimum
number of elements after Step 1, and hence jsbinminj rep-
resents the minimum message size in Step 4. When proces-
sor k is one of the processors which receives the maximum
h data elements, we have �h = vjsbinminj +

P
j Ej , and

since v(v�1)
2 �

P
j Ej , we have jsbinminj �

�h
v
� v�1

2 2

The notion of an h-relation is often used in the analysis
of parallel algorithms based on BSP-like models (e.g. BSP,
BSP*, CGM). An h-relation is a communication superstep
in which each of the v processors sends and receives at most
h data items. It is typically used in bounding the communi-
cation complexity in an asymptotic analysis. Based on this
usage of an h-relation, we have:

Corollary 1 An arbitrary h�relation can be replaced
by two “balanced” h�relations whose message size is
bounded by h

v
� v�1

2 and h
v
+ v�1

2 .

Lemma 1 An arbitrary minimum message size bmin can be
assured provided that

N � v2bmin +
v2(v � 1)

2
(1)

where N is the total number of problem items summed over
the v processors.

Proof. From Corollary 1, we can achieve a minimum mes-
sage size bmin provided that bmin � N

v2
� v�1

2 . 2

Now we look at the deterministic simulation of CGM al-
gorithms as EM-CGM algorithms. Not every CGM algo-
rithm will require balancing, but Lemma 2 ensures that we
can obtain balanced message sizes when necessary by in-
creasing the number of supersteps by a factor of 2.

Lemma 2 Let A be a CGM algorithm with N data, v pro-
cessors, and � communication steps. The � communication
steps of A can be replaced by 2� steps of balanced commu-
nication in which the minimum message size is 
(B) and
the maximum message size is 2 � N

v2
provided that N �

v2bmin +
v2(v�1)

2

Proof. The minimum and maximum message sizes follow
from Corollary 1, with h = N

v
, and the constraint that N

v2
+

v�1
2 � 2� N

v2
. This is true ifN � v2(v�1)

2 , which is absorbed
by (1) from Lemma 1. 2

We will now turn to the actual simulation results, which
rely on a message size of k N

v2
, for a known constant k � 1.

As we have seen, this is guaranteed by Lemma 2. Not every
CGM algorithm will require Lemma 2.



Lemma 3 A compound superstep of a v-processor CGM al-
gorithm A with computation time � + L, communication
time g � O(N

v
) + L, message size k N

v2
, for a known con-

stant k � 1, and local memory size � can be simulated
in a compound superstep of a single processor EM-CGM
algorithm in computation time v� + O(v�) and I/O time
G � O( N

DB
+ v�

DB
) provided that M � �, D = O( N

vB
),

and B = O(N
v2
).

The proof is given below, following the presentation and
discussion of Algorithm 2. This algorithm expects the in-
put messages to the virtual processors in the current super-
step to be organized (by destination) in a parallel format on
the disks, and it also writes the messages generated in the
current superstep to the disks in a parallel format. We use
the phrase “a parallel format” to mean an arrangement of the
data that permits fully parallel access to the disks, both for
writing the messages, and for reading them back in a differ-
ent order in the next superstep. Two instances of a parallel
format are the consecutive and staggered formats.

Consecutive format: We say that a disk read/write oper-
ation on D blocks is consecutive when the qth block, 0 �
q � D is read/written from/to disk (d+ q) mod D on track
T0 + b(d + q)=Dc, where T0 is the track used for the first
of the D blocks to be read/written, and d is the disk offset
(from disk 0) for the first of the D blocks to be read/written.

Staggered format: We say that a disk read/write operation
on D blocks involving n messages, each of size at most b0

blocks, is staggered when the qth block, 0 � q � (b0 � 1)
of the jth message, 0 � j � (n� 1) is read/written from/to
disk (d+S+q)modD on trackT0+b(d+S+q)=Dc, where
T0 is the track used for the blocks of the 0th message, d is
the disk offset (from disk 0) for the first of the D blocks to
be read/written, and dS=De is the number of tracks by which
consecutive messages are to be staggered (separated).

Algorithm 2 simulates a compound superstep of a v-
processor CGM on a single processor EM-CGM with D
disks.

Algorithm 2 : SeqCompoundSuperstep
Input: For each i�f0; : : : ; v � 1g the blocks of the context
are stored on the disks in consecutive format, and the arriv-
ing messages of virtual processor i are spread over the D
disks consecutive format.
Output: (i) The (changed) contexts of the v simulated pro-
cessors are spread across the disks in consecutive format.
(ii) The generated messages for each processor in the next
superstep are stored in consecutive format on the disks.

For i = 0 to v � 1

(a) Read the context of virtual processor i from the disks
into memory.

(b) Read the packets received by virtual processor i from
the disks.

(c) Simulate the local computation of virtual processor i.

(d) Write the packets which were sent by virtual processor
i to the D disks in staggered format.

(e) Write the changed context of virtual processor i back
to the D disks (in consecutive format).

We use the results of Lemma 2. Since messages are at
most 2 � h

v
� 2N

v2
in size we can allocate fixed sized slots

for them on the disks while preserving an O(v�) disk space
requirement. In many practical EM situations 2N

v2
will be

a significant overestimate of the maximum message size, as
v << N

v2
. The assurance of minimum message size 
(B)

implies that I/O operations will be blocked1.

Details of Algorithm 2

Details of Steps (a) and (e): Since we know the size of
the contexts of the processors, we can distribute the con-
texts deterministically. We reserve an area of total size v�
on the disks, v�

DB
blocks on each disk, where we store the

contexts. We split the context Vj of virtual processor j
into blocks of size B and store the i-th block of Vj on disk�
i+ j �

B

�
modD using track

j
i+j �

B

D

k
. Since the context of

each processor is now in striped format on the disks, we can
easily read and write the contexts using D disks in parallel
for every I/O operation.

Details of Step (b): The previous compound superstep
guaranteed that the blocks which contain the messages des-
tined for the current processor are stored in consecutive for-
mat on the disks. Therefore, we can use a similar technique
to fetch the messages as we used to fetch the contexts.

Details of Step (d): After the Computation Phase, all
messages sent by the current virtual processor have been
generated and stored in internal memory. The coarse-
grained nature of the underlying BSP-like algorithm results
in large messages, (see Lemma 2) which are as long or
longer than the block size B. We cut the messages into
blocks of size B. Each block inherits the destination ad-
dress from its original message. In 


BD
rounds, we write the

blocks out to the disks, as described in detail below.
Let b represent the maximum message size, and let b0 rep-

resent the maximum number of disk blocks per message.
Hence, b0 = d b

B
e. Let msgij represent the message sent

from processor vi to processor vj in one communication su-
perstep. We will store the messages destined for a fixed
processor j in standard consecutive format, beginning with
msg0j and ending with msgp�1;j . We ensure that the first
block of msgi;j+1 is assigned to disk (b0 + b0) mod D, for
0 � j � p�2, where b0 is the disk number of the first block
for msgij . In other words, the starting block positions for
messages to consecutive processors are appropriately stag-
gered on the disks to ensure that we can write blocks of mes-
sages to consecutively numbered processors in a single par-
allel I/O when b0 mod D 6= 0. Let Tj = j � d vb

0

D
e be

the track offset for msg0j (the first such message destined

1Although a CGM algorithm may occasionally use smaller messages
than B, it is charged for an N

v
-relation in each superstep as if every pro-

cessor sent and received h data



for processor vj). Let dj = jb0 mod D be the disk offset
(from disk 0) for the first block of msg0j . The qth block of
msgij is assigned to disk (dj + ib0 + q) mod D on track
Tj+b(dj+ib

0+q)=Dc. This storage scheme maintains what
we will call the messaging matrix across the parallel disks.
The messages destined to a particular virtual processor are
stored in a band, or stripe of consecutive parallel tracks.

Outgoing message blocks are placed in a FIFO queue for
servicing by procedure DiskWrite. DiskWrite removes at
mostD blocks from the queue in each write cycle and writes
them to the disks in a single write operation. Blocks are ser-
viced strictly in FIFO order. Blocks will be added to the cur-
rent write cycle and removed from the queue until a block
is encountered whose disk number conflicts with that of an
earlier block in the current write cycle.

Since the messages destined for any given processor are
stored in consecutive format on the disks, we can read the
messages received by a virtual processor using D disks in
parallel for every I/O operation. Except possibly for the last,
each parallel read performed by the simulation of proces-
sor vj will obtainD message blocks. By staggering the first
message blocks for consecutive virtual processors across the
disks, we can achieve fully parallel writes to the disks.

The scheme just described requires two copies of the
messaging matrix because the messages generated by virtual
processor i in compound superstep k must be stored on disk
before virtual processor i+1 can process the messages gen-
erated for it in compound superstep k � 1.

We can avoid this extra space requirement, however, as
follows.

Observation 2 By alternating between fconsecutive
reads, staggered writesg and fstaggered reads, consecutive
writesg in successive compound supersteps, the simulation
can achieve fully parallel I/O on all message blocks with a
single copy of the messaging matrix.

We now begin with the proof of Lemma 3.

Algorithm SeqCompoundSuperstep loads each virtual
processor into the real memory, requiring that M � �.
Since the messages sent or received in a superstep by a vir-
tual processor are h = �(N

v
) in total size, we require that

N
vB

= 
(D) to ensure that our I/O scheme for messages is
efficient. This means that D = O( N

vB
).

Disk Space: The disk space needed by the simulation is the
total context size v�, which includes space for messages.
At most one track is wasted for each virtual processor. The
space used on each disk is O( v�

DB
), since N

v
= 
(DB).

Computation Time: Steps (a) and (e) of algorithm Seq-
CompoundSuperstep require computation time O(v�).
In Steps (b) and (d), O(N

v
) message data is routed for each

virtual processor. Over all v processors, this adds O(N)
computation time overall, which can be ignored. Step (c)
consumes v� computation time.
I/O Time: Steps (a) and (e) consume O(G v�

DB
) time, and

steps (b) and (d) consume O(G N
DB

) time. Since O(N=p)
message data is sent in each superstep, and N=p � � we
have time O(G v�

DB
) due to I/O overall.

Thus, overall, the computation time is v� + O(v�) and
the I/O-time is O(G v�

DB
).

This concludes the proof of Lemma 3.

Theorem 2 A v processor CGM algorithm A with � super-
steps, local memory size �, running time �+g �O(N

v
)+�L,

and message size �(N
v2
) can be simulated as a single pro-

cessor EM-CGM algorithm A0 with time v� + O(�v�) +
G� � O( v�

DB
) for M = �(�), B = O(N

v2
), and N =


(vDB). In particular, algorithm A0 is c-optimal if A is
c-optimal, � = !(��) and G = DB � o( �

��
). Further-

more, algorithm A0 is work-optimal and I/O-efficient if A is
work-optimal and communication-efficient,� = 
(��) and
G = DB � O( �

��
).

Proof Sketch. We use the results of Lemma 3. The com-
putation time required to simulate the computation steps of
A is v�. The computational overhead associated with the
I/O steps (Steps (a),(b),(d),(e)) is O(�v�) +O(�N). Since
v� > N the total computation time is bounded by v� +
O(�v�). When c-optimality is required, we therefore need
�v� = o(v�), or � = !(��). Note that when � = �(N

v
),

we can substitute � = !(�N
v
) for � = !(��). For work-

optimality, we require that �v� = O(v�), or � = 
(��).
The I/O time (Steps (a),(b),(d),(e)) is G � [O(� v�

DB
) +

O(�N
D
)], which is bounded by G � O(� v�

DB
). For c-

optimality, we require the I/O time to be in o(v�), which
means that G = DB � o( �

��
). For I/O-efficiency, we re-

quire the I/O time to be in O(v�), which means that G =

DB � O( �

��
). 2

3 Multiple Processor Target Machine

For the case of p � 1 processors on the EM-CGM
machine we simulate a compound superstep of a CGM al-
gorithm A using the algorithm ParCompoundSuperstep,
shown below. Unlike in the case of a single real processor,
we are now forced to perform real communication between
the real processors of the target machine. Each real proces-
sor i, 0 � i � p � 1, executes algorithm ParCompound-
Superstep in parallel. For ease of exposition, we assume
that p divides v.

Algorithm 3 : ParCompoundSuperstep
Objective: Simulation of a compound superstep of a v-
processor CGM on a p-processor EM-CGM.
Input: The message and context blocks of the virtual pro-
cessors are divided among the real processors and their local
disks. Each real processor i, 0 � i � (p� 1) holds O( N

pB
)

blocks of messages and v�

pB
blocks of context, and each lo-

cal disk containsO( N
pDB

) blocks of messages and O( v�

pDB
)

blocks of context.
Output: The changed contexts and generated messages dis-
tributed as required for the next compound superstep.



For j = 0 to v
p
� 1 do

(a) Read the context for virtual processor v
p
i+ j from the

local disks.

(b) Read any message blocks addressed to virtual proces-
sor v

p
i+ j from the local disks.

(c) Simulate the computation supersteps of virtual proces-
sor v

p
i+j, collecting all generated messages in the local

internal memory.

(d) Send all generated messages to the required (real) des-
tination processor. Upon arrival, the messages are ar-
ranged within the internal memory of the real destina-
tion processor and then written to its disks as in the sin-
gle processor simulation; see Algorithm 2.

(d) Write the contexts for virtual processor v
p
i+ j back to

the local disks; see Algorithm 2.

Lemma 4 A compound superstep of a v-processor CGM al-
gorithm A with computation time � + L, communication
time g �O(N

v
) +L, message size �(N

v2
), and local memory

size � can be simulated as v
p

compound supersteps of a p-
processor EM-CGM algorithm A0 in parallel computation
time v

p
�+O( v

p
�)+ v

p
L and I/O time G �O(G � v

p

�

DB
)+ v

p
L,

for p � v, N = 
(vDB), and B = O( N
v2
).

Proof. We have p � v real processors, so the time to sim-
ulate Step (c) is v

p
� . Computational overhead is contributed

by v
p
(O(�) + O(N

p
)), due to swapping of contexts (Steps

(a),(d)) and messaging I/O (Steps (b),(d)). As before, the
computational overhead is dominated by the cost of swap-
ping contexts. The original compound superstep is replaced
by v

p
compound supersteps on the target machine.

The I/O time is determined by the cost of swapping con-
texts plus the cost of simulating the original messaging via
I/O. These costs are G � v

p

�

DB
and G � v

p
O( N

vD
) respectively,

and the total is dominated by G � v
p

�

DB
. 2

Theorem 3 A v processor CGM algorithm A with � su-
persteps, computation time � + �L, communication time
g�+�L, local memory size �, and message size �(N

v2
) can

be simulated as a p-processor EM-CGM algorithm A0 with
computation time v

p
(� + O(��)) + v

p
�L, communication

time v
p
g� + v

p
�L, and I/O time v

p
G � O(� �

DB
) + v

p
�L for

M = �(�), p � v, N = 
(vDB), and B = O(N
v2
).

Let g(N),L(N), and v(N) be increasing functions of N . If
A is c-optimal on the CGM for g � g(N), L � L(N)
and v � v(N), then A0 is a c-optimal EM-CGM algo-
rithm for � = !(��), g � g(N), G = BD � o( �

��
) and

L � L(N)� p
v

. A0 is work-optimal, communication-efficient,
and I/O-efficient if A is work-optimal and communication-
efficient, � = 
(��), g � g(N), G = BD � O( �

��
), and

L � L(N) � p
v

.

Proof Sketch. We use the results of Lemma 4. The compu-
tation time required to simulate the computation steps of A
is v

p
�. The computational overhead associated with the I/O

and communication steps (Steps (a),(b),(d),(e)) is O( v
p
��)+

O( v
p
�N
v
). Since � � N

v
, the total computation time is

bounded by v
p
� +O( v

p
��). When c-optimality is required,

we need � = !(��). Note that in many cases N
v
= �(�).

Also, when only work-optimality is required, � = 
(��)
suffices.

The I/O time (Steps (a),(b),(d),(e)) is G � [O(� v�

DB
) +

O(� N
DB

)], which is bounded by v
p
G � O(� �

DB
). For c-

optimality, we require the I/O time to be in o( v
p
�), which

means that G = DB � o( �
��

). For I/O-efficiency we need

only that G = DB �O( �

��
). Since the number of supersteps

increases by a factor of v
p

we require that L � L(N) � p
v

. 2

4 Conclusions and Future Work

The key result of this paper is a deterministic simulation
theorem, that maps algorithms for coarse grained parallel
computing models to external memory algorithms for the
parallel disk model with multiple processors. As a corol-
lary we obtain external memory algorithms for a spectrum
of problems, and all of these algorithms are scalable in terms
of the number of disks and processors.

Our recent work involves replacing Algorithm 1 by an-
other algorithm for achieving fixed size messages in such a
way that the slackness condition for the parallel algorithm
improves to N � v1+�B, where � is a constant, 0 < � � 1.
Moreover this provides a better bound for N : M � N �
M

1+ 1
�

B
1
�

. However, the number of supersteps increases by a

factor of at most 1
�2

.
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