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Abstract We present a coarse grained parallel

algorithm for planarity testing and planar embed-

ding. The algorithm requires O(log2 p) communica-

tion rounds and linear sequential work per round. It

assumes that the local memory per processor, N=p,

is larger than p� for some �xed � > 0. This as-

sumption is true for all commercially available mul-

tiprocessors. Our result implies a BSP algorithm

with O(log2 p) supersteps, O(g log2(p)N
p
) commu-

nication, and O(log2(p)N
p
) local computation. Our

algorithm is based on the general structure of a

previous PRAM method presented by Klein, using

a parallel implementation of PQ-trees. The main

contribution of this paper lies in the study of many

of the individual PRAM steps that are very inef-

�cient on existing commercial parallel machines.

We present non-trivial, eÆcient, CGM implemen-

tations of the various parts of the overall strategy

proposed by Klein. Our main result is a parallel pla-

narity testing algorithm which is much more prac-

tical and eÆcient on commercially available multi-

processors.
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1 Introduction

In this paper, we consider the problem of de-

tecting whether a graph G is planar and, if so,

reporting a planar embedding of G.

The �rst sequential linear-time algorithm for

planarity testing and planar embedding was

presented by Hopcroft and Tarjan [7]. Booth

and Lueker [1] described another linear time

algorithm which is based on a previous ver-

sion by Lempel, Even and Cederbaum [12] but

uses PQ-trees and st-numbering. J�aJ�a and Si-

mon [8] showed that the problem is in NC.

Using [1, 12], Klein and Reif [11] presented

an eÆcient PRAM algorithm which requires

O(log2 n) time using a linear number of pro-

cessors. Using open ear decomposition and st-

numbering, Ramachandran and Reif [15] pre-

sented a PRAM algorithm with linear work.

Unfortunately, theoretical results from

PRAM algorithms do not necessarily match

the speedups observed on real parallel ma-

chines. In this paper, we present a parallel

planarity testing and planar embedding algo-

rithm that is based on a more practical paral-

lel model. More precisely, we will use a ver-

sion of the BSP model [16] referred to as the

Coarse Grained Multicomputer (CGM) model.

In comparison to the BSP model, the CGM

[4] allows only bulk messages in order to min-

imize message overhead. A CGM is com-

prised of a set of p processors P1; : : : ; Pp with
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O(N=p) local memory per processor and an

arbitrary communication network (or shared

memory). All algorithms consist of alternating

local computation and global communication

rounds. Each communication round consists of

routing a single h-relation with h = O(N=p),

i.e. each processor sends O(N=p) data and re-

ceives O(N=p) data. We require that all in-

formation sent from a given processor to an-

other processor in one communication round

is packed into one long message, thereby mini-

mizing the message overhead. A CGM compu-

tation/communication round corresponds to a

BSP superstep with communication cost gN=p

(plus the above \packing requirement"). Note

that every CGM algorithm is also a BSP algo-

rithm but not vice versa. Finding an optimal

algorithm in the coarse grained multicomputer

model is equivalent to minimizing the number

of communication rounds as well as the total

local computation time. The CGM model has

the advantage of producing results which cor-

respond much better to the actual performance

on commercially available parallel machines.

In this paper, we present a parallel CGM al-

gorithm for planarity testing and planar em-

bedding. The algorithm requires O(log2 p)

communication rounds and linear sequential

work per round. It assumes that the local

memory per processor, N=p, is larger than p�

for some �xed � > 0. This assumption is

true for all commercially available multipro-

cessors. Our result implies a BSP algorithm

with O(log2 p) supersteps, O(g log2(p)N
p
) com-

munication, and O(log2(p)N
p
) local computa-

tion. Our algorithm is based on the general

structure of the PRAM method in [9], using a

parallel implementation of PQ-trees. However,

many of the PRAM steps in [9] are very ineÆ-

cient on existing commercial parallel machines,

making the overall method in [9] impractical.

The main contribution of this paper lies in the

study of these individual steps and how they

can be implemented on a CGM. We present

non-trivial, eÆcient, CGM implementations of

the various parts of the overall strategy in [9].

Our main result is a parallel planarity testing

algorithm which is much more practical and ef-

�cient on commercially available multiproces-

sors.

2 Coarse-Grained Parallel

Graph ST-Numbering

Before we proceed with our planarity testing

algorithm, we require a parallel st-numbering

method for the CGM. An st-numbering of a

graph G with vertices 1, 2, : : :, n is a number-

ing of the vertices where the following is ver-

i�ed. Vertices 1 and n are adjacent and each

j of the other vertices is adjacent to two ver-

tices i and k such that i < j < k. Figure 1

shows an example (from [14]) of a graph and

an st-numbering.
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Figure 1: An st-numbered Graph

We observe that a parallel st-numbering

method can be obtained by combining the

CGM graph algorithms of [3] and the PRAM

algorithm by Maon, Schieber and Vishkin [13].

We now give a brief outline of the method.

Let G = (V;E) be a graph with an open ear

decomposition G = [P0; P1; : : : ; Pl] such that

P0 = (s; t) and the endpoints L(Pi) and R(Pi)

of each Pi are in Pj and Pk where i > j � k �

0. The vertex in an ear Pi, i � 1, which is adja-

cent to L(Pi) (respectively R(Pi)), is denoted

by LS(Pi) (respectively RS(Pi)). The vertex

L(Pi) is called the anchor of Pi and if v 2 Pi,

v 6= L(Pi) and v 6= R(Pi), then v is called an

internal vertex.



Algorithm 1 Computing the st-Numbering

of a Graph [13]

Input: An open ear decomposition of graph

G = (V;E), G = [P0; P1; : : : ; Pl], where P0 =

(s; t).

Output: A valid st-numbering of graph G.

(1) Compute the ear tree ET (VT ; ET ) where

VT = fPijPi is an ear in Gg and ET =

f(Pi; Pj)j L(Pi) is an internal vertex of

Pj ; i � 1g.

(2) Compute an orientation of the ears of G.

(3) Compute the st-numbering of the ears of

G.

| End of Algorithm |

To implement Step 1, we apply the CGM

open ear decomposition method in [3]. The

adjacency lists of graph ET is constructed us-

ing CGM integer sorting [5]. Step 2 uses a

hinge tree. Finding the hinges reduces to l

lowest common ancestor computations in ET ,

using [3]. Step 3 uses a numbering tree NT

and computation of a preorder numbering of

NT . (Many of the details can be seen in [13].)

The construction of NT can be done in O(p)

rounds. The preorder numbering can be done

using using Euler Tour technique for comput-

ing tree functions [3].

Thus the CGM st-numbering algorithm can

be done in O(log p) communication rounds and

linear work per round since it is based on [3]

(O(log p) rounds) and [5] (constant number

of rounds) and both require linear work per

round.

3 Coarse-Grained Parallel

Graph Planarity Testing

In this section, we present the main result of

this paper, a coarse-grained parallel algorithm

for graph planarity testing. In the following,

we �rst give an outline of the main structure

of the algorithm and then detail how to im-

plement the main steps on a CGM within the

claimed time bounds.

Planarity testing using PQ-trees is very well

described in [14]. The PRAM algorithms for

planarity testing of [11] are also based on the

PQ-tree data structure. Before we present our

CGM algorithm, we give some idea.

A PQ-tree is a data structure suitable to

represent a set of permutations on a ground set

S [1]. Its internal nodes are called P -nodes and

Q-nodes which are represented by circles and

rectangles, respectively. The leaves are from

the ground set S. The tree is ordered, i.e. the

order of the children of a node is relevant. The

children of a P -node can be reordered arbitrar-

ily. The children of a Q-node can be reversed

or 
ipped.
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Figure 2: PQ-trees Representing Several Per-

mutations of abcde

The order of the ground set in the PQ-tree,

from left to right, is called the frontier, which

is obviously a permutation of the ground set.

Figure 2(a) shows a PQ-tree whose frontier is

the permutation abcde. Figure 2(b) shows a re-

ordering of the P -node giving the permutation

bacde. If we perform also a Q-node 
ipping

we get the permutation of Figure 2(c). Notice

that in some permutations (for example (c)),

the leaves a and e are consecutive.

By using the permissible operations on a

PQ-tree T we can generate a set of permissi-

ble permutations, denoted by L(T ). A PQ-tree

T 0 is equivalent to T if it can be transformed

into T by a sequence of permissible transfor-

mations.

Given a set A � S, we say that � 2 L(T ) sat-

is�es A if all elements of A occur consecutively

in �. Given a reduction set fA1; : : : ; Akg of

subsets of S and a PQ-tree T , the reduce oper-

ation obtains a PQ-tree T 0 such that each per-

mutation in L(T 0) satis�es every Ai, 1 � i � k.

We can now illustrate how st-numbering and



PQ-trees can be used in planarity testing.

ConsiderG an st-numbered graph of vertices

in V = f1; 2; : : : ; ng (see example in Figure 1),

and Gk the subgraph induced by the vertex

set Vk = f1; : : : ; kg. The bush graph Bk is

formed by adding to Gk all edges, called virtual

edges, with one end in Vk and the other in V �

Vk. Such vertices in V � Vk are called virtual

vertices and are kept separate (so there may

be several virtual vertices with the same label)

and placed on the outer face, on a horizontal

line.

Bk can be represented by a PQ-tree. A P -

node represents a cut-vertex of Bk. A Q-node

represents a bi-connected component of Gk. A

leaf represents a virtual vertex of Bk. It can

be shown [14] that if Bk is any bush graph

of a planar graph G, then there exists a se-

quence of permutations and reversions so that

all the vertices labeled k + 1 occupy consecu-

tive positions on the horizontal line. Such per-

mutations and reversions consist of repeated

application of nine transformation rules called

template matchings to the PQ-trees [1].

Consider again graph G of Figure 1. Con-

sider Bk for k = 3, as shown in Figure 3(a).

Figures 3(b) shows the corresponding PQ-tree.

This tree is transformed so that all occurrences

of vertex 4 (i.e. k + 1) are consecutive. This is

possible for each Bk if G is planar. This consti-

tutes the main idea of the sequential planarity

algorithms [1, 12] which are based on vertex

addition.

The parallel PRAM algorithm [11] and the

proposed CGM algorithm use a divide-and-

conquer scheme, by combining or joining al-

ready embedded subgraphs into larger ones.

In the following description, we use the mul-

tiple disjoint reduction operation (MDReduce)

on a PQ-tree [2]. It performs the reduce oper-

ation for a set fA1; : : : ; Akg of subsets of S,

where the Ai are disjoint. We also use the

ROTATE(A,B,C) operation to make A[B and

B [ C contiguous (see Figure 5).

Algorithm 2 Graph Planarity Testing

Input: A graph G with n vertices and m =

O(n) edges.
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Figure 3: (a) B3 and (b) the Corresponding

PQ-tree where leaves 4 can be made consecu-

tive

Output: Test if G is planar and, if possible,

report a planar embedding of G.

(1) Compute the bi-connected components of

G as described in [3].

(2) Since a graph is planar if and only if all

its bi-connected components are planar,

we check each bi-connected components

for planarity. Small components with less

than (n
p
) vertices can be stored in a sin-

gle processor and can be tested by a se-

quential algorithm. For each larger com-

ponents with (n0 � n

p
) vertices, a group

of p0 = pn
0

n
processors is assigned to solve

the problem. For the remainder, the al-

gorithm only speci�es the steps for one

such group of processors that handles one

bi-connected component. To simplify ex-

position, we let again n refer to the size of

the component and p refer to the number

of processor assigned to that component.

(3) Compute the st-numbering of the bi-



connected component as outlined in Sec-

tion 2. Renumber all vertices according to

the st-numbering with s = 1 and t = n.

(4) Let G(0) = G. For i = 1 : : : k = O(log p)

repeat:

(4.1) Select a set of joinable nodes and

compute G(i) from G(i�1). See Al-

gorithm 3 for details.

(4.2) Consider a set of joinable nodes; see

Figure 4 for illustration and notation.

Let T (uj) be the PQ-tree that is ob-

tained from the previous iteration.

From Klein and Reif [11], Bj 6= ;

only for j = 1 and k. For each j =

1 � � � k, if Bj = ;, let T 0(uj) = T (uj).

If Bj 6= ; (i.e. j = 1 or k), ap-

ply MDReduce [2] to T (uj) with re-

spect to Ej and Bj, and a rotation

ROTATE(Ej ; Bj; Fj) as illustrated

in Figure 5. Call the resulting tree

T 0(uj). Finally for k = 0, apply

MDReduce [2] to T (u0) with respect

to E1; � � � ; Ek and call the resulting

tree T 0(u0).

(4.3) Join T 0(u1); � � � ; T
0(uk) with T 0(u0),

see Algorithm 3 for details.

(4.4) Apply MDReduce [2] to T 0(v) with

respect to out(v). If B1 6= ;, perform

a ROTATE(A;B1; Bk [ out(v)). If

Bk 6= ;, perform a ROTATE(A [

B1; Bk; out(v)). We call the resulting

tree T (v).

(5) If any of the resulting PQ-trees is a null

tree, STOP and report that G is not pla-

nar.

(6) If G(k) has more than O(n
p
) edges then

STOP and report that G is not planar.

(7) G(k) has O(n
p
) vertices and O(n

p
) edges.

Compress G(k) into a single processor and

apply a sequential planarity testing algo-

rithm to G(k). G is planar if and only

if G(k) is planar. A planar embedding of

G can be derived from the planar embed-

ding of G(k) and the PQ-trees derived in

Step 4 by a reverse processing of Steps 4.1

and 4.2.

| End of Algorithm |
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We now discuss the details of how to imple-

ment Step 4.1/4.3 on a CGM.

Algorithm 3 Details of Step 4.1/4.3 in Algo-

rithm 2.

(1) if i mod 4 = 1,

(1.1) For every nodes v other than s and t,

de�ne its parent p(v) as follows: p(v)

is the highest st-numbered neighbor

of v with st-number smaller than v.

Using [3], compute the spanning tree



T (v�1) of G(v�1) induced by the par-

ent pointers and, for each node v, the

distance of v to the root s of T (v�1).

Identify each node as either odd or

even based on its distance to s.

(1.2) Select a set of joinable nodes as fol-

lows: Contract all even nodes of

T (v�1) into their odd parents.

(2) if i mod 4 = 2,

(2.1) Re-use the spanning tree T (v�2) con-

structed in the previous stage (Note:

We only need the even-odd labeling

and parent pointers, and assume that

they ware stored with the nodes and

are available without re-computing

the spanning tree.)

(2.2) Select a set of joinable nodes as

follows: Contract all odd nodes of

T (v�1) into their even parents.

(3) if i mod 4 = 3,

(1.1) For every nodes v other than s and t,

de�ne its parent p(v) as follows: p(v)

is the lowest st-numbered neighbor

of v with st-number larger than v.

Using [3], compute the spanning tree

T (v�1) of G(v�1) induced by the par-

ent pointers and, for each node v, the

distance of v to the root t of T (v�1).

Identify each node as either odd or

even based on its distance to t.

(1.2) Select a set of joinable nodes as fol-

lows: Contract all even nodes of

T (v�1) into their odd parents.

(4) if i mod 4 = 0,

(2.1) Re-use the spanning tree T (v�2) con-

structed in the previous stage (Note:

We only need the even-odd labeling

and parent pointers, and assume that

they ware stored with the nodes and

are available without re-computing

the spanning tree.)

(2.2) Select a set of joinable nodes as

follows: Contract all odd nodes of

T (v�1) into their even parents.

| End of Algorithm |

We now discuss the details of how to imple-

ment Step 4.2 on a CGM. Note that a contin-

uous set E of nodes in a PQ- tree T is called

segregated if E = leaves(lcar(E)).

Algorithm 4 Details of Step 4.2 in Algo-

rithm 2.

Input: A set of k + 1 PQ-trees T0; T1; � � � Tk
with ground sets S0; S1 � � �Sk, respectively,

where S1 � � �Sk are disjoint. Assume for j =

1 � � � k that Ej = S0 \ Sj is non-empty and

contiguous in both T0 and Tj, and that Dj =

Sj � Ej is also non-empty and contiguous in

Tj.

Output: A PQ-tree representing the join of

T0 with T1; � � � Tk.

(1) For each PQ-trees T1; � � � Tk, segregate T0
and Tj with respect to Ej [2]. If jEj j = 1,

let T̂j = Tj and skip to Step 4.

(2) For each PQ-tree T1; � � � Tk, �nd two ele-

ments aj and bj of Ej that lie in di�erent

blocks of T0's partition of Ej and di�er-

ent blocks of Tj's partition of Ej . This

can be done by applying the pre�x sum

algorithm. We assume here that aj pre-

cedes bj in the frontier, otherwise swap aj
and bj .

(3) If bj precedes aj in the frontier of Tj then

let T̂j = Tj. Otherwise, T̂j is computed

from Tj by 
ipping every node in Tj.

(4) Segregate Dj in T̂j . Replace the subtree

T0jEj of T0 by T̂j jDj , letting z be the root

of T̂j jDj in the resulting tree. If Ej is rigid

in both T0 and Tj , then rename z to be an

R-node. If Ej is hinged in T0 but z is an

R-node, rename it to be a Q-node.

(5) Output the resulting PQ-tree.

| End of Algorithm |

The CGM algorithm described above tests

planarity of a graph G and computes a planar

embedding, if possible, usingO(log2 p) commu-

nication rounds and linear sequential work per

round.

Many important graph problems have been

solved on the CGM model in O(log p) com-

munication rounds [3]. To our knowledge

there are no known BSP-like algorithms for



the important graph planarity testing prob-

lem. This paper proposes a coarse-grained

multicomputer algorithm for this problem, in

O(log2 p) communication rounds. It remains

to be seen if this result can be improved, say,

to O(log p) communication rounds. Our result

implies a BSP algorithm with O(log2 p) su-

persteps, O(g log2(p)N
p
) communication, and

O(log2(p)N
p
) local computation.
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