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This paper presents a parallel method for progressive mesh simplification. A
progressive mesh (PM) is a continuous mesh representation of a given 3D object
which makes it possible to efficiently  access all mesh representations between a low
and a high level of resolution. The creation of a progressive mesh is a time consuming
process and has a need for parallelization. Our parallel approach considers the original
mesh as a graph and performs first a greedy graph part itioning. Then, each partition is
sent to a processor of a coarse-grained parallel system. The individual mesh partitions
are converted in parallel to the PM format using a serial algorithm on each processor.
The results are then merged together to produce a single large PM file. This merging
process also solves the border problem within the partition in a simple and efficient
way. Our approach enables us to achieve close to optimal speedup. We demonstrate the
results experimentally on a number of data sets.

1 Introduction

Mesh simplification is the process of approximating a high-resolution mesh by a
coarser mesh with a lower triangle count. Traditional mesh simplification methods
produce a coarser mesh but only at a single given resolution. By contrast, the
Progressive Mesh (PM) representation [6] is a continuous resolution mesh. This
category of representation stores in a compact fashion all resolutions between the
lowest resolution (which is predefined) and  the original high resolution mesh.

In a PM representation, an arbitrary mesh M is stored as a much coarser
mesh M0 together with a sequence of vertex splits that indicates how to
incrementally convert M0 back into the original mesh M = Mn. The PM
representation of M thus defines a continuous sequence of meshes M 0, M1, ..., Mn of
increasing accuracy. The inverse of the vertex split is the edge collapse. With these
two operations it is possible to create a mesh at any given resolution between the
original high resolution mesh (M) and the lowest resolution mesh M0 (see Figure 1).
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Figure 1: Simplification/refinement operation

Since the simplification and refinement operations are very efficient, they
can be performed in real-time. The PM representation has many applications. The
most obvious is to use the representation for real-time level of detail (LOD) control
for graphical rendering [10, 3]. Another application is the incremental transmission of
a mesh on a network. The coarse M0 can be transmitted first, and the higher
resolutions can be displayed incrementally as the vertex split operations are
transmitted. Finally, the PM representation can be used to perform viewpoint
dependent refinement [9].

While the display of the PM format is efficient, the creation of the PM
sequence of edge collapses/vertex splits is more time consuming. At each step in the
process it is necessary to choose which edge to collapse. This makes it necessary to
compute the geometric error produced by each potential edge collapse and associate
a cost with it. Once a cost is assigned to every edge, all potential edge collapses are
sorted by cost. For large meshes this is a computationally intensive process.

Therefore, the creation of the PM sequence is a potential application for
parallel processing. Our approach is to parallelize at the coarse-grained
multiprocessor level by assigning different portions of the input mesh to different
processes. We use a greedy graph partitioning algorithm to divide the mesh into
disjoint subsets. Each mesh subset is sent to a “slave” processor where it is
converted into the PM format using a serial algorithm. An important issue in such
partition based parallel algorithms is the partition border problem. In this application,
this problem manifests itself in the question of how to rejoin the PM representations
at the border of the mesh partitions. We provide a solution to the partition border
problem that is both simple and efficient. Our solution enables our parallelization
approach to have a close to linear speedup, which is optimal. To our knowledge, no
such parallel implementation of a continuous mesh creation algorithm exists in the
literature.

The remainder of this paper is organised as follows. In Section 2, we give an
overview of the parallel mesh simplification algorithm. In Section 3, we discuss the
parallel implementation itself. Section 4 shows the results of our experimental
performance analysis and we discuss the quality of our PM obtained in Section 5.
Section 6 concludes the paper.
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2 Parallel Mesh Simplification

Our parallel implementation of the mesh simplification makes use of a standard
serial algorithm for mesh simplification [6]. The approach for our parallelization is to
partition the original high resolution mesh on a master processor and then to send
each mesh partition to a slave processor. Each slave processor simplifies its
associated mesh subset into a PM. Once this task is complete, each slave returns its
PM to the master processor which now merges them together to create a single PM
file for the entire mesh. The following is the basic outline of our parallel algorithm:

Parallel_Simplification(Mesh M, PartitionSize p)
if (ProcID == 0) //Master

section
(M1, ..., Mp) = Partition(M, p)
for i=1..p

send Mi to Proci

for i=1..p
receive PMi from Proci

merge ∀PMi into PM
return PM

else //Slave section
receive MProcID from Proc0

PMProcID = Simplify(MProcID)
send PMProcID to Proc0

Figure 2: Global structure of our parallel algorithm

2.1  Greedy Partition Method

The first step is to partition the mesh. We use is a simple greedy method where the
graph partitioning problem is solved by accumulating vertices (or faces) in subsets
when travelling through the graph. A starting vertex vs is chosen and marked. The
accumulation process is performed by selecting the neighbours of vs, then the
neighbours of the neighbours and so on until the subset has reached the required
number of vertices. Then, other subsets are created the same way until the p-way
partition is complete (e.g. each vertex is part of one subset). In the general case, such
a p-way partition is built from p partial Breadth-First-Search traversals of the graph.
The algorithm terminates when all vertices have been visited [2].

This simple greedy heuristic will yield acceptable partitions in much less
time than more complicated methods. Furthermore, the algorithm can be made
probabilistic if necessary [1]. It suffices to initialize it with a random vertex seed to
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generate different partitions for a same input graph. Figure 3 shows one 8-way
partition example of this algorithm on a 3D mesh representing a duck [13].

The subsets being built may get blocked in the process before they reach
full size. Then, two versions of the algorithm are possible: allow subset size
imbalance or subset multi-connectivity. The former produces uneven subset sizes
(workload on processors) and the latter produces bigger edge-cuts (more
communication between processors). We chose the latter for better load balancing
[4].

Figure 3: An exploded view of a 8-way partition of the 4K faces NRC Duck

2.2 Partition Border Problem

The main algorithmic problem for parallel progressive mesh simplification is the
border problem. That is, how do we handle the triangles intersecting the border
between different parts of the mesh as each part is processed in parallel on a
different processor. Recall that the vertex set V of the mesh is partitioned into p
disjoint subsets Vi whose union is V. Therefore, there are edges (and faces) between
partition subsets (part of the edge-cut). Ideally, those edge-cut edges need to be
dealt with just like subset edges. That is, during the parallel execution, at
synchronisation points, there is an exchange of information between slave
processors (potentially through the master processor) regarding the state of the
mesh. Then, either of the neighbouring slave processors processes the shared edges
using the edge information from the neighbours. This interdependence management
scheme is costly but most applications are border-sensitive and require it. The
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graphs considered here are meshes representing 3D objects. The human eye
accuracy sets the required quality level of processing. Hence, invisible degradation
of the optimal result is allowed. In fact, we chose to avoid the border problem as long
as possible. By not collapsing the edge-cut, one might expect to see the mesh
separator in full resolution when the PM mesh is displayed at a coarse resolution.
Fortunately, this is not the case. The edge-cut will be indirectly simplified along with
any other edge. This phenomenon is shown in Figure 4.
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Figure 4: Edge-cut face deletion

The partition snapshot represents the border between two subsets at some
point during simplification. The  two bold lines represent the link of each subset (the
edge borders of subsets). The darker triangles belong to subset A and those in
white belong to B. In this situation, the edge e from subset A will be collapsed. Note
that, this edge has part of its neighbourhood in subset B. More precisely, e has
seven edges and six triangles  joined to B by four vertices of B. However, if we
simply force the collapse of e, the collapse affects only the structure (topology) of
subset A. The neighbourhood part outside of A (vertices and edges and triangles of
B) is left unchanged, topologically. It is only used to compute the best vertex
position and the edge collapse cost for e. Following the collapse, two faces from A
are deleted, including one from the edge-cut (between subsets). Therefore the
parallel algorithm can simplify meshes as much as the sequential algorithm does,
without the need for synchronisation steps or communications between processors.

3 Parallel Implementation

The code was written in C, using an MPI package for communication (more
precisely, the free LAM-MPI [11]). The master processor partitions the mesh into p
subsets. The partitioner will return a size |V| integer array. Each array cell
corresponds to a mesh vertex and contains a subset ID ∈ [1..p] indicating the
processor to which the vertex is assigned. The next step is to send that partition
array to the slave processors. Then, all processors read the same mesh file into a
Mesh object exactly as in the sequential version. With the partition array at hand, the
slave processors build a working mesh structure of edges and faces which are either
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part of their partition subset or adjacent to it (surrounding edge-cut). Those edge-
cut elements are included to address the border problem. Next, the slave processors
build their edge collapse priority queues. In the parallel version, they do so with one
extra condition: each edge must have both end-points in the slave processor’s vertex
subset to allow a collapse. From that point on, the slave processor’s task remains the
same as in the sequential program: it has a priority queue of edges to collapse.

After simplification, the slave processors must transmit their sub-results to
the master processor for merging. This caused a technical difficulty. The data is now
in the form of vectors, stacks and hashbags of vertices, edges and faces. Previously,
the master sent an array of integers to the slaves. Now, the slave processors
respond with arrays of more general objects. Our version of MPI does not support
data communication other than standard data types. Therefore, we had to manually
convert our arrays of objects to streams of standard data types and then back to
objects. Once the data has been correctly communicated to the master processor and
reconverted, the master contains p sets of four items sent by the p slaves: p
hashbags of not deleted faces, p stacks of deleted faces, p vectors of collapsed
edges and p vectors of new vertices. Those edge collapses were created
independently. The master processor’s task is to synchronise them. For each
collapse, an edge, a vertex and two faces are extracted from the data of one slave
processor. The slaves collapse sets are visited in round-robin and their collapses are
extracted one after another, from the best collapse performed to the most destructive
one (See [4]). Another problem to be dealt with are duplicate faces. As mentioned,
the subsets are sent to slave processors along with their surrounding edge-cut.
Therefore, slave processors work independently on duplicate data. Consequently, all
faces from the edge-cut will be replicated in the data returned by the slaves. For this
reason, as the PM mesh is built, it must constantly be filtered for duplicate faces.

4 Performance Analysis

To evaluate the quality and performance of our implementation, we performed a
series of tests on a network of Linux/Pentium 120Mhz/32Mb workstations (some
were Pentium MMX 166Mhz). P0 was the master processor. We tested our program
with 2, 4, 8, and 16 processors connected to a 10Mbps Ethernet network. We ran
these tests when most of the machines were idle. Unfortunately, there was no
guarantee that the timings were not influenced by other users. This is clearly a very
low cost and not state-of-the-art parallel processing platform. However, since we are
mainly interested in measuring speedup, this platform was sufficient. Furthermore, if
our method performs well on such a low cost platform, it will clearly be even better
on more expensive and newer parallel machines.

Our tests were conducted on two basic input meshes: the NRC Duck [13]
and the Stanford Dragon [14]. We used various size meshes as input and processed
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each using various numbers of processors. The performace results are shown in
Tables 1 and 2 below. Besides the total running time (T), we also measured the time
to transfer the partition array to slave processors and read the input mesh on each
processor (PC) as well as the PM computation time on each slave processor (S). Of
particular importance is the load balance between slave processors. Recall that the
mesh partitioning was obtained by a greedy partitioning algorithm as outlined in
Section 2.1.  We measured the difference between the slowest and fastest slave
processor with respect to S in order to see how the computational load is balanced
between processors. For each input size and number of processors, we performed
five test runs. The bold numbers are averaged values and the italicised numbers in
square 1ckets are their standard deviations. The blank lines no. 16 and 17 in Table 2
are caused by memory overflow. For meshes of such size, we needed to partition
them among at least four processors so that each partition can fit into a processor’s
memory.

|V| number of vertices in the input mesh
p number of processors
PC time to transfer the partition array to slave processors and read the input mesh

on each processor
S progressive mesh computation time on each slave processor
∆S difference between slowest and fastes slave processor with respect to S
T total execution time for the entire algorithm

|V| p PC S ∆S T

1 1 - - - 618.0
2 2 0.0  [0.0] 283.2

[42.6]
71.0  [57.8] 295.6

[41.1]
3 2031 4 0.2  [0.4] 133.0  [4.1] 51.6  [16.2] 150.4  [4.2]
4 8 0.2  [0.4] 66.8   [8.6] 35.0  [7.8] 84.2  [8.2]
5 16 1.2  [1.5] 30.4   [1.3] 18.0  [2.0] 49.2  [2.4]

6 1 - - - 4774
7 2 2.0  [0.0] 2244  [70.7] 640  [117.5] 2350  [72.1]
8 12281 4 2.4  [0.5] 1368

[243.6]
539  [304.9] 1473

[242.6]
9 8 3.8  [3.1] 642  [79.1] 319  [91.4] 747  [80.8]
10 16 8.4  [6.3] 322  [30.8] 178  [40.5] 445  [36.4]

11 1 - - - 26345
12 2 13.4  [0.5] 11966  [422] 2792  [619] 12376  [382]
13 50044 4 12.8  [5.1] 6920  [136] 2686  [181] 7321  [145]
14 8 15.2  [12.0] 3325  [246] 1553  [311] 3764  [272]
15 16 67.3  [17.6] 1813  [119] 979  [128] 2321  [167]
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Table 1: Parallel simplification statistics: NRC Duck. (The bold numbers are averaged
values and the italicised numbers in square 1ckets are their standard deviations.)

|V| p PC S ∆S T

1 1 - - - 572
2 2 0.8  [0.4] 265.4  [2.3] 79.2  [2.9] 307.2  [3.1]
3 5205 4 1.0  [0.0] 132.2  [7.8] 42.2  [15.0] 171.6  [7.4]
4 8 1.4  [0.8] 66.0  [7.6] 31.0  [11.1] 107.6  [6.2]
5 16 2.6  [2.7] 39.0  [2.6] 25.4  [2.5] 80.8  [5.2]

6 1 - - - 3813
7 2 5.4  [1.2] 1878  [310] 560  [362] 2079  [308]
8 22998 4 6.0  [2.4] 949  [38] 328  [71] 1141  [39]
9 8 6.8  [3.6] 462  [22] 178  [36] 657  [28]
10 16 11.2  [12.4] 233  [13] 108  [17] 425  [12]

11 1 - - - 34811
12 2 52.8  [28.4] 15617  [452] 4057  [161] 16577  [429]
13 100250 4 68.5  [56.5] 7158  [70] 2086  [126] 8211  [174]
14 8 82.8  [1.8] 3449  [68] 1260  [127] 4427  [96]
15 16 162.8  [3.1] 1776  [75] 709  [99] 2874  [130]

16 1 - - - -
17 2 - - - -
18 198318 4 103 [12] 29640

[1367]
9483  [2768] 32103 [1638]

19 8 184 [20] 11338   [58] 3749 [307] 13714   [59]
20 16 369 [73] 5620   [13] 1873 [131] 8315  [353]

Table 2: Parallel simplification statistics: Stanford Dragon. (The bold numbers are
averaged values and the italicised numbers in square 1ckets are their standard

deviations.)

We now discuss our performance results in Tables 1 and 2. The main
observation is that, despite the low cost communication network, the total time (T)
observed for our method shows close to linear speedup. As expected, speedups are
slightly lower for smaller data sets (|V|) and improve for larger data sets. The time for
partitioning the data set (PC) increases with growing number of processors, as
expected. What is very interesting to observe is that S often shows a more than
linear speedup. How is this possible? The parallel algorithm does not explicitly
collapse the edges that span the boundaries of the partition. The number of such
edges increases with growing p. This effect does actually decrease the total work
performed and, therefore, we can observe more than linear speedup. The load
balancing of our method is measured in the ∆S column. Here, we observe that the
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load imbalance can be as high as 50%. Note, however, that finding an optimal
partitioning of a mesh while minimizing the number of edges crossing boundaries is
an NP complete problem. In our solution, we are using a greedy heuristic and for
such a simple heuristic to be within a factor two of optimal is actually quite good.
We need to balance the time it takes to compute the partitioning (PC) versus the
imbalance created (∆S) and the close to linear speedup for the total time T seems to
indicate that the greedy heuristic used is a good compromise solution. With respect
to the variances measured, we observe that they are fairly large. Clearly, the heuristic
itself creates fluctuations but another important factor here is that we were
performing our experiments in a multi-user environment. Furthermore, we observe
that the variances for the total time (T) observed are considerably smaller than those
for the other times measured.

In summary, we conclude that the total time (T) observed for our method shows
close to optimal linear speedup, even on a very low-cost, low-tech, communication
network. We plan to test the method on other more advance machines, like a Cray
T3E or IBM SP2, where we expect to obtain even better timing results.

5 Quality Analysis

Besides analyzing the runtime of our method, we also need to study the quality of
the progressive mesh simplication obtained in comparison with the results of a
purely sequential algorithm. Here, the main concern is about the edges that span the
boundaries of the partition. Everything else is processed with a sequential algorithm
and is therefore of the same quality. With respect to the edges that span the
boundaries of the partition, anomalies could appear in the obtained progressive
meshes, along those boundaries. For example, the boundaries could become visible
because there are “breaks” or different triangle densities along those boundaries. In
Figure 4, process A collapses edge e whose neighbourhood contains four vertices
from B. Furthermore, B collapses edges connected to those four vertices, indeed
widening the extent of e’s neighbourhood (vertices) on B’s side. An edge collapse
can be considered as the merge of a pair of vertices. Merging those four vertices
with other vertices of B extends the neighbourhood of e on B’s side. Therefore, any
vertex in B merged to one of those four neighbourhood vertices becomes part of e‘s
neighbourhood. However, as edge collapses are not communicated between slave
processors, A will never be aware of it. Thus, the border edge neighbourhoods may
include too few vertices from the adjacent vertex subsets. On the other hand, border
edges remain as duplicates, and this may alleviate the problem. We examined
progressive meshes obtained from using our algorithm on the NRC duck and other
data and observed that, there are no visible breaks or inconsistency along the
borders of our partitioning.
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6 Conclusion

This paper presented a parallel algorithm for progressive mesh simplification. Our
experiments show that the proposed method yields close to optimal speedup, even
on a low-cost parallel platform. We presented a very simple solution for the problem
of how to manage the border between different parts of the mesh partitioning. As
mesh simplifications are becoming more important in 3D graphics, and parallel
processing platforms are becoming more affordable (e.g. multi processor Pentium
boards), parallel progressive mesh simplification methods will have an important role
to play in such applications as parallel VR systems or the transmission of 3D models
over networks.
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