
Distribution Sweeping on Clustered Machines with Hierarchical Memories

Frank Dehne
School of Computer Science

Carleton University
Ottawa, Canada
frank@dehne.net

http://www.dehne.net

Stefano Mardegan and
Andrea Pietracaprina

DEI, Universit̀a di Padova
Padova, Italy

stemarde@tin.it
andrea@artemide.dei.unipd.it

Giuseppe Prencipe
Dipartimento di Informatica

Universit̀a di Pisa
Pisa, Italy

prencipe@di.unipi.it

Abstract

This paper investigates the design of parallel algorith-
mic strategies that address the efficient use of both, mem-
ory hierarchies within each processor and a multilevel clus-
tered structure of the interconnection between processors.
In the past, these phenomena have usually been addressed
separately. This paper is a first step towards parallel al-
gorithmic strategies which address both at the same time.
As a case study, we investigate the distribution sweeping
method which has been very effective for the design of exter-
nal memory algorithms for computational geometry prob-
lems. We present a novel method for parallel distribution
sweeping on a clustered parallel machine with hierarchical
local memories, showing that it yields optimal computation,
communication and memory access times for a number of
geometry problems.

1 Introduction

Typical high-performance computing platforms are
characterized by a large number of processing nodes com-
municating through some interconnection, and by a consid-
erable amount of storage. The topology of the interconnec-
tion often induces a multilevel clustered structure of the ma-
chine, and the cost of communication between nodes may
vary considerably depending on the respective clusters they
belong to. For these machines, the entire storage is usually
distributed among the nodes. Furthermore, the local mem-
ories at each node are typically organized in a hierarchical
fashion (cache, RAM, disk). The main factors that affect
the performance of programs running on these platforms
are the amount ofcomputation, measured by the number
of operations performed at individual nodes, and the data
movement between nodes (communication) or between lev-
els of a node’s memory hierarchy (memory access). While
the first factor depends on the specific algorithmic strategy

chosen for the application, once such a strategy is fixed,
performance can be considerably enhanced by scheduling
the operations and choosing the data layout so that expen-
sive communications (e.g., communication among “distant”
nodes) and accesses to slow memory levels (e.g., disks) are
minimized. This property is usually referred to aslocality.

Over the last two decades, the development of efficient
algorithms for large-scale problems requiring high perfor-
mance computing, and the definition of suitable computa-
tional models to support the design and analysis of these
algorithms, have addressed the issues related to memory hi-
erarchy and parallelism separately. However, as recent stud-
ies point out [1, 4], in order to attain high performance it is
crucial to deal with these aspects in an integrated fashion,
both at the modelling and at the algorithm design level.

The main goal of this paper is to initiate the study of
general algorithmic strategies for high-performance paral-
lel platforms, which take advantage of parallelism while
exhibiting high locality, so to effectively exploit the hier-
archical structure of both the memory and the communi-
cation network. As a first case study, we investigate the
distribution sweep paradigm introduced in [9] to develop
efficient external memory algorithms for a family of well-
known computational geometry problems, namely those for
which the well-knownplane sweepparadigm [10] yields
optimalO (n log n) solutions in the standard sequential set-
ting. Classical examples of such problems aremeasure of
the union of rectangles, all nearest neighbors, 3D-maxima,
2D-weighted dominance counting, andlower envelope. We
present a novel implementation of distribution sweeping for
clustered parallel machines with hierarchical memories, and
show that it affords the development of parallel algorithms
which exhibit maximum locality with respect to both, the
interconnection topology and the memory hierarchy, thus
attaining optimal performance.

Previous Work. For some of the classical geometric
problems mentioned above, parallel algorithms were pre-

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

sented in [2] which run on a particular parallel architecture
consisting of ad-dimensional array ofp processors, each
provided with constant storage, connected to a single con-
ventional RAM. On such a machine, these algorithms run
in O

(
n log n/(p1−1/d log p)

)
time, thus attaining a speed-

up of Θ
(
p1−1/d log p

)
over the standard sequential algo-

rithms. In [6], parallel algorithms for the same problems are
developed for theCoarse Grained Multicomputer(CGM).
This model, introduced in the same paper, consists ofp pro-
cessors each provided with a large memory, which com-
municate through an arbitrary network. Communication is
achieved exclusively by means ofh-relations where each
processor sends/receivesh messages. For inputs of size
n = Ω

(
p2

)
the algorithms run optimally in time propor-

tional to the time required to sortn keys evenly distributed
among the processors. However, the performance of these
algorithms becomes suboptimal ifn = o(n2). We also note
that in the CGM model the memory available at each pro-
cessor is flat.

As mentioned before, distribution sweep was proposed
in [9] as a general method to efficiently implement the plane
sweep paradigm on theParallel Disk Model(PDM) by [12].
The PDM model, consists ofp processors communicating
through some arbitrary network, where each processor is
provided with an internal memory of sizeM and one or
more disks with block sizeB. Distribution sweep is based
on a divide-and-conquer strategy that partitions the plane
into O (M) regions, each containing an equal number of in-
put objects, determines the “interactions” between objects
across different regions (a task that depends on the specific
problem to be solved), and then recursively performs the
sweep within each region. For the geometric problems men-
tioned above, it is shown in [9] that distribution sweep at-
tains an optimalO (n/B log(n/B)/ log(M/B)) number of
disk I/Os, on a single-processor/single-disk machine.

It must be remarked that although PDM is a multiproces-
sor model, parallelism is primarily introduced to account for
high processing power. Communication is idealized by ig-
noring the (possibly hierarchical) structure of the intercon-
nection and the costs related to its bandwidth and latency
characteristics. In fact, the main objective of PDM algo-
rithms is to minimize the number of (parallel) disk I/O’s.

In [7], an analytical model is proposed to study
cost/performance tradeoffs for workstation or SMP clus-
ters with internal hierarchies relatively to given programs.
Available benchmarks for FFT and image processing are
employed as case studies. Howver, it must be noted that
the paper is mainly concerned with the analysis of existing
programs and does not address the use of the model for al-
gorithm design.

New Results. In this paper we represent parallel and hier-
archical architectures through theDecomposable BSP(D-

BSP) model of computation, introduced in [5] as a vari-
ant of Valiant’s BSP [11]. A D-BSP consists ofp proces-
sor/memory pairs (nodes) communicating through some in-
terconnection network. The nodes are viewed as partition-
able into log p nested levels of clusters, where the nodes
are able to communicate and synchronize separately within
each cluster. It is argued in [3] that because of the clus-
tered structure, the D-BSP exhibits higher effectiveness and
portability than BSP (where only one cluster comprising all
nodes is defined) while retaining the same generality and
usability.

In order to integrate communication and memory hier-
archy aspects, we extend the original D-BSP by providing
each node with a two-level memory hierarchy consisting of
a RAM of sizeM and a disk with block sizeB and block
I/O-time G. (A detailed definition of the model is given in
Section 2.) Clearly, the clustered structure of D-BSP com-
bined with the internal memory hierarchy at each node re-
wards the development of algorithms with high locality.

For this extended D-BSP we devise a novel parallel im-
plementation of the distribution sweeping method by [9].
Our implementation is a non-trivial generalization of the
one in [9] aimed at maximizing both locality of reference
(relatively to local memory accesses) and submachine lo-
cality (relatively inter-processor communication), whereas
only the former type of locality was considered in [9].

Our strategy combines the standard distribution sweep-
ing with an “orthogonal” partitioning method similar to the
one adopted in [2, 6], organizing the computation and the
data movements so to exploit the hierarchical nature of the
local memories as well as the clustered structure of the ma-
chine. We show that when bandwidth and latency increase
geometrically with the cluster size (this scenario captures a
wide family of architectures, e.g. multidimensional arrays
like Cray T3E, Intel Paragon, or Beowulf clusters with grid
interconnect) and whenM/B = Ω (pε) for arbitrary con-
stantε > 0 (as is the case for most commercially available
parallel machines) then our strategy yields optimal solutions
for all of the aforementioned geometric problems to which
distribution sweeping applies, and for all input sizesn > p.
Indeed, the resulting algorithms feature optimal computa-
tion, communication and memory access costs.

2 D-BSP With Hierarchical Local Memories

2.1 Machine Model

The D-BSP model was introduced in [5] as an exten-
sion of Valiant’s BSP [11] aimed at capturing submachine
locality. The following is the regular version of the model
(referred to asrecursive D-BSPin the original paper). Let
p be a power of two, and letg = (g0, g1, . . . , glog p) and

2

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

` = (`0, `1, . . . , `log p)1. A D-BSPis a collection ofp pro-
cessors communicating through some interconnection fab-
ric. For0 ≤ i ≤ log p, thep processors are partitioned into
2i disjoint fixed i-clustersC

(i)
0 , C

(i)
1 , · · · , C(i)

2i−1 of p/2i

processors each, where the processors of a cluster are able to
communicate among themselves independently of the other
clusters. Parametersgi and`i are related, respectively, to
the bandwidth and latency characteristics of eachi-cluster.
The clusters form a hierarchical, binary decomposition tree
of the D-BSP machine: specifically,C log p

j contains only

processorPj , for 0 ≤ j < p andC
(i)
j = C

(i+1)
2j ∪ C

(i+1)
2j+1 ,

for 0 ≤ i < log p and0 ≤ j < 2i.
We extend the D-BSP model by introducing a two-level

memory hierarchy at each node comprising a RAM of size
M , with unit access time, and a disk sufficiently large to
hold all relevant data. Data are transferred between RAM
and disk in blocks of sizeB, each block I/O requiring time
G. Also, as typical for most systems, data injected-to or
received-from the network must pass through the RAM.

A D-BSP computation consists of a sequence of labelled
supersteps. In ani-superstep, 0 ≤ i ≤ log p, each pro-
cessor executes internal computation on data held in the
local memory system and sends messages exclusively to
processors within itsi-cluster. The superstep is terminated
by a barrier, which synchronizes processors within eachi-
cluster. It is assumed that messages sent in one superstep
are available at the destinations only at the beginning of the
subsequent superstep. Consider ani-superstep where each
processor performs at mostw1 operations on data held in
RAM and at mostw2 disk I/Os, and the messages sent in the
superstep form anh-relation (i.e., each processor is source
or destination of at mosth messages)2. Then, the cost of the
superstep is upper bounded byw1 + w2G + hgi + `i. Ob-
serve that ifM is large enough so that all data fit in RAM
and the disks are never used, then the model reduces to the
standard D-BSP.

The above model, which we refer to as D-
BSP∗(p,M,B, G, g, `), is able to explicitly account
for memory hierarchy, communication and computation
costs. These are the dominant factors that impact per-
formance on most parallel platforms [1, 4]. Moreover,
although the detailed structure of the interconnection
network is not specified, thus ensuring the generality of the
model, the bandwidth and latency parameters used in the
cost function are sufficient to ensure efficient support for
the model on a wide class of architectures [3].

Although all of the algorithms developed in this paper
are correct for arbitrary vectorsg and `, we will analyze
their running time for a class of vectors of particular sig-
nificance. Specifically, for any arbitrary constantsα and

1Unless differently specified, all logarithms are taken to base 2.
2Note that ifh > M we must havew2 = Ω(d(h − M)/Be).

β, with 0 < α, β < 1, the analysis will be made for a
D-BSP∗(p, M, B, G, g(α), `(β)) with g

(α)
i = (p/2i)α and

`
(β)
i = (p/2i)β , for 0 ≤ i ≤ log p. As noted in [8], these

values of the parameters capture a wide family of intercon-
nections. Also, we make the reasonable assumption that
M/B = Ω (pε) for some arbitrary constantε > 0, which
holds for most commercially available parallel machines.

2.2 Algorithmic Primitives

Sorting This primitive involves sortingn ≥ p keys, from
a totally ordered universe, which are evenly distributed
among the processors of a D-BSP∗(p, M, B, G, g(α), `(β)).
We assume that at the beginning and at the end of the sorting
the keys reside in the nodes’ disks.

Proposition 1 Sorting can be performed in optimal time

Tsort(n, p) = O(n
p (log(n

p) + pα) + pβ + n
Bp

⌈
log(n

B)

log(M
B)

⌉
G).

Proof. Omitted due to space restrictions.

Merging ConsiderK ≤ p sorted sequences ofn/K keys
each, with each sequence evenly distributed among thep/K
nodes of a distinct(log K)-cluster. For the purposes of
this paper, the complexity of merging can be bound from
above by that of sorting. However, when all data fit in
the nodes’ RAMs, hencen/p = O (M/B), the following
tighter bound is easily established using bitonic merging.

Proposition 2 If n/p = O (M/B) and all relevant data
are kept in the nodes’ RAMs, then theK sorted sequence
can be merged on a D-BSP∗(p, M, B, G, g(α), `(β)) in op-
timal timeTmerge(n, K, p) = O(n

p pα + pβ).

Broadcast ConsiderK ≤ M values stored at the RAM
of a D-BSP∗(p, M, B, G, g(α), `(β)) node, to be broadcast
to all other nodes. By broadcasting the values to larger and
larger clusters we can obtain the following optimal perfor-
mance.

Proposition 3 K ≤ M values stored in the RAM of a D-
BSP∗(p, M, B, G, g(α), `(β)) node can be broadcast to all
other nodes in timeTbroadcast(K, p) = O(Kpα + pβ).

3 Parallel Distribution Sweeping On A D-
BSP With Hierarchical Local Memories

Distribution sweeping was introduced in [9] as an ef-
ficient strategy to implement the well-knownplane sweep
paradigm [10] in the external memory setting. When ap-
plied to a geometric problem, the standard sequential plane
sweep involves scanning the input objects in sorted order
for a given dimension and updating a suitable data structure

3

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

(e.g., a search tree) when a new object is encountered. The
main idea in [9] is to defineO (M) regions that evenly par-
tition the input space, recursively solve the problem in each
region, and account for the interaction of objects across dif-
ferent regions. The latter task can be accomplished by sim-
ply scanning the input objects and using suitable data struc-
tures whose size is proportional to the number of regions,
so that they fit in RAM. As discussed in [9] this strategy
optimizes the number of disk I/Os.

In this section we present a novel parallel distribu-
tion sweeping method for a D-BSP with hierarchical lo-
cal memories. Our method minimizes both the number of
disk I/Os and, at the same time, the communication costs
for an assumed hierarchical interconnection fabric. The
main idea is the following. Consider a geometric prob-
lem, to be solved via parallel distribution sweeping on a D-
BSP∗(p, M, B, G, g, `). We partition the input objects into
K = min{n/p, M/B} subsets (e.g., through vertical slabs
in the plane), and recursively solve the subproblem associ-
ated with each subset. IfK < p we assign each subproblem
to a distinct(log K)-cluster (withp/K processors); oth-
erwise we assignp/K subproblems to each processor. In
this fashion, the clustered structure of the machine is suit-
ably exploited. Then, in order to account for the interac-
tions among objects across different subsets, we employ an
“orthogonal” partitioning of the inputs and of data result-
ing from the recursive calls into new subsets of sizeΘ(K)
(e.g., through horizontal slabs in the plane), in such a way
that all interactions be computable independently, hence in
parallel, for the new subsets. This partitioning is similar to
the one adopted in [2, 6]. The choice ofK ensures that the
work on each new subset can be entirely done in a node’s
RAM, and that at any time no processor holds (hence sends
or receives) more thanO (n/p) data. The following case
studies explain out methodology in more detail.

3.1 Measure Of The Union Of Rectangles

Let R be a set of n isothetic rectangles in the
(x, y)-plane, evenly distributed among the nodes of a D-
BSP∗(p, M, B, G, g, `), and initially stored at the nodes’
disks. TheMeasure of Union of Rectangles(MUR) problem
requires finding the area covered by the union of these rect-
angles. For convenience, we make the standard assumption
that no two rectangles have vertices at the same abscissa or
at the same ordinate.

Let YR denote the set of2n ordinates of the vertices
of the rectangles inR. Let also `′ and `′′ denote the
leftmost and rightmost abscissae, respectively, of the ver-
tices of these rectangles. The triple(YR, `′, `′′) defines
2n − 1 rectangularstripeson the plane, each stripe delim-
ited by pairs of consecutive ordinates inYR and by`′ and
`′′. Let S(YR, `′, `′′) denote the set of these stripes. For

s ∈ S(YR, `′, `′′), we denote byA(s,R) thecover ofs rel-
ative toR, that is, the area of the portion ofs covered by
rectangles inR. As shown in [2, 6], the overall areaA of
the union of the rectangles inR is given by

A =
∑

s∈S(YR,`′,`′′)

A(s,R). (1)

Hence, the computation ofA reduces essentially to the com-
putation of the stripe covers, which we describe below.

Computation of the stripe covers

We present the computation of the stripe covers within a
slightly more general setting. Let̀′ < `′′ be two ar-
bitrary abscissae on the plane and letR be a set ofn
rectangles, where each rectangle has at least one verti-
cal edge in the portion of the plane delimited by`′ and
`′′. Procedure STRIPE-COVERS(R, p, `′, `′′), described
below, computes the covers relative toR for all stripes in
S(YR, `′, `′′), on a D-BSP∗(p, M, B, G, g, `).

For convenience, we assume that for every vertical edge
e of a rectangleR ∈ R at abscissaxe ∈ [`′, `′′], the pair
(xe, R) is provided in the input to the procedure (hence, we
may have two pairs in the input for a rectangle). Moreover,
we assume that the pairs are given in sorted order of their
first components. This requires a sorting step prior to the
invocation of the procedure. The output of the procedure
consists of the set of stripes inS(YR, `′, `′′), sorted accord-
ing to their top ordinate, each stripes associated with its
coverA(s,R).

Procedure STRIPE-COVERS(R, p, `′, `′′)

If (p = 1 and n = O (M)) compute the stripe covers in
RAM through a standard plane sweep. Else, do the follow-
ing:
Step 1: Let K = γ min{n/p, M/B}, for a suitable con-
stant0 < γ < 1. Partition the portion of the plane between
`′ and`′′ into K vertical slabsV1, V2, . . . , VK , such that the
vertices of the rectangles inR falling in such a portion are
evenly distributed among these slabs. LetRVi

, 1 ≤ i ≤ K,
denote the subset of rectangles ofR with vertices inVi.
(Note that a rectangle may have vertices in two slabs.) Let
`′ = `1 < `2 < · · · < `K+1 = `′′ be such that slabVi is de-
limited by the lines at abscissae`i and`i+1, for 1 ≤ i ≤ K.
Send the set of abscissae{`i : 1 ≤ i ≤ K + 1} to the
first DBSP node and then, from this node, broadcast the set
to all other nodes.
Step 2: (recursive step) If K ≤ p, then, for
1 ≤ i ≤ K in parallel, recursively execute STRIPE-
COVERS(RVi

, p/K, `i, `i+1) on the i-th (log K)-cluster.
Else (K > p), for 1 ≤ j ≤ p in parallel, recursively exe-
cute STRIPE-COVERS(RVi , 1, `i, `i+1), at thej-th DBSP

4

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

node, for every(j−1)K/p < i ≤ jK/p. Note that in either
case, each DBSP node deals withO (n/p) data.
Step 3: Partition the plane into2n/K horizontal slabs
H1,H2, . . . ,H2n/K such that each slab contains exactlyK
ordinates ofYR. For 1 ≤ j ≤ 2n/K, letRHj

denote the
subset of rectangles ofR with vertices inHj , and note that
|RHj

| ≤ K. Let h1 > h2 > · · · > h2n/K+1 be such
that slabHj is delimited by the lines at ordinateshj and
hj+1, for 1 ≤ j ≤ 2n/K. The setȲ = {hj : 1 ≤
j ≤ 2n/K + 1}, which defines the horizontal slabs, can
be determined by merging the sorted sequences of stripes
resulting from the recursive calls of the previous step, so
that each node determines(2n/K)/p ordinates of̄Y . (Note
that the choice ofK implies 2n/K > p.) The horizontal
and vertical slabs define2n boxes, namelyBi,j = Vi ∩Hj ,
for 1 ≤ i ≤ K and1 ≤ j ≤ 2n/K.
Step 4: If K ≤ p, then broadcastȲ to ev-
ery (log K)-cluster, each node of the cluster receiving
Θ((n/K)/(p/K)) = Θ (n/p) ordinates in sorted order.
If insteadK > p, broadcast̄Y to every node. Note that,
in the latter case each node receivesΘ(n/K) = O (n/p)
ordinates.
Step 5: For 1 ≤ i ≤ K, determineA(s,RVi

) for every
stripes ∈ S(YRVi

∪ Ȳ , `i, `i+1). To do so, the stripes and
the corresponding covers produced by the recursive calls of
Step 2 are first moved back to their positions at the end of
that step. Then, for every1 ≤ i ≤ K the new stripes in-
duced byYRVi

∪Ȳ are determined by scanning concurrently
the stripes inS(YRVi

, `i, `i+1) and the set̄Y . Computing
the new covers is straightforward. IfK ≤ p, each(log K)-
cluster, in parallel, will do the computation for a distincti,
while if K > p, each node, in parallel, will do the compu-
tation forK/p values ofi.
Step 6: For every1 ≤ i ≤ K and1 ≤ j ≤ 2n/K, de-
termine the numberbi,j of boxesBi′,j , with i′ < i, which
are entirely covered by rectangles inRVi

. This is accom-
plished by a vertical sweep of the rectangles ofRVi

, em-
ploying a segment tree withi− 1 leaves associated with the
vertical slabs to the left ofVi (see [10] for the definition
and the properties of segment trees). Note that this requires
the rectangles inRVi

to be sorted by the ordinate of their
top edges. The sorted order can be easily derived by that of
the stripes inS(YRVi

, `i, `i+1). As in the previous step, if
K ≤ p, each(log K)-cluster, in parallel, will compute all
of the bi,j ’s for a distincti, while if K > p, each node, in
parallel, will compute all of thebi,j ’s for K/p consecutive
values ofi.
Step 7: For 1 ≤ i ≤ K and1 ≤ j ≤ 2n/K, let Si,j be
the set of stripes inS(YRVi

∪ Ȳ , `i, `i+1) which fall within
Hj . For1 ≤ j ≤ 2n/K, let thedj/(2n/(Kp))e-th D-BSP
node be in charge ofHj , and send the following three sets
of data to such a node:RHj , {bi,j : 1 ≤ i ≤ K}, and⋃K

i=1 Si,j . Note that each of the three sets has sizeO (K),

hence each node receivesO (n/p) data, overall.
Step 8: Do the following at every D-BSP node, in par-
allel. For everyHj assigned to the node and for every
s ∈ S(YR, `′, `′′) falling within Hj , computeA(s,R), in
sorted order by top ordinate. This is accomplished as fol-
lows. For1 ≤ i ≤ K, the node first determines whether box
Bi,j is entirely covered by some rectangle. This requires a
scan of the values{bi,j : 1 ≤ i ≤ K} available at the
node. Corresponding to every box entirely covered by some
rectangle, a special stripe is created whose cover coincides
with the entire area of the box. Also, for every rectangle in
RHj

spanning entirely one or more vertical slabs, a special
stripe is created corresponding to the portion relative toHj

and to the vertical slabs entirely spanned by the rectangle,
whose cover coincides with the area of this portion. Then, a
sweep is performed through the stripess ∈

⋃
1≤i≤K Si,j

and the special stripes (all sorted by ordinate). At each
sweep step, a suitable segment tree of sizeO (K), whose
leaves correspond to the vertical slabs, is updated based on
the cover associated with the stripe being processed. Note
that O (K) data are required, overall, for the computation
relative toHj . Hence, if the constantγ in the definition of
K is suitably chosen, such a computation can be entirely
done in the node’s RAM.

Analysis

Let TMUR(n, p) denote the time required by the algorithm
to compute the area of the union ofn rectangles on a D-
BSP∗(p, M, B, G, g(α), `(β)). Let TSC(m, q) denote the
running time of procedure STRIPE-COVERS when in-
voked for a set ofm rectangles, on a cluster ofq ≤ p
processors of a D-BSP∗(p, M, B, G, g(α), `(β)). Based on
Equation 1 and recalling that procedure STRIPE-COVERS
requires the input rectangles sorted by the abscissae of their
vertical edges, we have that

TMUR(n, p) = O (Tsort(n, p) + TSC(n, p)) . (2)

Lemma 1 If M/B = Ω (pε), for some arbitrary constant
ε > 0, then for everyn > p, we haveTSC(n, p) =
O (Tsort(n, p)).

Proof. Omitted due to space restrictions.

The following theorem is an immediate consequence of
the above lemma and Equation 2.

Theorem 1 If M/B = Ω (pε), for some arbitrary con-
stant ε > 0, then for everyn > p TMUR(n, p) =

O
(

n
p (log(n/p) + pα) + pβ + n

Bp

⌈
log(n/B)
log(M/B)

⌉
G

)
.

The optimality of our method follows from Proposi-
tion 1.

5

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

3.2 Other Problems

Due to space limitations, we can onlylist our results
for other problems to which our new parallel distribution
sweep method applies. For the remainder of this subsec-
tion, we assume that then inputs are evenly distributed
among the nodes of a D-BSP∗(p, M, B, G, g(α), `(β)), and
thatM/B = Ω(pε), for some arbitrary constantε > 0.

All Nearest Neighbors Let S be a set ofn points on the
plane. For eachq ∈ S the problem requires to find the
closest point NN(q) ∈ S \ {q}.

Theorem 2 For every n > p the all near-
est neighbors problem can be solved in time

O
(

n
p (log(n/p) + pα) + pβ + n

Bp

⌈
log(n/B)
log(M/B)

⌉
G

)
.

Proof. Omitted due to space restrictions.

Lower Envelope Let S be a set ofn non-intersecting line
segments on the plane. The problem requires to find a set
of m ≤ 2n x-monotone segments, sorted by right endpoint,
representing the lower envelope formed by the segments of
S visible from(0,−∞).

Theorem 3 For every n > p the lower
envelope problem can be solved in time

O
(

n
p (log(n/p) + pα) + pβ + n

Bp

⌈
log(n/B)
log(M/B)

⌉
G

)
.

Proof. Omitted due to space restrictions.

3D-Maxima Let S be a set ofn points in<3. For any
two pointsv andw in S, we say thatv dominatesw if each
coordinate ofv is greater than the corresponding coordinate
of w. A point v ∈ S is said to be a maximum inS if it
is not dominated by any other point ofS. The 3D-maxima
problem requires to compute the set 3Dmax(S) of maxima
in S.

Theorem 4 For every n > p the 3D-
maxima problem can be solved in time

O
(

n
p (log(n/p) + pα) + pβ + n

Bp

⌈
log(n/B)
log(M/B)

⌉
G

)
.

Proof. Omitted due to space restrictions.

2D-Weighted Dominance Counting Let S be a set ofn
points on the plane, where each pointq is associated with a
weightw(q). For eachq ∈ S the problem requires to find
the total weight WD(q) of the points inS dominated byq,
that is, those points belonging to the region to the left and
below pointq.

Theorem 5 For everyn > p the 2D-weighted dominance
counting problem can be solved in time

O
(

n
p (log(n/p) + pα) + pβ + n

Bp

⌈
log(n/B)
log(M/B)

⌉
G

)
.

Proof. Omitted due to space restrictions.

4 Conclusions

We presented a novel implementation of the distribution
sweeping paradigm [9] aimed at maximizing both, locality
with respect to local memory reference and inter processor
communication. This method yields optimal solutions for a
number of geometry problems. We consider this as a first
step towards the development of more algorithmic strate-
gies that exhibit high locality with respect to both memory
accesses and communication, which is necessary for effi-
cient software on current parallel architectures.

References

[1] N. Amato, J. Perdue, A. Pietracaprina, G. Pucci, and
M. Mathis. Predicting performance on smp’s. a case study:
The sgi power challenge. InProc. International Parallel and
Distributed Processing Symposium, volume IPDPS 2000,
pages 729–737, Cancun, MEX, 2000.

[2] M. Atallah and J. Tsay. On parallel decomposability of ge-
ometric problems.Algorithmica, 8:209–231, 1992.

[3] G. Bilardi, C. Fantozzi, A. Pietracaprina, and G. Pucci. On
the effectiveness of d-bsp as a bridging model of parallel
computation.Proc. of the Int. Conference on Computational
Science, LNCS 2074:579–588, 2001.

[4] G. Chaudhry, T. Cormen, and L. Wisniewski. Columnsort
lives! an efficient out-of-core sorting program. InProc. of
the 13th ACM Symp. on Parallel Algorithms and Architec-
tures, pages 169–178, 2001.

[5] P. De la Torre and C. Kruskal. Submachine locality in the
bulk synchronous setting. Inroc. of EUROPAR 96, volume
LNCS 1124, pages 352–358, 1996.

[6] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable paral-
lel computational geometry for coarse grained multicom-
puters. International Journal on Computational Geometry,
6(3):379–400, 1996.

[7] X. Du and X. Zhang. The impact of memory hierarchies on
cluster computing. InProc. IPDPS, pages 35–44, 1999.

[8] C. Fantozzi, A. Pietracaprina, and G. Pucci. Implementing
shared memory on clustered machines. In2nd International
Parallel and Distributed Processing Symposium, 2001.

[9] M. Goodrich, J. Tsay, D. Vengroff, and J. Vitter. External-
memory computational geometry. InProc. of the 31stIEEE
Symp. on Foundations of Computer Science, pages 714–723,
1993.

[10] F. Preparata and M. Shamos.Computational Geometry: An
Introduction. Springer-Verlag, 1985.

[11] L. Valiant. A bridging model for parallel computation.Com-
munications of the ACM, 33(8):103–111, 1990.

[12] J. Vitter and E. Shriver. Algorithms for parallel memory I:
Two-level memories.Algorithmica, 12(2/3):110–147, 1994.

6

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS�02)
1530-2075/02 $17.00 © 2002 IEEE

