
A NOTE ON COARSE GRAINED
PARALLEL INTEGER SORTING

A. Chan and F. Dehne
School of Computer Science

Carleton University

Ottawa, Canada K1S 5B6�

{achan,dehne}@scs.carleton.ca

Abstract We observe that for n=p � p, which is usually the case in practice, there exists
a very simple, deterministic, optimal coarse grained parallel integer sorting
algorithm with 24 communication rounds (6 n

p
-relations and 18 p-relations),

O(n=p) memory per processor and O(n=p) local computation. Experimental
data indicates that the algorithm has very good performance in practice.

Keywords: BSP, coarse grained parallel algorithms, integer sorting.

26.1 INTRODUCTION

Goodrich [4] presented a deterministic sorting algorithm for the BSP [5]
and closely related CGM model [2, 3]. Given O(n) data items stored on a
p processor BSP/CGM, O(n=p) data items per processor, these items can be
sorted in O(log n

log(h+1)
) communication rounds (h-relations), for h = �(n=p),

with O(n log n
p

) local computation, using O(n=p) memory per processor. For

n=p � p
�, � > 0, O(log n

log(h+1)
) = O(1). That is, for this case, the algorithm

requires O(1) communication rounds.
We are interested in the problem of sorting O(n) integers in the range

1; : : : ; nc, for fixed constant c, stored on a p processor BSP/CGM, n=p data
items per processor. The sort algorithm in [4] is based on Cole’s merge sort
[1]. The O(n log n

p
) local computation in [4] is due to a constant number of local

�Research partially funded by the Natural Sciences and Engineering Research Council of Canada.

261

F D
A. Chan and F. Dehne, "A note on coarse grained parallel integer sorting," in Proc. 13th Annual International Symposium on High Performance Computers (HPCS'99), Kingston, Canada, 1999, pp. 261-267.

262 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

sorts. Hence, by applying radix sort for the integer case, it is easy to obtain
O(n=p) local computation without increasing the number of communication
rounds.

In this paper we observe that for n=p � p, which is usually the case in prac-
tice, there exists a very simple, deterministic, optimal BSP/CGM integer sorting
algorithm with 24 communication rounds (6 n

p
-relations and 18 p-relations),

O(n=p) memory per processor and O(n=p) local computation. Experimental
data indicates that the algorithm has very good performance in practice.

26.2 THE ALGORITHM

We first present a BSP/CGM integer sorting algorithm for n

p
� p

2, which
serves as our base case, and then extend it to the casen

p
� p. The integer sorting

algorithm for n

p
� p

2, described next, follows the well known deterministic
sample sort method combined with radix sort for the sequential sorting steps.
We are making the algorithm descriptions fairly detailed in order to allow an
analysis that includes estimates of constant factors.

Algorithms 1: Sorting n integers on a p processors BSP/CGM with n

p
� p

2.
Input: n integers in the range 1; : : : ; O(nc), for fixed constant c, stored on
a p processor BSP/CGM, n=p integers per processor. n

p
� p

2. Output: The
integers are permuted into sorted order.

1. Each processor sorts locally its n=p integers, using radix sort.

2. Each processor selects from its locally sorted integers a sample of p
integers with ranks i

n

p2
, 0 � i � p � 1. We refer to these selected

integers as local samples. All local samples are sent to processor P1.
(Note that P1 is to receive in total p2 integers. This is possible since
n

p
� p

2.)

3. P1 sorts the p
2 local samples received in Step 2 (using radix sort) and

selects a sample of p integers with ranks ip, 0 � i � p� 1. We refer to
these selected integers as the global samples. The p global samples are
then broadcast to all processors.

4. Based on the received global samples, each processorPi partitions itsn=p
integers into p buckets Bi;1; : : : ; Bi;p where Bi;j are the local integers
with value between the (j � 1)-th and j-th global sample.

5. In one (combined) h-relation, every processor Pi, 1 � i � p, sends Bi;j

to processor Pj , 1 � j � p. Let Rj be the set of integers received by
processor Pj , 1 � j � p, and let ri = jRij.

6. Every processor Pi, 1 � i � p, locally sorts Ri using radix sort.

Coarse Grained Parallel Integer Sorting 263

7. A global “balancing shift” operation which distributes all integers evenly
among the processors without changing their order is performed as fol-
lows: Every processor Pi, 1 � i � p, sends ri to P1. Processor P1
calculates for each Pj an array Aj of p numbers indicating how many
of its integers have to be moved to the respective processors. In one
h-relation, every Aj is sent to Pj , 1 � i � p. The “balancing shift”
is then performed in a subsequent single h-relation according to the Aj
values.

— end of Algorithm —

Theorem 1 Algorithm 1 sorts n integers in the range 1; : : : ; O(nc), for fixed
constant c, stored on a p processor BSP/CGM, n=p integers per processor,
n

p
� p

2, using 6 communication rounds (2 n

p
-relations and 4 p

2-relations),
O(n

p
) local memory per processor, and O(n

p
) local computation.

Proof. Correctness: The algorithm follows the well known deterministic
sample sort method combined with radix sort for the sequential sorting steps.
Let Si;j be the set of integers on Pi, at the end of Step 1, with rank between j n

p2

and (j + 1) n

p2
, 0 � j � p� 1. The main observation is that each Rk contains

at most 3p sets Si;j .
Complexity: The local memory and local computation are bounded by the
sequential local radix sorts. For the communication, we observe that Steps 2
and 3 require one p2-relation, each, Step 5 requires one n

p
-relation, and Step 7

requires two p2-relations and one n

p
-relation. 2

We now describe the algorithm for the case n

p
� p. The basic idea is

to partition the p processors into
p
p groups G1; : : : ; G

p
p of

p
p processors,

each. The main operation consists of permuting the integers such that all
integers stored in Gi are smaller than all integers stored in Gj for all i < j.
We can then apply Algorithm 1 to each group. Again, we are making the
description of Algorithm 2 fairly detailed in order to allow an analysis that
includes estimates of constant factors.

Algorithms 2: Sorting n integers on a p processors machine when n

p
� p.

Input: n integers in the range 1; : : : ; nc, for fixed constant c, stored on a
p processor BSP/CGM, n=p integers per processor. n

p
� p. Output: The

integers are permuted into sorted order.

1. Group the p processors into
p
p groups G1; : : : ; G

p
p of

p
p processors,

each. For each group, apply Algorithm 1 to sort the integers within the
group.

264 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

2. Each processor sends its smallest integer to processor P1. We will refer
to these items as the local minima. (Note that P1 is to receive p local
minima in total, and that this is possible since n

p
� p.)

3. P1 sequentially sorts all local minima and selects the
p
p integers with

rank i
p
p, 0 � i � p

p, referred to as global splitters. These
p
p global

splitters are broadcast to all processors (using 2 p-relations).

4. Based on the received global splitters, each processor Pi partitions its
n=p integers into

p
p buckets B

0
i;1; : : : ; B

0
i;
p
p

where B
0
i;j

contains the

local integers with value between the (j � 1)-th and j-th global splitter.

5. Every processor Pi, 1 � i � p, sends B0
i;j

to a processor in group Gj ,
1 � j � p

p. Let R0
j

be the set of integers received by processors in
group Gj , 1 � j � p

p, and let r0
j
= jR0

j
j. The routing schedule for

this operation is determined as follows: First, within each group Gi the
size, ti;j , of each integer set sent to group Gj , 1 � j � p

p, is computed.
All ti;j , 1 � i; j � p

p, are sent to one leading processor per group.
Furthermore, within each group, the sizes of all B0

i;j
are also sent to the

leading processor. Each leading processor can then compute a routing
schedule for its group and broadcast it to the processors in its group.

6. Each group Gj , 1 � j � p
p, sorts R0

j
using Algorithm 1.

7. A global “balancing shift” operation which distributes all integers
evenly among the processors without changing their order is performed
analogous to Step 6 of Algorithm 1 but with a “two phase” scheme
analogous to the routing schedule computation in Step 5 of Algorithm 2.

— end of Algorithm —

Theorem 2 Algorithm 2 sorts n integers in the range 1; : : : ; nc, for fixed
constant c, stored on a p processor BSP/CGM, n=p integers per processor,
n

p
� p, using 24 communication rounds (6 n

p
-relations and 18 p-relations),

O(n
p
) local memory per processor, and O(n

p
) local computation.

Proof. Correctness: For each group Gi of processors, we have n
0 = np

p

integers and p
0 =

p
p processors. Therefore, n

0

p0
=

n=
p
pp

p
= n

p
� p = p

02, and

Algorithm 1 is applicable for each group. Let S0
i

be the set of integers stored at
Pi after Step 1. The second main observation is that each R

0
j

contains at most
3
p
p sets S0

i
.

Complexity: The local memory and local computation are bounded by the
sequential local radix sorts. For the communication, we observe that Step 1

Coarse Grained Parallel Integer Sorting 265

Figure 26.1 Computation Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

requires 2 n

p
-relations and 4 p-relations, Step 2 requires 1 p-relation, Step 3

requires 2 p-relations, Step 5 requires 1 n

p
-relation and 3 p-relations, Step 6

requires 2 n

p
-relations and 4 p-relations, and Step 7 requires 1 n

p
-relations and

3 p-relations. 2

26.3 IMPLEMENTATION AND EXPERIMENTS

We have implemented Algorithm 1 in MPI and tested it on a multiprocessor
Pentium platform running LINUX. The communication between the processors
is performed through an Ethernet switch.

It is interesting to observe that, even on this low cost architecture, our al-
gorithm shows good performance. Figures 26.1, 26.2, and 26.3 show the
computation, communication, and total times (in seconds), respectively, for
different numbers of data items. The three curves in each figure represent
configurations of 2, 4, and 8 processors, respectively. As expected, the com-
munication times are fairly similar. The computation times and total running
times are almost linear, and we observe close to linear speedup. Note that,
linear speedup is archived even with a reasonably small workload. (Many
algorithms achive linear speedups only for very high workloads.)

In summary, we observe that the algorithm shows very good performance in
practice.

266 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Figure 26.2 Communication Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

Figure 26.3 Total Running Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

Coarse Grained Parallel Integer Sorting 267

26.4 CONCLUSION

We have described a very simple, deterministic, optimal BSP/CGM integer
sorting algorithm that assumes n=p � p, which is usually the case in practice.
Our algorithm description is fairly detailed in order to allow an analysis that
includes estimates of constant factors. The algorithm requires 24 communica-
tion rounds (6 n

p
-relations and 18 p-relations), O(n=p) memory per processor

and O(n=p) local computation. For theoretical interest, it is easy to see that the
algorithm can be generalized to run with O(1=�) rounds for n=p � p

�, � > 0.
Experimental data indicates that the algorithm has very good performance in
practice.

References

[1] R. Cole, “Parallel merge sort,” SIAM J. Comput., 17(4), pp. 770–785, 1988.

[2] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable Parallel Geometric
Algorithms for Coarse Grained Multicomputers,” in Proc. ACM 9th Annual
Computational Geometry, pp. 298–307, 1993

[3] F. Dehne, X. Deng, P. Dymond, A. Fabri and A.A. Kokhar, “A randomized
parallel 3D convex hull algorithm for coarse grained parallel multicom-
puters”, in Proc. ACM Symp. on Parallel Algorithms and Architectures,
1995.

[4] M.T. Goodrich, “Communication Efficient Parallel Sorting”, in Proc. 28th
Annual ACM Symp. on Theory of Computing (STOC’96), 1996.

[5] L.G. Valiant, “A Bridging Model for Parallel Computation.” Communica-
tions of the ACM, Vol. 33, pp. 103–111, 1990.

