
A Coarse Grained Parallel Algorithm for Maximum Weight Matching in Trees*

Albert Chan and Frank Dehne
School of Computer Science, Carleton University

Ottawa, Canada K1S 5B6
{achan,dehne}@scs.carleton.ca

* Research partially supported by the Natural Sciences and Engineering Research Council of Canada.

Abstract

We present an efficient coarse grained parallel algorithm
for computing a maximum weight matching in trees. A
divide and conquer approach based on centroid decompo-
sition of trees is used. Our algorithm requires O(log2p)

communication rounds with � �pO p
n log local computa-

tion and � �p
nO memory per processor (where p is the

number of processors used and n is the size of the tree).

Keywords: parallel algorithms, coarse grained parallel-
ism, BSP, trees, maximum weight matching,

1 Introduction

In this paper we consider the problem of finding a maxi-
mum weight matching in a tree. That is, given a tree
T=(V,E) and a weight wi � 0 for each edge ei � E, we
want to find a matching M � E of T such that the total

weight �
�

�

Me
i

i

ww is maximizied.

Pawagi [4, 5] presented a PRAM algorithm for maxi-
mum weight tree matching. His algorithm requires
O(log2n) computation time and O(n) processors.

Unfortunately, theoretical results from PRAM algo-
rithms do not necessarily match the speedups observed on
real parallel machines. In this paper, we present a parallel
algorithm that is more practical in that the assumption and
cost model used reflect better the reality of commercially
available multiprocessors. More precisely, we will use a
version of the BSP model [6], referred to as the coarse
grained multicomputer (CGM) model. In comparison to
the BSP model, the CGM [2] allows only bulk messages
in order to minimize message overhead costs. A CGM is

comprised of a set of p processors P1, …, Pp with � �p
NO

local memory per processor and an arbitrary communica-
tion network (or shared memory). All algorithms consist
of alternating local computation and global communica-
tion rounds. Each communication round consists of rout-

ing a single h-relation with h = � �p
NO , i.e. each processor

sends � �p
NO data and receives � �p

NO data. We require

that all information sent from a given processor to another
processor in one communication round is packed into one
long message, thereby minimizing the message overhead.
A CGM computation/communication round corresponds

to a BSP superstep with communication cost p
Ng (plus

the above “packing requirement”). Finding an optimal
parallel algorithm in the CGM model is equivalent to
minimizing the number of communication rounds as well
as the total local computation time. The CGM model has
the advantage of producing results which correspond
much better to the actual performance on commercially
available parallel machines. In addition to minimizing
communication and computation volume, it also mini-
mizes other important costs like message overheads and
processor synchronization.

In this paper, we present a parallel CGM algorithm for
maximum weight tree matching. The algorithm requires

O(log2p) communication rounds and with � �pO p
n log

local computation and � �p
nO memory per processor. It

assumes that the local memory per processor, p
N , is larger

than p� for some fixed � > 0. This assumption is true for
all commercially available multiprocessors. Our results
imply a BSP algorithm with O(log2p) supersteps,

� �� �p
npgO log communication time, and � �� �p

npO log
local computation time.

While our algorithm follows the general structure of
Pawagi’s PRAM algorithm [4, 5] it is, in the end, very
different from the PRAM method. For example, Pawagi’s
algorithm includes steps such as finding the centroid of a
tree, re-rooting a tree to a given node, and finding a
maximum gain alternating path of a tree. These steps are
straight forward for the PRAM but non-trivial for the
CGM. The main contribution of this paper lies in the
study of these individual steps and how they can be im-
plemented on a CGM. Our main result is a parallel maxi-
mum weight tree matching algorithm which is much more
practical and efficient on commercially available multi-
processors. Our CGM algorithms for finding the centroid
of a tree, re-rooting a tree and finding a maximum gain

alternating path of a tree are also interesting in their own
right and probably also useful for other coarse grained
parallel graph algorithms.

A CGM heuristic algorithm for graph coloring has re-
cently been presented in [3]. Graph coloring is closely
related to maximum matching without weights but not to
the weighted case studied in this paper. Furthermore, [3]
presents a heuristic while our algorithm computes a guar-
anteed maximum weight matching.

The remainder of the paper is organized as follows.
Section 2 presents an algorithm for finding the centroid of
a tree. An algorithm for re-rooting a tree is presented in
Section 3. Section 4 describes an algorithm to find a
maximum gain alternating path of a tree. These algo-
rithms are combined in Section 5 to obtain a CGM
method for computing a maximum weight matching for a
tree. Section 6 concludes the paper.

2 Partitioning A Tree Via It's Centroid

We are using divide and conquer to solve the maximum
weight matching problem. In order for divide and conquer
to work efficiently, we partition the tree such that the
subproblems are guaranteed to shrink by at least a con-
stant factor.

In this section, we present an algorithm to do such
partitioning efficiently.

Definition 1 The centroid of a tree T is a vertex c that
minimizes the size of the largest subtree in the forest gen-
erated by deletion of c from T.

Note that, for an n-vertex tree, the size of the largest
subtree in the forest generated by the deletion of the cen-

troid is less than or equal to 2
n [4,5].

Algorithm 1 Centroid of a Tree
Input: A tree T with n vertices and n-1 edges, rooted at r.
All nodes and edges are evenly distributed over a p-
processor coarse grained multi-computer.
Output: A vertex c which is the centroid of T.
(1) Compute the Euler tour of T. [1]
(2) Starting with the root r, using list ranking [1], calcu-

late the distance of each vertex along the Euler tour.
From these distances, each vertex can easily calculate
the size of each subtree. Among these subtrees, the
subtree with maximum size for the vertex is selected.

(3) Each processor determines which vertex has the
smallest maximum subtree. The selected vertex is
sent to Processor P1.

(4) Processor P1 selects and outputs the vertex that has
the smallest maximum subtree.

--- End of Algorithm ---

Theorem 1 Algorithm 1 calculates the centroid of a tree

using O(logp) communication rounds, � �pO p
n log local

computation, and � �p
nO storage per processor.

Proof. The correctness of the algorithm follows immedi-
ately from the definition of the centroid. All steps are
within the stated bounds. �

3 Re-rooting A Tree

In this section, we describe a CGM algorithm to re-root a
tree.

Algorithm 2 Re-rooting a Tree
Input: A tree T with n vertices and n-1 edges, rooted at r.
Each vertex v in T has a pointer p(v) to its parent. p(r)=�.
A vertex u � r in T (the new root).
Output: A tree T’ that is topologically equivalent to T but
rooted at u.
(1) Find the Euler tour E of T. [1]
(2) Perform list ranking along E [1]. Each edge e in T

will r eceive two ranks,
1e

r and
2er . Assume

1e
r <

2er .

(3) Let the ranks for the edge (u, p(u)) be r1 and r2.
Broadcast these two ranks to all processors.

(4) Each processor for each edge e, compares
1e

r ,
2er

with r1 and r2. Mark the edge e if
1e

r � r1 and
2er �

r2. Note that all marked edges form a path from u to r.
(5) Each processor for each vertex v checks if the edge

(v, p(v)) is marked. If so, send v to p(v).
(6) Every vertex v’ that received a new vertex v” sets its

parent p(v) = v”.
(7) The vertex u sets its parent to p(u)=�.
---End of Algorithm ---

Theorem 2 Using a p processor CGM, Algorithm 2 re-
roots an n-node tree in O(logp) communication rounds

with � �pO p
n log local computation and � �p

nO memory

per processor.

Proof. The correctness of the algorithm lies on the prop-
erties of the Euler tour. As shown in Figure 1, the edges
can be divided into three zones. The edges on the “left” of

the path (u, …, r) (zone 1 in Figure 1) will have
1e

r �
2er

� r1. The edges on the “right” of the path (u, …, r) (zone 2

in Figure 1) will have r2 �
1e

r �
2er . The edges “below”

the path (u, …, r) (zone 3 in Figure 1) will have r1 �
1e

r �

2er � r2. The edge on the path (u, …, r) (and only the

edges on the path) will have
1e

r � r1 and
2er � r2. Thus,

Step 4 will mark all the edges on the path (u, …, r), and
Step 6 will reverse all the parent pointers along the path.
Therefore, Algorithm 2 can re-root a tree.

Step 1 requires O(1) communication rounds, � �p
nO

local computation and local storage. Step 2 requires

O(logp) communication rounds, � �pO p
n log local com-

putation and � �p
nO local storage. Step 3 requires O(1)

communication rounds. Step 4 and 6 require no commu-

nication, � �p
nO local computation and local storage. Step

5 requires O(1) communication rounds. Step 7 requires no
communication and O(1) local computation. �

4 Maximum Gain Alternating Path

We start this section with some definitions and an obser-
vation.

Definition 2 Giving a graph G=(V, E) and a matching M
	 E, a node v � V is free if and only if
u � V, (u,v) � E
or (u,v) � M.

Definition 3 A path P=(
1i

v ,
2i

v , …, vv
ni
�) in T is said

to be an alternating path with respect to a matching M if

every odd numbered edge on this path is in M and every
even numbered edge is not in M or vice versa.

Definition 4 The gain of an alternating path P, denoted by
G(P), is the difference between the sum of the weights of
the edges of P that are not in M and the sum of the
weights of the edges of P that are in M.

An alternating path with positive gain can be used to ob-
tain a new matching by removing from M all edges that
are in P and adding the unmatched edges in P to M. Ob-
serve that the resulting matching is at least as large as the
original one.

Algorithm 3 Maximum Gain Proper Alternating Path
Input: A weighted tree T rooted at r, a key k, and a
maximum matching M in T.
Output: A vertex u in T such that the path from r to u
forms a proper alternating path with maximum gain in T.
All edges along the path (r, …, u) are marked with the
key k.
(1) Let p(v) be the parent of v, and wv be the weight of

the edge (v,p(v)). For each node v in the tree calculate
g(v) defined as follows:

- if v is the root r, then g(r)=0.
- if (v,p(v)) � M, then g(v)=-wv.
- if (v,p(v)) � M, then g(v)=wv.

(2) Except for the root r, each node v checks the values
of g(v) and g(p(v)). If both values are positive, delete
the edge (v,p(v)).

(3) Using list ranking [1], each node v determines its
distance to the root r as well as the sum of g(v) along
the path (r, …, v). (See proof of Theorem 3 for de-
tail.) Let that sum be G(v). Remove all nodes that are
not able to reach the root r.

(4) For each remaining node v, if v is not a leaf and
(v,p(v)) � M, remove v.

(5) Perform a partial sum with respect to G(v) (using the
maximum operator) on the nodes that are left from
Step 4, and determine the node u that has the maxi-
mum gain.

(6) Similar to Step (1) to (4) of Algorithm 2, mark all
edges along the path (r, …, u) with the supplied key
k.

 --- End of Algorithm ---

In Algorithm 3, if r is not free, then the edge (r,u) � M
must be in the maximum alternating path. This is because
M is maximum. An alternating path with positive gain can
be used to obtain a new matching by removing from M all
edges that are in P and adding the unmatched edges in P
to M. Observe that the resulting matching is at least as
large as the original one.

Theorem 3 Algorithm 3 computes the maximum gain
proper alternating path in O(logp) communication rounds

with � �pO p
n log local computation and � �p

nO memory

per processor.

Figure 1: Re-rooting a Tree

u

31 2

r

Proof. The correctness of the algorithm relies on whether
we can find the correct gain G(v) for each node v in Step
3. This can be achieved by using the Euler tour of the tree
and then performing list ranking. More precisely, build an
Euler tour by defining for each tree edge ei between a

node vi and it’s parent p(vi) two directed edges
1i

e =

(p(vi),vi) and
2i

e =(vi,p(vi)). Assign g(vi) to
1i

e and -g(vi) to

2i
e . See Figure 2 for an illustration.

A partial sum along the Euler tour, using [1], will give
the gain for each node. Thus, in Step 5, the resulting path
will be the maximum gain alternating path.

Step 1, 2 and 4 can be performed using O(1) commu-

nication rounds, � �p
nO computation and storage. Step 3

can be performed using O(logp) communication rounds,

� �pO p
n log computation and � �p

nO storage. Step 5 and 6

can be executed using O(logp) communication rounds,

� �p
nO computation and storage. �

5 Maximum Weight Matching For Trees

Algorithm 4 Maximum weight tree matching
Input: A tree T with n vertices and n-1 edges evenly dis-
tributed over a p-processor coarse grained multi-
computer.
Output: The same tree T with all matched edges marked.
All edges along the maximum gain path are marked. The
maximum gain value and a boolean representing whether
the root is free or not.

(1) Mark all vertices as free. If p=1, solve the problem
sequentially and return.

(2) Compute the centroid c of T using Algorithm 1. Re-
root T at c using Algorithm 2. Partition T into sub-
trees T1, T2, …, Tk, where k is the total in-degree of c.
Each subtree Ti is assigned a unique key ki.

(3) For each subtree Ti, let ni be the size of the subtree.

Assign � pn

ni
 processors to recursively solve the

problem on the subtree.
(4) Let ei be the edge connecting c and Ti, and let its

weight be wi. Compute the value:

�
�
�

�
�

otherwisein gain max.

free is ofroot if

ii

ii
i Tw

Tw
q

(5) Select a j such that qj is the maximum.
(6) If qj � 0 then mark c as free and go to Step 9.
(7) If vj is free then mark (c, vj) as matched, mark c as

not-free and go to Step 9.
(8) Mark the edge (c, vj) as matched. Invert the matching

for all edges with key kj. That is, for each edge e with
key kj, mark the edge matched if it was not matched
originally and mark it unmatched if it was matched
originally. Mark c as not-free.

(9) Re-root T to r using Algorithm 2.
--- End of Algorithm ---

Theorem 4 Algorithm 4 computes the maximum weight
matching for T using O(log2p) communication rounds,

with � �pO p
n log local computation and � �p

nO memory

per processor.

Proof. The main step is Step 4 where we select an edge ei

such that adding ei to the matching will result in a maxi-
mum increase in the total weight in the matching. Note
that in Step 3, the matching in each subtree Ti has been
maximized. Therefore, if the root of Ti is free, then by
adding ei to the matching, the total increase will be wi. If
the root of Ti is not free then, by adding ei to the matching
and flipping the edges along the maximum gain alternat-
ing path, the total increase of the weight will be wi plus
the maximum gain in Ti. At the end of the algorithm, the
resulting matching will always be maximized. Therefore,
Algorithm 4 is correct.

Step 2 will guarantee that the size of the maximum
subtree will be at most one half of the original tree. Thus,
after at most O(logp) recursions, each subtrees will fit into
one processor and we can apply the sequential algorithm
to solve the subproblem. Step 1 will be executed once for
each subtree, which will take no communication and use

� �p
nO local computation and storage. Step 2, 4 and 9 can

be done using O(logp) communication rounds,

� �pO p
n log computation and � �p

nO local storage. Step 5

and 8 can be done using O(1) communication rounds,

� �p
nO computation and local storage. Step 6 and 7 can be

Figure 2: Grain Computation Through Euler
Tour List Ranking

-g(v1)
g(v1)

g(v3)

g(v6)

-g(v6) g(v7)

-g(v7)

-g(v3)

g(v2)

g(v4)

g(v8)

-g(v8)

-g(v4)

g(v5)
-g(v5)

-g(v2)

v1 v2

v3 v4 v5

v6 v7 v8

done without communication and with � �p
nO computa-

tion and local storage. Therefore, the total bounds for
each recursion will be O(logp) communication rounds,

� �pO p
n log computation and � �p

nO storage. Since the

size of each subproblem is guaranteed to be at most half
the size of the original problem, the theorem follows.�

6 Conclusion

In this paper we presented an efficient coarse grained par-
allel algorithm for computing a maximum weight match-
ing in trees. We also studied coarse grained parallel algo-
rithms for finding the centroid of a tree, re-rooting a tree
and finding a maximum gain path. The centroid, re-
rooting and maximum gain path algorithms require

O(logp) communication rounds and � �pO p
n log local

computation, while the maximum weight tree matching
algorithm requires O(log2p) communication rounds and

� �pO p
n log local computation.

References

[1] E. Caceres, F. Dehne, A. Ferreira, P. Flocchini, I. Ri-
eping, A. Roncato, N. Santoro and S.W. Song, Effi-
cient Parallel Graph Algorithms For Coarse Grained

Multicomputers and BSP, in Proceedings ICALP ’97 -
24th International Colloquium on Automata, Lan-
guages, and Programming, P. Degano and R. Gorrieri
and A. Marchetti-Spaccamela (Eds.), 1997.

[2] F. Dehne (Ed.), Coarse grained parallel algorithms,
Special issue of Algorithmica, Vol. 24 (2/3), pp 173-
426, 1999.

[3] A. Gebremedhin, I. Guerin Lassous, J. Gustedt and J.
Tell, Graph Coloring on a Coarse Grained Multiproc-
essor, to appear in Proc. WG 2000.

[4] S. Pawagi, Parallel Algorithm for Maximum Weight
Matching in Trees, in Proceedings of the 1987 Inter-
national Conference on Parallel Processing, 1987, pp
204-206.

[5] S. Pawagi, Parallel Algorithm for Maximum Weight
Matching in Trees, Texhnical Report, Department of
Computer Science, SUNY at Stony Brook, 1987.

[6] L. Valiant, A bridging model for parallel computa-
tion", Communication of the ACM, Vol 33, No. 8,
1990.

