
Parallel Dynamic Programming for Solving the String
Editing Problem on a CGM/BSP

C. E. R. Alves
FTCE - Universidade São

Judas Tadeu
São Paulo, SP - Brazil

prof.carlos r alves@usjt.br

E. N. Cáceres
∗

Universidade Federal de Mato
Grosso do Sul

Campo Grande, MS - Brazil

edson@dct.ufms.br

F. Dehne
†

School of Computer Science
Carleton University

Ottawa, Canada K1S 5B6

frank@dehne.net

ABSTRACT
In this paper we present a coarse-grained parallel algorithm
for solving the string edit distance problem for a string A
and all substrings of a string C. Our method is based on a
novel CGM/BSP parallel dynamic programming technique
for computing all highest scoring paths in a weighted grid
graph. The algorithm requires log p rounds/supersteps and

O(n2

p
logm) local computation, where p is the number of

processors, p2 ≤ m ≤ n. To our knowledge, this is the
first efficient CGM/BSP algorithm for the alignment of all
substrings of C with A. Furthermore, the CGM/BSP paral-
lel dynamic programming technique presented is of interest
in its own right and we expect it to lead to other parallel
dynamic programming methods for the CGM/BSP.

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms

Keywords
Parallel algorithms, string editing, dynamic programming,
CGM, BSP

∗Partially supported by CNPq and FINEP-PRONEX-SAI
Proc. No. 76.97.1022.00.†Partially supported by the Natural Sciences and Engineer-
ing Research Council of Canada.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPAA’02, August 10-13, 2002, Winnipeg, Manitoba, Canada.
Copyright 2002 ACM 1-58113-529-7/02/0008 ...$5.00.

1. INTRODUCTION
Molecular Biology is an important field of application for

parallel computing. Sequence comparison is among the fun-
damental tools in Computational Molecular Biology and is
used to solve more complex problems [14], including the
computation of similarities between biosequences [11, 13,
15]. Beside such Molecular Biology applications, sequence
comparison is also used in several other applications [8, 9,
17]. The notions of similarity and distance are, in most
cases, interchangeable and both of them can be used to in-
fer the functionality or the aspects related to the evolutive
history of the evolved sequences. In either case we are look-
ing for a numeric value that measures the degree by which
the sequences are alike or different.
We now give a formal definition of the string editing prob-

lem. Let A be a string with |A| symbols on some fixed size
alphabet Σ. In this string we can do the following edit op-
erations: deletion, insertion and substitution. Each edit op-
eration is assigned a non negative real number representing
the cost of the operation: D(x) for deletion of a symbol x;
I(x) for insertion of a symbol x and T (x, y) for the exchange
of the symbol x with the symbol y. An edit sequence σ is
a sequence of editing operations and its cost is the sum of
the costs of its operations. Let A and C be two strings with
|A| = m and |C| = n symbols, respectively, with m < n.
The string editing problem for input strings A and C con-
sists of finding an edit sequence σ′ of minimum cost that
transforms A into C.

m

n

Figure 1: Grid DAG G

The cost of σ′ is the edit distance from A to C. Let
E(i, j) be the minimum cost of transforming the prefix of

275

G(
√

p,1) G(
√

p,2) G(
√

p,
√

p)

G(2,1) G(2,2) G(2,
√

p)

G(1,1) G(1,2) G(1,
√

p)

G(i,j)m

n




g(i−1) m√
p +1,(j−1) n√

p +1 g(i−1) m√
p +1,(j−1) n√

p +2 · · · g(i−1) m√
p +1,j n√

p

g(i−1) m√
p +2,(j−1) n√

p +1 g(i−1) m√
p +2,(j−1) n√

p +2 · · · g(i−1) m√
p +2,j n√

p

...
...

. . .
...

gi m√
p ,(j−1) n√

p +1 gi m√
p ,(j−1) n√

p +2 · · · gi m√
p ,j n√

p




m √
p

n√
p

L(i,j)

T(i,j)

R(i,j)

B(i,j)

Figure 2: Processor P(i,j) Stores the Submatrix G(i,j)

A of length i into the prefix of C of length j, 0 ≤ i ≤
m, 0 ≤ j ≤ n. It follows that E(i, j) = min{E(i − 1, j −
1) +T (xi, yj), E(i− 1, j) +D(xi), E(i, j − 1)+ I(yj)} for all
i, j, 1 ≤ i ≤ m, 1 ≤ j ≤ n.
It is easy to see that the string editing problem can be

modeled by a grid graph [1, 12] (Figure 1). An (m,n) grid
graph G = (V,E) is a directed acyclic weighted graph whose
vertices are (m + 1) × (n+ 1) points of the grid, with rows
0 . . .m and columns 0 . . . n. Vertex (i, j) has a directed edge
to (i+1, j), (i+1, j +1), and (i, j +1), provided that these
endpoints are within the boundaries of the grid [12].
In [14] the authors describe how to obtain the similar-

ity (alignment) between two strings by using string editing.
Assuming a similarity score that satisfies the triangle in-
equality, the similarity problem can be solved by computing
the largest source-sink path in the weighted directed acyclic
graph G (grid dag) that corresponds to the edit sequence
which transforms A into C.
The standard sequential algorithms for the string editing

problem are based on dynamic programming. The complex-
ity of these algorithms is O(mn) time. Given the similarity
matrix, the construction of the optimal alignment can be
done in O(m+n) sequential time [14]. Parallel dynamic pro-
gramming is a well studied topic. Efficient parallel PRAM
algorithms for dynamic programming have been presented
by Galil and Park [5, 6]. PRAM algorithms for the string
editing problem have been proposed by Apostolico et al [1].
A general study of parallel algorithms for dynamic program-
ming can be found in [7].
In this paper we study parallel dynamic programming

for the string editing problem using the BSP [16] Coarse
Grained Multicomputer (CGM) [3, 4] model. A CGM con-
sists of a set of p processors P1, . . . , Pp with O(N/p) lo-
cal memory per processor, where N is the space needed by
the sequential algorithm. Each processor is connected by
a router that can send messages in a point-to-point fash-
ion. A CGM algorithm consists of alternating local com-

putation and global communication rounds separated by a
barrier synchronization. A round is equivalent to a super-
step in the BSP model. Each communication round consists
of routing a single h-relation with h = O(N/p). We require
that all information sent from a given processor to another
processor in one communication round be packed into one
long message, thereby minimizing the message overhead. In
the CGM model, the communication cost is modeled by the
number of communication rounds. The main advantage of
BSP/CGM algorithms is that they map very well to stan-
dard parallel hardware, in particular Beowulf type processor
clusters [4].
The main concern is on the communication requirements.

Our goal is to minimize the number of communication rounds.
We present a CGM/BSP algorithm for solving the string

edit distance problem for a string A and all substrings of a
string C via parallel dynamic programming. An O(n2 logm)
sequential algorithm was presented in [12] (to solve the all
approximate repeats in strings problem). This problem also
arises in the common substring alignment problem [10]. The

method requires log p rounds/supersteps and O(n2

p
logm)

local computation. To our knowledge, this is the first effi-
cient CGM/BSP algorithm for this problem.
Furthermore, the CGM/BSP parallel dynamic program-

ming technique presented is of interest in its own right. We
expect that our result will lead to other parallel dynamic
programming methods for the CGM/BSP.

2. A CGM ALGORITHM FOR COMPUT-
ING ALL HIGHEST SCORING PATHS
IN O(logP) ROUNDS

In this section we present a parallel algorithm for com-
puting all highest scoring paths (AHSP) in weighted (m,n)
grid graphs using a CGM with p processors and mn

p
local

memory per processor. Using this method, we can find an

276

optimal alignment between A and C.
We divide the grid graph G into p subgrids G(i,j), 1 ≤

i, j ≤ √
p, of size (m√

p
× n√

p
) and each processor P(i,j) stores

subgrid G(i,j) (Figure 2).
Let the left boundary, L, of G be the set of points in the

leftmost column. The right, top and bottom boundaries, R,
T and B, respectively, are defined analogously. The bound-
ary of G is the union of its left, right, top, and bottom
boundaries (L ∪ R ∪ T ∪ B).
Let DISTG(i,j) be a m+n−1√

p
× m+n−1√

p
matrix contain-

ing the lengths of all shortest paths that begin at the left
(L(i,j)) or top (T(i,j)) boundary of G(i,j), and end at the right
(R(i,j)) or bottom (B(i,j)) boundary of G(i,j). The matrix
DISTG(i,j) consists of four submatrices L(i,j) ×R(i,j) (stor-
ing all the shortest paths that begin at the left boundary and
end at the right boundary of G(i,j)), L(i,j)×B(i,j) (storing all
the shortest paths that begin at the left boundary and end
at the bottom boundary of G(i,j)), T(i,j) ×R(i,j) (storing all
the shortest paths that begin at the top boundary and end
at the right boundary of G(i,j)) and T(i,j) × B(i,j) (storing
all the shortest paths that begin at the left boundary and
end at the bottom boundary of G(i,j)). Using the algorithm
of Schmidt [12], each processor can compute all distances of
the paths from the left and top boundaries to the right and
bottom boundaries in G(i,j) in time O(mn

p
log m√

p
).

The general strategy of our CGM/BSP algorithm is as fol-
lows: In the general step of the algorithm, several processors
collaborate to join previously calculated subgrids. At the be-
ginning of each step, each subgrid has a distance matrix dis-
tributed among a group of processors. Two neighbor grids
are joined by the processors that hold the two distance ma-
trices, resulting in a new distance matrix distributed among
these processors. Each step of the algorithm reduces by a
factor of 1/2 the number of subgrids remaining to be merged.

2.1 Joining Grids
We will now show a sequential algorithm to join two adja-

cent grids with a common horizontal boundary. The case of
a common vertical boundary is analogous. In the next sub-
section we will show how the distance matrices of two grids
of size l× k, each stored in q processors, can be used by the
2q processors to build the distance matrix of the (2l−1)×k
size merged grid. This procedure takes time O((l + k)2/q)
(provided that q is small compared to l and k) and a con-
stant number of communication rounds. Each round trans-
fers O((l+k)2/q) data from/to each processor and the local
memory required by each processor is O((l + k)2/q).
For simplicity, we will refer the upper grid as Gu, with

boundaries Lu, Tu, Bu and Ru, and the lower grid as Gl,
with boundaries Ll, Tl, Bl and Rl. We will refer to the
distance matrices for the upper, lower and final grids as
DISTu, DISTl and DISTul, respectively. It is important
to note that the size of the resulting distance matrix can
be different from the total size of the two original distance
matrices. However, when four grids are joined in a 2 × 2
configuration the sizes add up precisely.
Let t = l + k − 1. Each initial distance matrix is stored

as a t × t matrix evenly distributed among q processors
(the −1 in the definition of t accounts for the top left and
bottom right corners). The q processors that store DISTu

(Pu1, Pu2, . . . , Puq) will store consecutive columns of DISTu.
The q processors that store DISTl (Pl1, Pl2, . . . , Plq) will

store consecutive rows of DISTl. Note that the distance
matrices are actually banded matrices and that a great por-
tion of these matrices will not be involved in the joining
operation.
Figure 3 illustrates which parts of the old matrices are

copied and which parts are used to build the new matrix.
The copied parts will require some redistribution at the end
of the step. We will concentrate on calculating the t× t sub-
matrix of DISTul. The shaded areas illustrate the regions
where no paths exist. The submatrices effectively involved
in the calculations have a thicker border.

Lu

Tu

Bu Ru

Ll

Tl

Bl Rl

Tu

Lu

Ll

Bl Rl Ru

D3 × D7 D3 × D8 D4

D1 × D7 D1 × D8 D2

D5 D6

D1 D2

D3 D4

D5 D6

D7 D8

DISTu DISTl

DISTul

Figure 3: Matrices DISTu, DISTl, and DISTul.

The existence of the unused (shaded) parts in the distance
matrices has an impact on some constants in the paper, but
is not important to our results. Therefore we will ignore it
for simplicity.
To define indices to the interesting part of DISTul let

us concentrate on the paths from Lu ∪ Tu to Bl ∪ Rl. All
these paths cross the common boundary Bu = Tl. Let S
(sources) be the sequence si, i = 1, 2, . . . , t of points of Lu ∪
Tu beginning at the lower left corner of Lu and ending at
the top right corner. Let D (destinations) be the sequence
di, i = 1, 2, . . . , t of points of Bl ∪ Rl starting at the lower
left corner of Gl and ending at the top right corner. Let
M be the (middle) sequence mi, i = 1, 2, . . . , k of points of
Bu = Tl, taken from left to right (Figure 4). We will denote
by m(i, j) the index k of the leftmost point mk that belongs
to an optimum path between si and dj . If there is no such
path, then m(i, j) = −1 (this value will be used as a sentinel,
with no other meaning).
The determination of a single m(i, j) involves a search

through the entire sequence M to find the x that minimizes
DISTu(i, x) + DISTl(x, j), but we can use previously cal-
culated results to restrict this search, using the following

277

Ll

Tl

Rl

Bl

Gl

Lu

Tu

Ru

Bu

Gu

si

m0 m1 m2 mi

dj

Figure 4: Merging Gu and Gl

Monge properties [1, 12]:

Property 1. If i1 < i2 then m(i1, j) ≤ m(i2, j) for all
valid j.

Property 2. If j1 < j2 then m(i, j1) ≤ m(i, j2) for all
valid i.

Basically, these properties imply that two optimum left-
most paths that share a common extremity cannot cross.
The proof is based on the fact that we can take two cross-
ing paths and exchange parts of them to build even better
paths, or build a path that is more to the left.
Hence, if we know m(i1, j) and m(i2, j) for certain i1 < i2

and j, for all i between i1 and i2 we can search for m(i, j)
between m(i1, j) and m(i2, j). Furthermore, if for a certain
j we have m(i, j) for all i in a sequence 1 < i1 < i2 < . . . <
ir < k we can calculate m(i, j) for one value of i in each
interval of the sequence using only one sweep through M in
O(k+ r) time and doubling the number of known paths. In
this operation, that we will call sweep, we use several rows of
DISTu and the jth column of DISTl. A similar procedure
can be used to calculate m(i, j) for several values of j.
These properties lead to the following sequential algo-

rithm to obtain the new distance matrix. This algorithm
will be the base for our parallel algorithm. It is based on
a recursive version presented in [1]. We will calculate and
use all m(i, j), calculating the distance between si and dj in
the process. At each step, we will begin with some marked
points in the sequences S and D, such that if si and dj

are marked then m(i, j) is already known. The intervals
between marked points contain points not yet used in the
computations. At each step, we pick the middle point of
each interval and mark it, calculating all the required paths
and crossing points. We begin with only the extremities of
S and D being marked.

Algorithm 1. Sequential Merge of DISTu and DISTl

Input: Two distance matrices DISTu and DISTl.
Output: DISTul

(1) m(1, 1) = 1, m(1, t) = 1, m(t, 1) = −1, m(t, t) = k;
(2) Mark s1, st, d1, dt;

(3) DO

(3.1) Take the middle point of each of the remain-
ing intervals in S and calculate the paths to all
marked points in D;

(3.2) Take the middle point of each of the remain-
ing intervals in D and calculate the paths to all
marked points in S;

(3.3) Take the already used middle points in S and D
and calculate the paths between them. Mark all
these points;

WHILE there are unmarked points
— End of Algorithm —

Theorem 1. Algorithm 1 requires Θ(kt+t2) (sequential)
time.

Proof. Step 3.1 makes one sweep for each marked point
in D. This requires time Θ(kr + r2) where r is the number
of marked points in D. Step 3.2 also requires time Θ(kr +
r2). Step 3.3 can be done in time Θ(kr + r2) with a sweep
for each (now) marked point in D. It is not hard to see
that the loop is executed for Θ(log t) iterations. The value
of r approximately doubles at each iteration, from 2 to t.
Hence, it follows that the total time for this algorithm is
Θ(kt + t2).

2.2 Parallelizing the Join Operation
We will now show how Algorithm 1 can be modified to

compute DISTul on a CGM. The natural way to parallelize
this algorithm is to make each processor determine a differ-
ent part of DISTul, but the division of DISTu and DISTl to
accomplish this is data dependent. Our solution is based on
a dynamic scheduling of blocks of DISTul to the processors.
The CGM version of Algorithm 1 has three main phases:

determination of the subproblems and of the used parts of
DISTu and DISTl, determination of the scheduling of the
subproblems, and solution of the subproblems.
We will now adapt Algorithm 1 to calculate all distances

between points in an interval S′ of S (from i1 to i2) and
points in an interval D′ of D (from j1 to j2). Both intervals
have size t′, so i2 = i1+t′−1 and j2 = j1+t′−1. Assume that
m(i1, j) and m(i2, j) are already calculated for all j, j1 ≤ j ≤
j2, and m(i, j1) and m(i, j2) are already calculated for all
i, i1 ≤ i ≤ i2. In other words, we already know the solution
for the borders of this subproblem. The most important
difference between this subproblem and the entire problem
is that only a part of each matrix DISTu or DISTl is used.
The shapes of these parts are irregular as shown in Figure 5.
Hence, in order to make a sweep for one point in S′ (or
D′) we sweep a segment of one row of DISTu (a segment
of one column of DISTl). The running time of the sweep
is determined by the size of this segment and is therefore
variable, and so is the total running time of the subproblem.
The sizes of all the necessary segments can be calculated in
time O(t), and we know how many times the algorithm will
sweep each segment. Thus, the total running time of the
subproblem can be estimated.
The complete problem can be divided in several subprob-

lems and solved in parallel by 2q processors. To do this, let
us divide S and D into 2q equal segments of size t′ = t−1

2q
+1

(we suppose, for simplicity, that t′ is an integer) that overlap
only in the extremities. This will lead to 4q2 subproblems

278

grid U

grid L

t1 t2

t3 t4

i1

i2

j1

j2

DISTu

i1

i2

t1 t2 t3 t4

DISTL

j1 j2

t1

t2
t3

t4

Figure 5: Data required to compute a block of DISTul

which will be distributed among the 2q processors. In fact,
some of these subproblems, involving Tu and Bl, will be
empty. We will omit this for now, because this will not
be significant to the asymptotic performance. For now, we
will work with 4q2 subproblems, instead of the more nat-
ural quantity q2, in order to distribute the workload more
evenly. At the beginning, the CGM/BSP algorithm for the
entire problem calculates the m(i, j) for all (i, j) that be-
long to any subproblem boundary. That implies calculating
2q+1 equally spaced rows and 2q+1 equally spaced columns
of DISTul and associated m(i, j).

Lemma 1. All values of DISTul(i, j) with i − 1 or j − 1
multiple of t′ − 1 and the corresponding values of m(i, j)
can be calculated in parallel by the 2q processors that store

DISTu and DISTl in time O(k log t
q
+ qt) and space O(t2

q
),

with two communication rounds, where O(qt) data is sent/re-
ceived by each processor.

Proof. Processors Pl1, Pl2, . . . , Plq (that store DISTl dis-
tributed by rows) will calculate the 2q + 1 rows. Each one
knows the lengths of the paths from an interval of points
in M to all points in D. Hence, they need to receive from
Pu1, Pu2, . . . , Puq the length of the paths from the chosen
2q + 1 points of S (a sample of S) to the same interval in
M . They also send information to allow Pu1, Pu2, . . . , Puq

to calculate the 2q+1 required columns of DISTul. For this
communication, each processor sends/receives O(k) data.
With these data, each processor from Pl1, Pl2, . . . , Plq cal-

culates the paths from the sample of S to D, using a vari-
ation of Algorithm 1. Since t � 2q + 1, the running time
of this step will be dominated by the last log(t

2q
) iterations

of the loop, when all points in the sample of S are marked
and several in D are not. Each iteration will make 2q + 1
sweeps of a segment of size k

q
. The total running time is

O(k log(t/q)).

Each processor among Pl1, Pl2, . . . , Plq now has versions
of all the paths (with lengths and crossing points) from the
sample of S to D, each one considering only crossings at
a certain interval of M . To calculate the better paths, D
is partitioned into q equal intervals, and each processor re-
ceives all q versions of paths to all points in a certain interval
(2q + 1 paths to t/q points). Each processor sends/receives
O(qt) data and spends O(qt) time in a näıve search, or O(t)
time using Monge properties to avoid searching through all
versions of a path. We will omit the details for the latter
due to lack of space. This concludes the procedure.

Each processor among Pl1, Pl2, . . . , Plq now stores infor-
mation about 4q of the 4q2 subproblems: the m(k, x), m(k+
t′ − 1, x) frontiers of each subproblem, as previously de-
scribed, that define the part of DISTl that is used by each
subproblem. Pu1, Pu2, . . . , Puq will contain information about
the m(x, k) and m(x, k + t′ − 1) borders of the subprob-
lems that define the usage of DISTu. These processors will
not contain the actual data necessary to process these sub-
problems, just the information about their borders. This
information is sent to the proper processors, so each one
will identify which of its data is used in which subproblem.
Besides that, this information will be used to estimate the
time/space requirement for each subproblem.

2.3 Scheduling Subproblems to Processors
As commented earlier, to solve each subproblem, Algo-

rithm 1 sometimes sweeps a segment of a row from DISTl

and sometimes sweeps a segment of a column from DISTu.
The estimated running time of the subproblem can be di-
vided in an estimation based on the used parts of DISTl

and other based on the used parts of DISTu. This running
time can thus be estimated by the efforts of two processors.
The same will apply to the total memory necessary to store
the needed parts of DISTu and DISTl. Each processor then
takes O(t′) time to work on their estimations for one sub-

279

problem, O(4qt′) = O(t) to work on 4q subproblems. Then
all processors send its time/space estimation to a single pro-
cessor, say Pu1, that receives and processes O(q2) data.
Now, we need to distribute the 4q2 subproblems to the 2q

processors. The objective of this distribution is to minimize
the completion time by balancing the load on all processors.
This is a special case of the well known, NP-hard, multipro-
cessor scheduling problem. In our case, we have an addi-
tional restriction on the space required by all subproblems
assigned to a single processor because we have to perform
the entire distribution in a single communication round. In
the following, we present a solution which ensures that the
claimed time and space bounds are met.

Lemma 2. The 4q2 subproblems can be scheduled among

2q processors in time O(q2 log q), resulting in O(t2

q
) space

and time requirements for each processor.

Proof. Since the subproblems overlap only at the bor-
ders, the total space required is Space = O(t2). In the worst
case, one subproblem will require entire columns and rows,
or Space/2q. The total running time of all subproblems is
more difficult to calculate, because the sweeps along seg-
ments of rows or columns take different times. Let us con-
sider the case of DISTl: If we get the 2q subproblems that
are vertically aligned in DISTl, then they all use the same
sweeping pattern for their segments of columns of DISTl.
As all these segments add up to size t, the total running
time of these sweeps will be basically the same as the run-
ning time for these sweeps in the sequential algorithm. The
final conclusion is that T ime, the sum of the running times
of all the subproblems, is approximately equal to the run-
ning time of the sequential algorithm, which is O(t2). In the
worst case, one subproblem will run in T ime/2q.
To guarantee that each processor will spend O(t2/q) time

and need O(t2/q) space, we calculate a cost for each pro-
cessor, equal to the sum of its time and space requirements.
The sum of all these costs is Cost = O(t2). The problem
is to distribute the subproblems among all processors. The
local cost at a processor is the sum of the costs of all subprob-
lems assigned to it. We will try to minimize the maximum
(among all processors) local cost. Since the maximum cost
that a subproblem can have is Cost/2q, the maximum local
cost cannot be greater than the minimum local cost plus
Cost/2q, or it would be possible to reassign subproblems in
a better way. Hence, the optimum solution has cost less than
Cost/q (twice the cost of the best possible solution). Using
a list scheduling heuristic, allocating in a greedy way the
most costly subproblems first, we obtain a solution that has
cost 4/3 of the optimum solution [2]. Hence, the maximum
local cost will be less than or equal to 4Cost/3q = O(t2/q).
Since this cost is the sum of the space and time require-
ments, all processors will require O(t2/q) time and O(t2/q)
space to solve its subproblems. This scheduling is calculated
by Pu1 in time O(q2 log q), where this time is dominated by
the required sorting of the subproblems.

Once the assignment is established, processor Pu1 broad-
casts this information to all other processors (O(q3) data
sent). Each processor then sends its data to the proper pro-
cessors and receive the data of the subproblems assigned to
it. This is a complicated communication step that will re-
quire considerable bookkeeping, but the total data sent/re-
ceived is O(kt/q) per processor. Finally, each processor

solves its subproblems, generating a t′ × t′ submatrix of
DISTul for each subproblem. The space required by the
data from DISTl and DISTu can be discarded as the sub-
problems are solved. Once the subproblems are solved, a
last communication step redistributes the submatrices of
DISTul in a way that will be adequate to join the new grid
with its neighbor (to the left or to the right).

Theorem 2. If a (2l−1)×k (or l×(2k−1)) grid has two
l×k halves, and the distance matrix of each half is distributed
in the local memories of a different set of q processors, then
it is possible to calculate the distance matrix of the full grid
in parallel with the 2q processors given in time O((l+k)2/q)
and a constant number of communication steps. The local
memories and the total data sent/received in each step by
one processor is O((l + k)2/q).

The theorem follows from the algorithm described above.
The total communication required consists of the follow-
ing steps: (1) Distribution of the samples of S and D to
allow the processors to start calculating the boundaries of
the subproblems. (2) Distribution of the tentative lengths
and crossing points of the paths determined in the previ-
ous step. Each processor concentrates candidates for cer-
tain paths. (3) Distribution of the results of the searches for
the best paths, defining the boundaries of the subproblems.
The estimated size and time requirements of the subprob-
lems are sent to one processor. (4) One processor sends the
assignment of subproblems to all processors. (5) The data
for the subproblems are distributed among processors, fol-
lowing the pre-determined assignment. (6) The results are
redistributed among the processors.

2.4 Overall Analysis
Given an n×m grid and p processors, this grid is initially

divided into p smaller grids. To simplify the exposition, we
assume the number of processors to be an even power of
two. Each subgrid is then processed by one processor to ob-
tain its distance matrix. The division of the grid must aim
for the best overall performance of the algorithm. To our
knowledge, the best sequential algorithm for the problem re-
quires O(nm log(min(n,m))) time [12]. This algorithm was
proposed to build a more complex structure that would sup-
port several kinds of queries and take O(nm log(min(n,m)))
space. However it can easily be adapted to use only O((n+
m)2) space in our case where we are interested only in the
boundary to boundary distances. These results make it
tempting to divide the grid in strips to minimize the log-
arithmic factor but this is a very small gain and the lo-
cal memory required would be prohibitive. As previously
stated, we will divide the grid into a

√
p×√

p configuration
to ensure that the local memory required for the distance
matrix will be O((n + m)2/p).
This leads to the following conclusion:

Theorem 3. The distance matrix of an n×m with n > m
grid can be calculated in parallel, on a CGM with p <

√
m

processors, in time O(n2

p
logm) with O(log p) communica-

tion rounds and O(nm
p
) local memory.

Proof. Based on the previous discussion. The algorithm
requires O(mn

p
log m√

p
) time to calculate the distance matri-

ces of the p subgrids. To build the final distance matrix it re-
quires log p merging steps where each merging step requires

280

a constant number of communication rounds. The p <
√

m
bound is sufficient to ensure that all communication rounds
involve O(nm

p
) data per processor. The processing time of

the merging steps is O((n+m)2

p
) = O(n2/p) per step, result-

ing in a total of O(n2

p
log p). Thus the whole algorithm runs

in O(n2

p
logm) time.

In the final distance matrix we find the scores of all the
alignments of substrings of C with A (lengths of paths from
top to bottom of the grid), among other results of the same
kind.

3. CONCLUSION
In this paper, we present an efficient algorithm to com-

pute the edit distance between a string A and all substrings
of a string C on the CGM model. The algorithm requires

log p rounds/supersteps and O(n2

p
logm) local computation.

Thus it presents linear speedup and the number of commu-
nication rounds is independent of the problem size.

4. ACKNOWLEDGMENTS
The authors wish to thank the referees for their helpful

comments.

5. ADDITIONAL AUTHORS
S. W. Song (Universidade de São Paulo, São Paulo, SP

- Brazil, email: song@ime.usp.br. Partially supported by
FAPESP grant 98/06138-2, CNPq grant 52.3778/96-1 and
46.1230/00-3, and CNPq/NSF Collaborative Research Pro-
gram grant 68.0037/99-3).

6. REFERENCES
[1] A. Apostolico, M. J. Atallah, L. L. Larmore, and

S. Macfaddin. Efficient parallel algorithms for string
editing and related problems. SIAM J. Comput.,
19(5):968–988, 1990.

[2] R. L. Graham. Bounds on Multiprocessing Timing
Anomalies. SIAM J. Appl. Math., 17:416–426, 1969.

[3] F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable
parallel geometric algorithms for coarse grained

multicomputers. In Proc. ACM 9th Annual
Computational Geometry, pages 298–307, 1993.

[4] F. Dehne (Ed.). Coarse grained parallel algorithms.
Special Issue of Algorithmica, 24(3/4):173–176, 1999.

[5] Z. Galil and K. Park. Parallel dynamic programming.
Technical Report CUCS-040-91, Columbia
University-Computer Science Dept., 1991.

[6] Z. Galil and K. Park. Dynamic programming with
convexity, concavity ans sparsity. Theoretical
Computer Science, pages 49–76, 1992.

[7] M. Gengler. An introduction to parallel dynamic
programming. Lecture Notes in Computer Science,
1054:87–114, 1996.

[8] P. A. Hall and G. R. Dowling. Approximate string
matching. Comput. Surveys, (12):381–402, 1980.

[9] J. W. Hunt and T. Szymansky. An algorithm for
differential file comparison. Comm. ACM,
(20):350–353, 1977.

[10] G. M. Landau and M. Ziv-Ukelson. On the Common
Substring Alignment Problem. Journal of Algorithms,
41:338–359, 2001.

[11] S. B. Needleman and C. D. Wunsch. A general
method applicable to the search for similarities in the
amino acid sequence of two proteins. J. Mol. Bio.,
(48):443–453, 1970.

[12] J. Schmidt. All highest scoring paths in weighted
graphs and their application to finding all
approximate repeats in strings. SIAM J. Computing,
27(4):972–992, 1998.

[13] P. H. Sellers. The theory and computation of
evolutionary distances: Pattern recognition. J.
Algorithms, (1):359–373, 1980.

[14] J. Setubal and J. Meidanis. Introduction to
Computational Molecular Biology. PWS Publishing
Company, 1997.

[15] T. F. Smith and M. S. Waterman. Identification of
common molecular subsequences. J. Mol. Bio.,
(147):195–197, 1981.

[16] L. Valiant. A bridging model for parallel computation.
Communication of the ACM, 33(8):103–111, 1990.

[17] S. Wu and U. Manber. Fast text searching allowing
errors. Comm. ACM, (35):83–91, 1992.

281

