A NOTE ON COARSE GRAINED
PARALLEL INTEGER SORTING

A. Chan and F. Dehne
School of Computer Science
Carleton University

Ottawa, Canada K1S5B6*

{ achan,dehne} @scs.carleton.ca

Abstract We observe that for n/p > p, which isusualy the case in practice, there exists
a very simple, deterministic, optimal coarse grained paralel integer sorting
algorithm with 24 communication rounds (6 Z-relations and 18 p-relations),
O(n/p) memory per processor and O(n/p) local computation. Experimental
data indicates that the algorithm has very good performance in practice.

Keywords: BSP, coarse grained parallel agorithms, integer sorting.

26.1 INTRODUCTION

Goodrich [4] presented a deterministic sorting algorithm for the BSP [5]
and closely related CGM model [2, 3]. Given O(n) data items stored on a
p processor BSP/CGM, O(n/p) data items per processor, these items can be

sorted in O(bé‘{%) communication rounds (h-relations), for h = ©(n/p),

with O(“%2) Jocal computation, using O(n/p) memory per processor. For

n/p > pf, e > 0, O(50#5) = O(1). That is, for this case, the algorithm
requires O(1) communication rounds.

We are interested in the problem of sorting O(n) integers in the range
1,...,n¢ for fixed constant ¢, stored on a p processor BSP/ICGM, n/p data
items per processor. The sort algorithm in [4] is based on Cole’'s merge sort

[1]. TheO(”l‘;,#) local computation in [4] isdueto aconstant number of local

*Research partially funded by the Natural Sciences and Engineering Research Council of Canada.
261

A. Chan and F. Dehne, "A note on coarse grained parallel integer sorting," in Proc. 13th Annual International
Symposium on High Performance Computers (HPCS'99), Kingston, Canada, 1999, pp. 261-267.

F D
A. Chan and F. Dehne, "A note on coarse grained parallel integer sorting," in Proc. 13th Annual International Symposium on High Performance Computers (HPCS'99), Kingston, Canada, 1999, pp. 261-267.

262 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

sorts. Hence, by applying radix sort for the integer case, it is easy to obtain
O(n/p) local computation without increasing the number of communication
rounds.

In this paper we observe that for n/p > p, whichisusually the casein prac-
tice, thereexistsavery simple, deterministic, optimal BSP/CGM integer sorting
agorithm with 24 communication rounds (6 %—relati ons and 18 p-relations),
O(n/p) memory per processor and O(n/p) local computation. Experimental
data indicates that the algorithm has very good performance in practice.

26.2 THE ALGORITHM

We first present a BSP/CGM integer sorting agorithm for% > p?, which
servesasour base case, and then extend it to thecase% > p. Theinteger sorting

algorithm for 2 > p?, described next, follows the well known deterministic
sample sort method combined with radix sort for the sequential sorting steps.
We are making the algorithm descriptions fairly detailed in order to allow an
analysis that includes estimates of constant factors.

Algorithms 1. Sorting n integers on a p processors BSP/ICGM with% > p2.
Input: n integersintherange 1,...,0(n), for fixed constant ¢, stored on
ap processor BSP/CGM, n/p integers per processor. % > p2. Output: The
integers are permuted into sorted order.

1. Each processor sortslocally itsn/p integers, using radix sort.

2. Each processor selects from its locally sorted integers a sample of p
integers with ranks i%, 0 <i<p-—1. Werefer to these selected
integers as local samples. All local samples are sent to processor R.
(Note that P, is to receive in total p? integers. This is possible since

n 2
5 >p7)

3. P, sorts the p? local samples received in Step 2 (using radix sort) and
selects asample of p integers with ranksip, 0 < ¢ < p — 1. Werefer to
these selected integers as the global samples. The p global samples are
then broadcast to all processors.

4. Based onthereceived global samples, each processor partitionsitsn /p
integers into p buckets B; 1, ... , B;, where B; ; are the loca integers
with value between the (j — 1)-th and j-th global sample.

5. In one (combined) h-relation, every processor 17,1 < i < p, sends B; ;
to processor P;, 1 < j < p. Let R; be the set of integers received by
processor P;, 1 < j < p,andletr; = |R;|.

6. Every processor P, 1 < i < p, localy sorts R; using radix sort.

Coarse Grained Parallel Integer Sorting 263

7. A global “balancing shift” operation which distributes all integers evenly
among the processors without changing their order is performed as fol-
lows. Every processor F, 1 < i < p, sends r; to P;. Processor P,
calculates for each P; an array A; of p numbers indicating how many
of its integers have to be moved to the respective processors. In one
h-relation, every A; issent to P;, 1 < i < p. The “baancing shift”
is then performed in a subsequent single h-relation according to the 4
values.

— end of Algorithm —

Theorem 1 Algorithm 1 sorts n integersintherange 1, ... , O(rf), for fixed
constant ¢, stored on a p processor BSP/CGM, n/p integers per processor,
% > p?, using 6 communication rounds (2 %-relations and 4 p?-relations),
O(3;) local memory per processor, and O(%) local computation.

Proof. Correctness: The agorithm follows the well known deterministic
sample sort method combined with radix sort for the sequential sorting steps.
Let S; ; bethe set of integerson £, at the end of Step 1, with rank between jz%

and (j + 1)]%, 0 < j < p—1. Themain observation is that each R;, contains
at most 3p sets S; ;.

Complexity: The local memory and local computation are bounded by the
sequential local radix sorts. For the communication, we observe that Steps 2
and 3 require one p?-relation, each, Step 5 requires one%-rel ation, and Step 7
requires two p?-relations and one %—rel ation. a

We now describe the algorithm for the case% > p. The basic idea is
to partition the p processors into \/p groups G, ... , G, 5 of \/p processors,
each. The main operation consists of permuting the integers such that all
integers stored in G; are smaller than all integers stored in G; for al i < j.
We can then apply Algorithm 1 to each group. Again, we are making the
description of Algorithm 2 fairly detailed in order to allow an analysis that
includes estimates of constant factors.

Algorithms 2: Sorting n integers on a p processors machine when > p.
Input: n integers in the range 1, ... ,n¢ for fixed constant ¢, stored on a
p processor BSP/CGM, n/p integers per processor. % > p. Output: The
integers are permuted into sorted order.

1. Group the p processors into /p groups G, ... , G ; of /p processors,
each. For each group, apply Algorithm 1 to sort the integers within the
group.

264 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

2. Each processor sends its smallest integer to processor . We will refer
to these items as the local minima. (Note that B is to receive p local
minimain total, and that thisis possible since% >p.)

3. Py sequentialy sorts al local minima and selects the, /p integers with
rank ,/p, 0 < i < \/p, referred to as global splitters. These,/p globa
splitters are broadcast to al processors (using 2 p-relations).

4. Based on the received global splitters, each processor R partitions its
n/p integers into ,/p buckets B; |, . .. sz",\/ﬁ where B; ; contains the
local integers with value between the (; — 1)-th and j-th global splitter.

5. Every processor P2, 1 < i < p, sends B; ; to a processor in group Gj,
1 <5< p Let R;- be the set of integers received by processors in
group G, 1 < j < /p, and let ; = |R}|. The routing schedule for
this operation is determined as follows. First, within each group G the
size, t; ;, of eachinteger set sentto group Gj, 1 < j < ,/p, iscomputed.
All t;;,1 <i,5 < /p, are sent to one leading processor per group.
Furthermore, within each group, the sizes of all Ew- are also sent to the
leading processor. Each leading processor can then compute a routing
schedule for its group and broadcast it to the processors in its group.

6. Eachgroup Gy, 1 < j < \/p, sorts R using Algorithm 1.

7. A global “balancing shift” operation which distributes all integers
evenly among the processors without changing their order is performed
analogous to Step 6 of Algorithm 1 but with a “two phase” scheme
analogous to the routing schedule computation in Step 5 of Algorithm 2.

— end of Algorithm —

Theorem 2 Algorithm 2 sorts n integers in the range 1,... ,rf, for fixed
constant ¢, stored on a p processor BSP/CGM, n/p integers per processor,
% > p, using 24 communication rounds (6 %-relations and 18 p-relations),
O(%) local memory per processor, and O(%) local computation.

Proof. Correctness. For each group G; of processors, we have n’ = L

integers and p' = /p processors. Therefore, Z—f = "YP = n >p=p
Algorithm 1isapplicable for each group. Let g bethe set of integers stored at
P, after Step 1. The second main observation is that each @ contains at most
3,/ SEts S;.

Complexity: The local memory and local computation are bounded by the
sequential local radix sorts. For the communication, we observe that Step 1

Coarse Grained Parallel Integer Sorting 265

Computation Time

3.000
2 500 T
2000
-2
1500 4

1000 / o 8
0500 / el
0.000 4 &Cff’i

a 100000 200000 300000 400000 S00000 s00000

Figure 26.1 Computation Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

requires 2 %-relations and 4 p-relations, Step 2 requires 1 p-relation, Step 3
requires 2 p-relations, Step 5 requires 1 %-relation and 3 p-relations, Step 6
requires 2 %—rel ations and 4 p-relations, and Step 7 requires 1%—re|ati ons and

3 p-relations. O

26.3 IMPLEMENTATION AND EXPERIMENTS

We have implemented Algorithm 1 in MPI and tested it on a multiprocessor
Pentium platform running LINUX. The communication between the processors
is performed through an Ethernet switch.

It is interesting to observe that, even on this low cost architecture, our al-
gorithm shows good performance. Figures 26.1, 26.2, and 26.3 show the
computation, communication, and total times (in seconds), respectively, for
different numbers of data items. The three curves in each figure represent
configurations of 2, 4, and 8 processors, respectively. As expected, the com-
munication times are fairly similar. The computation times and total running
times are amost linear, and we observe close to linear speedup. Note that,
linear speedup is archived even with a reasonably small workload. (Many
algorithms achive linear speedups only for very high workloads.)

In summary, we observe that the algorithm shows very good performancein
practice.

266 HIGH PERFORMANCE COMPUTING SYMPOSIUM 1999

Computation Time

3.000
2500 Caad
2000

-2
1500 |

1000 / ~ 8
0.500 / el
0.000 -&‘:”;i

1l 100000 200000 300000 400000 500000 s00000

Figure 26.2 Communication Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

Computation Time

3000
2500 o
2000

2
1500 4

1000 // ~ 8
0500 //]
0.000 -d‘dj

1l 100000 200000 300000 400000 500000 s00000

Figure 26.3 Total Running Times (In Seconds) For Different Numbers Of Data Items. The
Three Curves Represent Configurations Of 2, 4, And 8 Processors, Respectively.

Coarse Grained Parallel Integer Sorting 267

26.4 CONCLUSION

We have described avery simple, deterministic, optimal BSP/CGM integer
sorting algorithm that assumes n/p > p, which is usually the case in practice.
Our agorithm description is fairly detailed in order to allow an analysis that
includes estimates of constant factors. The algorithm requires 24 communica
tion rounds (6 %—relati ons and 18 p-relations), O(n/p) memory per processor
and O(n/p) local computation. For theoretical interest, it iseasy to seethat the
agorithm can be generalized to run with O(1/¢) rounds for n/p > 5, € > 0.
Experimental data indicates that the algorithm has very good performance in
practice.

References

[1] R.Cole, “Pardlel mergesort,” SIAM J. Comput., 17(4), pp. 770-785, 1988.

[2] F. Dehne, A. Fabri, and A. Rau-Chaplin, “Scalable Parallel Geometric
Algorithmsfor Coarse Grained Multicomputers,” in Proc. ACM 9th Annual
Computational Geometry, pp. 298-307, 1993

[3] F. Dehne, X. Deng, P. Dymond, A. Fabri and A.A. Kokhar, “A randomized
paralel 3D convex hull algorithm for coarse grained parallel multicom-
puters’, in Proc. ACM Symp. on Parallel Algorithms and Architectures,
1995.

[4] M.T. Goodrich, “Communication Efficient Parallel Sorting”, in Proc. 28th
Annua ACM Symp. on Theory of Computing (STOC’ 96), 1996.

[5] L.G. Vdliant, “A Bridging Model for Parallel Computation.” Communica-
tions of the ACM, Vol. 33, pp. 103-111, 1990.

