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Abstract chosen for the application, once such a strategy is fixed,

performance can be considerably enhanced by scheduling
This paper investigates the design of parallel algorith- the operations and choosing the data layout so that expen-
mic strategies that address the efficient use of both, mem-sive communications (e.g., communication among “distant”
ory hierarchies within each processor and a multilevel clus- nodes) and accesses to slow memory levels (e.g., disks) are
tered structure of the interconnection between processors.minimized. This property is usually referred tolasality.
In the past, these phenomena have usually been addressed Over the last two decades, the development of efficient
separately. This paper is a first step towards parallel al- algorithms for large-scale problems requiring high perfor-
gorithmic strategies which address both at the same time.mance computing, and the definition of suitable computa-
As a case study, we investigate the distribution sweepingtional models to support the design and analysis of these
method which has been very effective for the design of exteralgorithms, have addressed the issues related to memory hi-
nal memory algorithms for computational geometry prob- erarchy and parallelism separately. However, as recent stud-
lems. We present a novel method for parallel distribution ies point out [1, 4], in order to attain high performance it is
sweeping on a clustered parallel machine with hierarchical crucial to deal with these aspects in an integrated fashion,
local memories, showing that it yields optimal computation, both at the modelling and at the algorithm design level.
communication and memory access times for a number of The main goal of this paper is to initiate the study of
geometry problems. general algorithmic strategies for high-performance paral-
lel platforms, which take advantage of parallelism while
exhibiting high locality, so to effectively exploit the hier-
1 Introduction archical structure of both the memory and the communi-
cation network. As a first case study, we investigate the

Typ|ca| high_performance Computing p|atforms are distribution sweep paradigm introduced in [9] to develop
characterized by a large number of processing nodes coméefficient external memory algorithms for a family of well-
municating through some interconnection, and by a consid-known computational geometry problems, namely those for
erable amount of storage. The topology of the interconnec-Which the well-knownplane sweepparadigm [10] yields
tion often induces a multilevel clustered structure of the ma- optimalO (n log n) solutions in the standard sequential set-
chine, and the cost of communication between nodes mayting. Classical examples of such problems areasure of
vary considerably depending on the respective clusters theythe union of rectanglesll nearest neighbors3D-maxima
belong to. For these machines, the entire storage is usually2D-weighted dominance countingndlower envelopeWe
distributed among the nodes. Furthermore, the local mem-present a novel implementation of distribution sweeping for
ories at each node are typically organized in a hierarchicalclustered parallel machines with hierarchical memories, and
fashion (cache, RAM, disk). The main factors that affect show that it affords the development of parallel algorithms
the performance of programs running on these p|a’[formsWhiCh exhibit maximum |0C8.|ity with respect to both, the
are the amount oomputation measured by the number interconnection topology and the memory hierarchy, thus
of operations performed at individual nodes, and the dataattaining optimal performance.
movement between nodesofnmunicatiopor between lev-
els of a node’s memory hierarchjnémory acce3s While Previous Work. For some of the classical geometric
the first factor depends on the specific algorithmic strategy problems mentioned above, parallel algorithms were pre-
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sented in [2] which run on a particular parallel architecture BSP) model of computation, introduced in [5] as a vari-
consisting of ad-dimensional array op processors, each ant of Valiant's BSP [11]. A D-BSP consists pfproces-
provided with constant storage, connected to a single con-sor/memory pairsnode$ communicating through some in-
ventional RAM. On such a machine, these algorithms run terconnection network. The nodes are viewed as partition-
in O (nlogn/(p*~'/4logp)) time, thus attaining a speed- able intologp nested levels of clusters, where the nodes
up of © (pl—l/d 1ng) over the standard sequential algo- are able to communicate and synchronize separately within
rithms. In [6], parallel algorithms for the same problems are each cluster. It is argued in [3] that because of the clus-
developed for th&Coarse Grained MulticomputgfCGM). tered structure, the D-BSP exhibits higher effectiveness and
This model, introduced in the same paper, consistswb- portability than BSP (where only one cluster comprising all
cessors each provided with a large memory, which com-nodes is defined) while retaining the same generality and
municate through an arbitrary network. Communication is usability.

achieved exclusively by means fhfrelations where each In order to integrate communication and memory hier-
processor sends/receivesmessages. For inputs of size archy aspects, we extend the original D-BSP by providing
n = (p2) the algorithms run optimally in time propor- each node with a two-level memory hierarchy consisting of
tional to the time required to sontkeys evenly distributed a RAM of size M and a disk with block sizé and block
among the processors. However, the performance of thesd/O-time G. (A detailed definition of the model is given in
algorithms becomes suboptimakif= o(n?). We also note ~ Section 2.) Clearly, the clustered structure of D-BSP com-
that in the CGM model the memory available at each pro- bined with the internal memory hierarchy at each node re-
cessor is flat. wards the development of algorithms with high locality.

As mentioned before, distribution sweep was proposed For this extended D-BSP we devise a novel parallel im-
in [9] as a general method to efficiently implement the plane plementation of the distribution sweeping method by [9].
sweep paradigm on thHearallel Disk Model(PDM) by [12]. Our implementation is a non-trivial generalization of the
The PDM model, consists gf processors communicating one in [9] aimed at maximizing both locality of reference
through some arbitrary network, where each processor is(relatively to local memory accesses) and submachine lo-
provided with an internal memory of sizé/ and one or  cality (relatively inter-processor communication), whereas
more disks with block sizés. Distribution sweep is based only the former type of locality was considered in [9].
on a divide-and-conquer strategy that partitions the plane Qur strategy combines the standard distribution sweep-
into O (M) regions, each containing an equal number of in- ing with an “orthogonal” partitioning method similar to the
put objects, determines the “interactions” between objectsone adopted in [2, 6], organizing the computation and the
across different regions (a task that depends on the specifielata movements so to exploit the hierarchical nature of the
problem to be solved), and then recursively performs the |ocal memories as well as the clustered structure of the ma-
sweep within each region. For the geometric problems men-chine. We show that when bandwidth and latency increase
tioned above, it is shown in [9] that distribution sweep at- geometrically with the cluster size (this scenario captures a
tains an optimad) (n/Blog(n/B)/log(M/B)) number of  wide family of architectures, e.g. multidimensional arrays
disk I/Os, on a single-processor/single-disk machine. like Cray T3E, Intel Paragon, or Beowulf clusters with grid

It must be remarked that although PDM is a multiproces- interconnect) and whein//B = Q (p©) for arbitrary con-
sor model, parallelism is primarily introduced to account for stante > 0 (as is the case for most commercially available
high processing power. Communication is idealized by ig- parallel machines) then our strategy yields optimal solutions
noring the (possibly hierarchical) structure of the intercon- for all of the aforementioned geometric problems to which
nection and the costs related to its bandwidth and latencydistribution sweeping applies, and for all input sizes p.
characteristics. In fact, the main objective of PDM algo- Indeed, the resulting algorithms feature optimal computa-
rithms is to minimize the number of (parallel) disk I/O’s. tion, communication and memory access costs.

In [7], an analytical model is proposed to study
cost/performance tradeoffs for workstation or SMP clus-
ters with internal hierarchies relatively to given programs.
Available benchmarks for FFT and image processing are
employed as case studies. Howver, it must be noted tha2.1 Machine Model
the paper is mainly concerned with the analysis of existing
programs and does not address the use of the model for al-
gorithm design.

2 D-BSP With Hierarchical Local Memories

The D-BSP model was introduced in [5] as an exten-
sion of Valiant's BSP [11] aimed at capturing submachine
locality. The following is the regular version of the model
New Results. In this paper we represent parallel and hier- (referred to asecursive D-BSRn the original paper). Let
archical architectures through tiecomposable BSHD- p be a power of two, and le§ = (g0, 91,-- -, glogp) @and
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L= (o, tq,... ,Elogp)l. A D-BSPis a collection ofp pro- 8, with 0 < «,8 < 1, the analysis will be made for a
cessors communicating through some interconnection fab-D-BSP(p, M, B, G, g™, £)) with gl(a) = (p/2)* and

ric. For0 < i < logp, thep processors are p_artitioned into fz(ﬂ) — (p/2)?, for 0 < i < logp. As noted in [8], these

2 disjoint fixed i-clusters C§”, C{", -+ C{) | of p/2'  values of the parameters capture a wide family of intercon-
processors each, where the processors of a cluster are able f@ections. Also, we make the reasonable assumption that
communicate among themselves independently of the otherys /B — () (p<) for some arbitrary constant > 0, which

clusters. Parameters and/; are related, respectively, to  holds for most commercially available parallel machines.
the bandwidth and latency characteristics of eacluster.

The clusters form a hierarchical, binary decomposition tree 2 2 Algorithmic Primitives
of the D-BSP machine: specificallﬁ]}"“ contains only

processor?;, for0 < j < p ande(.’) = CQ(}“) U Cézfl) Sorting  This primitive involves sorting: > p keys, from
for0 < i < logpand0 < j < 2% a totally ordered universe, which are evenly distributed

We extend the D-BSP model by introducing a two-level among the processors of a D-BSP, M, B, G, g, £7).
memory hierarchy at each node Comprising a RAM of size We assume that at the beginning and at the end of the Sorting
M, with unit access time, and a disk sufficiently large to the keys reside in the nodes’ disks.
hold all relevant data. Data are transferred between RAM
and disk in blocks of sizé3, each block 1/O requiring time . . N 5 . n [loa(®)
G. Also, as typical for most systems, data injected-to or Lsort(1,2) = O(Z(log(3) +p%) +p” + g ilog(%)i G).
received-from the network must pass through the RAM.

A D-BSP computation consists of a sequence of labelled
supersteps. In aitsuperstep0 < ¢ < logp, each pro-
cessor executes internal computation on data held in theMerging  Considerk < p sorted sequences of K keys
local memory system and sends messages exclusively t&ach, with each sequence evenly distributed among/the
processors within its-cluster. The superstep is terminated hodes of a distinc{log K)-cluster. For the purposes of
by a barrier, which synchronizes processors within each this paper, the complexity of merging can be bound from
cluster. It is assumed that messages sent in one superstepPove by that of sorting. However, when all data fit in
are available at the destinations only at the beginning of thethe nodes’ RAMs, hence/p = O (M/B), the following
subsequent superstep. Consider-aaperstep where each tighter bound is easily established using bitonic merging.

processor performs z_it most, operations on data hel(_j in Proposition 2 If n/p — O (M/B) and all relevant data
RAM and at mostu, disk I1/0s, and the messages sent in the are kept in the nodes’ RAMS, then the sorted sequence

superstep form ah-relation (i.e., each processor is source can be merged on a D-BSR, M, B, G g(@ e(ﬂ)) in op-
or destination of at mogt messages) Then, the cost of the timal timeTerge (n, K, p) = O(2p° +pP).

superstep is upper bounded by + w.G + hg; + ¢;. Ob-
serve that ifM is large enough so that all data fit in RAM
and the disks are never used, then the model reduces to th
standard D-BSP.

The above model, which we refer to as D-
BSP(p, M, B,G,g,£), is able to explicity account
for memory hierarchy, communication and computation

costs. These are the dominant factors that impact per-proposition 3 K < M values stored in the RAM of a D-

formance on most parallel platforms [1, 4]. Moreover, BSP(p, M, B, G, g™, £/”)) node can be broadcast to all
although the detailed structure of the interconnection other nodes in tim@,,oadcast (K, p) = O(Kp® + p?).
network is not specified, thus ensuring the generality of the

model, the bandwidth and latency parameters used in the3 Parallel Distribution Sweeping On A D-

cost function are sufficient to ensure efficient support for . . . .
the model on a wide class of architectures [3]. BSP With Hierarchical Local Memories

Although all of the algorithms developed in this paper o ) ) )
are correct for arbitrary vectorg and¢, we will analyze ~_ Distribution sweeping was introduced in [9] as an ef-
their running time for a class of vectors of particular sig- ficient strategy to implement the well-knovpiane sweep

nificance. Specifically, for any arbitrary constantsand ~ Paradigm [10] in the external memory setting. When ap-
plied to a geometric problem, the standard sequential plane

LUnless differently specified, all logarithms are taken to base 2. sweep inVOlYeS sqanning the in_pUt Obj(?CtS in sorted order
2Note that ifh > M we must havevs = Q ([(h — M)/B]). for a given dimension and updating a suitable data structure

Proposition 1 Sorting can be performed in optimal time

Proof. Omitted due to space restrictions. O

groadcast ConsiderK < M values stored at the RAM

of a D-BSP (p, M, B, G, g, £%) node, to be broadcast
to all other nodes. By broadcasting the values to larger and
larger clusters we can obtain the following optimal perfor-
mance.
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(e.g., a search tree) when a new object is encountered. The € S(Yx, ¢, ¢"), we denote byA(s, R) thecover ofs rel-
main idea in [9] is to defin® (M) regions that evenly par-  ative toR, that is, the area of the portion efcovered by
tition the input space, recursively solve the problem in eachrectangles ifR. As shown in [2, 6], the overall ared of
region, and account for the interaction of objects across dif- the union of the rectangles R is given by

ferent regions. The latter task can be accomplished by sim-

ply scanning the input objects and using suitable data struc- A= Z A(s,R). Q)
tures whose size is proportional to the number of regions, S€S (YR £/ 0)

so that they fit in RAM. As discussed in [9] this strategy ) )

optimizes the number of disk 1/Os. Hence, the computation ¢f reduces essentially to the com-

In this section we present a novel parallel distribu- putation of the stripe covers, which we describe below.

tion sweeping method for a D-BSP with hierarchical lo-

cal memories. Our method minimizes both the number of Computation of the stripe covers

disk I/Os and, at the same time, the communication costs . . I

for an assumed hierarchical interconnection fabric. The W€ present the computation of the St”pe,, covers within a
main idea is the following. Consider a geometric prob- sl_|ghtly more general setting. Lel < £ be two ar-
lem, to be solved via parallel distribution sweeping on a D- bitrary abscissae on the plane and 7etbe a set ofn .
BSP (p, M, B, G, g, £). We partition the input objects into rectangles, where each rectangle has at least one verti-

. : | edge in the portion of the plane delimited Byand

K = min{n/p, M/B} subsets (e.g., through vertical slabs ca .
in the plane), and recursively solve the subproblem associ-g//' Procedure STRIPE-COVEI@B. 0,0, L), de;crlbgd
below, computes the covers relativeTfor all stripes in

ated with each subset. K < p we assign each subproblem M D-BSP

to a distinct(log K)-cluster (withp/K processors); oth- S(Yr, &, ¢ ),qna -BSP(p, M, B,G, g.¥£). .

erwise we assigp/ K subproblems to each processor. In For convenience, we assume that for every vertical edge
H / 1/ 1

this fashion, the clustered structure of the machine is suit-¢ ofa rgctang]eR € R at. abscissa. < [¢', "], the pair

ably exploited. Then, in order to account for the interac- (we, 1) is provided in the input to the procedure (hence, we

tions among objects across different subsets, we employ ad""@y have two pairs in the input for a rectangle). Moreover,
“orthogonal” partitioning of the inputs and of data result- we assume that the pairs are given in sorted order of their

ing from the recursive calls into new subsets of zek) first components. This requires a sorting step prior to the
(e.g., through horizontal slabs in the plane), in such a W‘,ﬂymvoc.atmn of the procet;iure. The o/utE)/ut of the procedure
that all interactions be computable independently, hence in,ConSIStS O,f the set qf stripes H(YR’,K A7), S‘?”ed agcorq-
parallel, for the new subsets. This partitioning is similar to ing to their top ordinate, each stripeassociated with its
the one adopted in [2, 6]. The choice Kfensures that the ~ COVer4(s: R).

work on each new subset can be entirely done in a node’s Procedure STRIPE-COVERSR, p, £/, ")

RAM, and that at any time no processor holds (hence sends

or receives) more tha® (n/p) data. The following case

studies explain out methodology in more detail. If (p = 1 and n = O(M)) compute the stripe covers in

RAM through a standard plane sweep. Else, do the follow-

. ing:
3.1 Measure Of The Union Of Rectangles Step 1: Let K = »min{n/p, M/B}, for a suitable con-
stant0 < v < 1. Partition the portion of the plane between
Let R be a set ofn isothetic rectangles in the ¢ and¢” into K vertical slabsV;, Vs, ..., Vi, such that the

(z,y)-plane, evenly distributed among the nodes of a D- vertices of the rectangles iR falling in such a portion are
BSP(p, M, B,G, g,£), and initially stored at the nodes’ evenly distributed among these slabs. Kat, 1 < i < K,
disks. TheMleasure of Union of Rectangl@gdUR) problem denote the subset of rectangles7fwith vertices inV;.
requires finding the area covered by the union of these rect(Note that a rectangle may have vertices in two slabs.) Let
angles. For convenience, we make the standard assumptioff = ¢; < fy < --- < {1 = £” be such that slap; is de-
that no two rectangles have vertices at the same abscissa dimited by the lines at abscisségand?; 1, for1 <i < K.
at the same ordinate. Send the set of absciss§g : 1 < i < K + 1} to the

Let Y denote the set ofn ordinates of the vertices first DBSP node and then, from this node, broadcast the set
of the rectangles ifkR. Let also/’ and ¢’ denote the to all other nodes.
leftmost and rightmost abscissae, respectively, of the ver-Step 2: (recursive step) If K < p, then, for
tices of these rectangles. The tripl&%, ¢, ¢"”) defines 1 < ¢ < K in parallel, recursively execute STRIPE-
2n — 1 rectangulastripeson the plane, each stripe delim- COVERSRy;,,p/K, ¢;,¢;+1) on thei-th (log K)-cluster.
ited by pairs of consecutive ordinates¥® and by¢’ and Else (K > p), for1 < j < pin parallel, recursively exe-
. Let S(Yr, ¢, ¢") denote the set of these stripes. For cute STRIPE-COVER®&R v, 1,¢;,¢;+1), at thej-th DBSP
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node, foreveryj —1)K/p < i < jK/p. Note thatin either ~ hence each node receiv@gn/p) data, overall.

case, each DBSP node deals willin/p) data. Step 8: Do the following at every D-BSP node, in par-
Step 3: Partition the plane int@n/K horizontal slabs  allel. For everyH; assigned to the node and for every
Hy,H,,..., H,y, Kk suchthat each slab contains exadily s € S(Yg, /', £") falling within H;, computeA(s, R), in
ordinates oftz. Forl < j < 2n/K, let Ry, denote the sorted order by top ordinate. This is accomplished as fol-
subset of rectangles @& with vertices inH;, and note that  lows. Forl <i < K, the node first determines whether box

|Ru,| < K. Lethy > hy > .-+ > hoy 41 be such B, ; is entirely covered by some rectangle. This requires a
that slabH; is delimited by the lines at ordinatdg and scan of the value¢b; ; : 1 < i < K} available at the
hjt1, for1 < j < 2n/K. Thesety = {h; : 1< node. Corresponding to every box entirely covered by some

j < 2n/K + 1}, which defines the horizontal slabs, can rectangle, a special stripe is created whose cover coincides
be determined by merging the sorted sequences of stripesvith the entire area of the box. Also, for every rectangle in
resulting from the recursive calls of the previous step, so Rz, spanning entirely one or more vertical slabs, a special
that each node determiné®:/ K) /p ordinates ofy". (Note stripe is created corresponding to the portion relativé/fo

that the choice ofs implies2n/K > p.) The horizontal  and to the vertical slabs entirely spanned by the rectangle,

and vertical slabs defirn boxes namelyB; ; = V; N Hj, whose cover coincides with the area of this portion. Then, a
forl <i¢i< Kandl <j<2n/K. sweep is performed through the stripess (J, ;.5 Si,;
Step 4: If K < p, then broadcasty to ev- and the special stripes (all sorted by ordinate). At each

ery (log K)-cluster, each node of the cluster receiving sweep step, a suitable segment tree of §)Ze(), whose

O ((n/K)/(p/K)) = ©(n/p) ordinates in sorted order. leaves correspond to the vertical slabs, is updated based on
If instead X > p, broadcast” to every node. Note that, the cover associated with the stripe being processed. Note
in the latter case each node recei®@§:/K) = O (n/p) that O (K) data are required, overall, for the computation
ordinates. relative toH;. Hence, if the constant in the definition of
Step 5: Forl < i < K, determineA(s, Ry;) for every K is suitably chosen, such a computation can be entirely
stripes € S(Yr,, UY,{;,£;11). To do so, the stripes and ~ done in the node’s RAM.

the corresponding covers produced by the recursive calls of

Step 2 are first moved back to their positions at the end of Analysis

that step. Then, for every < ¢ < K the new stripes in-

duced byy, UY are determined by scanning concurrently L&t Tvur(n, p) denote the time required by the algorithm
the stripes inS(Yx, , 4, ¢;+1) and the se¥”. Computing to compute the area of the union ofrectangles on a D-
the new covers is straightforward. & < p, each(log K )- BSP(p, M, B, G,g', 7). Let Tsc(m,q) denote the
cluster, in parallel, will do the computation for a distingt ~ funning time of procedure STRIPE-COVERS when in-

while if K > p, each node, in parallel, will do the compu- Voked for a set ofm rectangles, on a cluster qf < p
tation for i /p values ofi. processors of a D-BSPp, M, B, G, g@, £#)). Based on

Step 6: Foreveryl < i < K and1 < j < 2n/K, de- Equation 1 and recalling that procedure STRIPE-COVERS
termine the numbek; - of boxesB.: .. with # < i V\;hiCh requires the input rectangles sorted by the abscissae of their
] 1,9 3

are entirely covered by rectanglesTy,. This is accom- vertical edges, we have that
plished by a vertical sweep of the rectanglesiaf,, em-
ploying a segment tree with— 1 leaves associated with the
vertical slabs to the left of/; (see [10] for the definition Lemma 1 If M/B — Q (p°), for some arbitrary constant
and the properties of segment trees). Note that this requires > - 0, then for everyn > p, we haveTsc(n,p) —
the rectangles ifRy, to be sorted by the ordinate of their ' ’

top edges. The sorted order can be easily derived by that ofO sort T, P

Tvur(n,p) = O (Tsors (0, p) + Tsc(n,p)).  (2)

the stripes inS(Yr,, , (i, £i+1). As in the previous step, it p,qt Omitted due to space restrictions. O

K < p, each(log K)-cluster, in parallel, will compute all

of theb, ;'s for a distincti, while if K > p, each node, in The following theorem is an immediate consequence of
parallel, will compute all of thé; ;s for K/p consecutive  ihe above lemma and Equation 2.

values ofi.
Step 7: Forl <i < Kandl <j < 2n/K, letS,; be Theorem 1 If M/B = Q(p®), for some arbitrary con-
the set of stripes i¥(Yr,, UY,¥;,£;+1) which fall within stante > 0, then for everyn > p Tyur(n,p) =
H;. Forl <j <2n/K, let the[j/(2n/(Kp))]-th D-BSP O (2 (log(n o B4 n | logn/B)

p) +p°)+p° + XY G).
node be in charge off;, and send the following three sets (p( 5(n/) ) By LOg(M/BJ )
of data to such a nOdé'RHj: {bi; + 1<i< K}, and The optimality of our method follows from Proposi-
UK, S:;. Note that each of the three sets has §izgx ), tion 1.

YF]',F.

Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’02) COMPUTER
1530-2075/02 $17.00 © 2002 IEEE SOCIETY



3.2 Other Problems Theorem 5 For everyn > p the 2D-weighted dominance
counting problem can be solved in time

T n o n log(n/B
Due to space I|m|tat|o!"|s, we can onligt our_reg,ults_ ) (;(log(n/p) +p®) +p° + B [%W G).
for other problems to which our new parallel distribution ) o
sweep method applies. For the remainder of this subsec.Proof. Omitted due to space restrictions. .

tion, we assume that the inputs are evenly distributed )
among the nodes of a D-BS@, M, B,G, g, £?) and 4 Conclusions
thatM /B = Q (p©), for some arbitrary constaat> 0.

We presented a novel implementation of the distribution
sweeping paradigm [9] aimed at maximizing both, locality
with respect to local memory reference and inter processor
communication. This method yields optimal solutions for a
number of geometry problems. We consider this as a first
step towards the development of more algorithmic strate-

e 9dies that exhibit high locality with respect to both memory

All Nearest Neighbors Let S be a set ofr points on the
plane. For eacly € S the problem requires to find the
closest point NNg) € S\ {¢}.

Theorem?2 For every = > p the all near-
est neighbors problem can be solved in tim

n o 5, n log(n/B)w ) accesses and communication, which is necessary for effi-
© (P(log(n/p) )+t Bp Log(M/B> G). cient software on current parallel architectures.
Proof. Omitted due to space restrictions. O References
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