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Abstract. Given a set S of s points in the plane, where do we place a
new point, p, in order to maximize the area of its region in the Voronoi
diagram of S and p? We study the case where the Voronoi neighbors
of p are in convex position, and prove that there is at most one local
maximum.
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1 Introduction

Suppose that we want to place a new supermarket where it wins over as many
customers as possible from the competitors that already exist.
Let us assume that customers are equally distributed and that each customer

shops at the market closest to her residence. Our task then amounts to finding a
location, p, for the new market amidst the locations pi of the existing markets,
such that the Voronoi region of p, that is, the set of all points in the plane that
are closer to p than to any pi, has a maximum area.
Not much seems to be known about this problem. The area of Voronoi regions

has been addressed in the context of games, where players can in turn move their
existing sites, or insert new sites, such as to end up with a large total area of
their Voronoi regions; see the Hotelling game described in Okabe et al. [6], or
recent work by Cheong et al. [3] and Ahn et al. [1]. But none of these papers
gives an explicit method for maximizing the region of a new site.
In this paper we take the first, nontrivial step towards a solution of the

area maximization problem. Let the Voronoi region of the new point, p, in the
Voronoi diagram V (S ∪ {p}) consist of parts of the former regions of certain
sites p1, . . . , pn in V (S); these sites form the set N of Voronoi neighbors of p in
V (S ∪ {p}). In general, this set N spans a polygon that is star-shaped as seen
from p.1 We show that if the set N is in convex position then there can be at
most one local maximum for the Voronoi area of p, in the interior of the locus of
all positions that have N as their neighbor set. The proof is based on a delicate
analysis of certain rational functions; it will be given in Section 3.
1 A set P is called star-shaped as seen from one of its points, p, if any line segment
connecting p to a point in P is fully contained in P .

P. Bose and P. Morin (Eds.): ISAAC 2002, LNCS 2518, pp. 624–634, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Maximizing a Voronoi Region: The Convex Case 625

In Section 4 we describe an overall algorithm for determining the location of
p that attains a maximum Voronoi area. Finally, we discuss some directions for
future work in Section 5. Section 2 contains some preliminaries, among them a
tractable formula for the area of a Voronoi region.
For general properties of Voronoi diagrams see the monograph by Okabe et

al. [6] or the surveys by Fortune [4] and Aurenhammer and Klein [2].

2 Preliminaries

First, we restate some basic definitions and facts. Let S be a set of s point sites
in the plane that are in general position, that is, no four of them are co-circular,
no three of them co-linear. By V (S) we denote the Voronoi diagram of the set
S. It consists of Voronoi regions VR(q, S), one to each point q of S, containing
all points in the plane that are closer to q than to any other site in S. The
planar dual of V (S) is the Delaunay triangulation, DT(S), of S. It consists of all
triangles with vertices in S whose circum- (or: Delaunay) circle does not contain
a site of S in its interior. Both, V (S) and DT(S), are of complexity O(s) and
can be constructed in optimal time O(s log s).
If we add a new point site, p, to S, it will be connected to a site q ∈ S by an

edge of DT(S ∪ p) if, and only if, there exists a Delaunay triangle with vertex q
in DT(S) whose circumcircle contains p. The set N of such Voronoi or Delaunay
neighbors q of p forms a polygon, P (N), that is star-shaped as seen from p. The
locus of all placements of p that have N as their neighbor set is denoted by CN .
Its shape will be discussed in Section 4.
In this section we derive some useful formulae for the area of the Voronoi

region of a new site p with neighbor set N , assuming that P (N) is convex. It is
based on computing the signed areas of certain triangles. Let (v0, v1, v2) be the
vertices of some triangle, D, where vi = (ai, bi) in Cartesian coordinates. Then,

SignedArea(D) :=
1
2

2∑
i=0

(aibi+1 − ai+1bi)

gives the positive area of D if (v0, v1, v2) appear in counterclockwise order on
the boundary of D; otherwise, we obtain the negative value. Here, indices are
counted mod 3.
Now let pi, pi+1 be two consecutive vertices on the boundary of P (N), in

counterclockwise order. Unless p is co-linear with pi and pi+1, these three point
sites define a Voronoi vertex vi that may or may not be contained in P (N); see
Figure 1.
Let Di denote the triangle (pi, vi, pi+1); its signed area is positive if and only

if these vertices appear on Di in counterclockwise order, that is, if and only if
vi lies outside the convex polygon P (N).

Lemma 1. With the notations from above we have the following identity.

Area(VR(p, S ∪ {p})) = 1
2
((Area(P (N)) +

n∑
i=1

SignedArea(Di))
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Fig. 1. Decomposing the area of the Voronoi region of site p.

Proof. The area of VR(p, S ∪ {p}) equals the sum of the areas of the triangles
(vi+1, p, vi); each of them is the reflected image of the triangle (vi, pi+1, vi+1).
The union of all these triangles equals P (N) minus those triangles Dj that are
contained in P (N), plus those Di not contained in P (N); see Figure 1.

Lemma 1 reduces the problem of maximizing the area of the Voronoi region
of p to maximing the sum of the signed areas of the triangles Di, assuming N
is fixed. Thus, two vertices of Di are the given points pi, pi+1, while only the
third, vi, can move, and its movement is constrained to the bisector of pi, pi+1,
depending on the placement of p.
Next, we express the signed area of Di as a function of p. To this end, let

pi = (si, ti), and let mi = (
si+si+1

2 , ti+ti+1
2 ) be the midpoint of pipi+1. We put

bi = |pimi| and li = |pmi|. Finally, let αi be the angle at p in the triangle
Fi = (pi, pi+1, p); see Figure 2 for an illustration.

Lemma 2. Let p = (X,Y ) be the new point site. Then the following identities
hold.

SignedArea(Di) = b2i
l2i − b2i

2SignedArea(Fi)
(1)
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Fig. 2. Computing the signed area of the triangle Di. In this case, the sign is negative.

= b2i
(X − si+si+1

2 )2 + (Y − ti+ti+1
2 )2 − b2i

X(ti − ti+1) + Y (si+1 − si) + siti+1 − si+1ti
(2)

Proof. Let hi denote the signed height of the triangle Di = (pi, vi, pi+1), so that
SignedArea(Di) = bihi holds. The Voronoi vertex vi can be expressed as a vector
sum by

vi =mi − hiei,

where ei = 1
2bi
(ti − ti+1, si+1 − si) denotes the unit vector along the bisector

of pi, pi+1. On the other hand, p = (X,Y ) lies on a circle of radius
√
h2i + b

2
i

centered at vi. Plugging the cartesian coordinates of vi into the equation of
this circle, and solving for hi, leads to formula (2), since the coefficient of hi

reduces to zero. The numerators and denominators in formulae (1) and (2) are
identical. We observe that the denominator, that is, the sign of the area of Fi,
is positive as long as p stays inside the polygon P (N). It becomes 0 when p hits
the line through pi and pi+1. The numerator of formula (2) is the equation of
the circumcircle of the line segment pipi+1. Thus, if p ∈ {pi, pi+1} holds then the
denominator’s zero cancels out, and the area of Di is zero because the Voronoi
vertex vi equals mi.

3 Uniqueness of the Local Maximum

In this section we assume that N , the set of Voronoi neighbors of the new site, p,
consists of n points in convex position. Now we state our main result.

Theorem 1. For a convex set, N , of n points, there is at most one interior
position in P (N), intersected with the locus CN of all locations with neighbor set
N , where the area of the Voronoi region of p has a local maximum.
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Proof. By Lemma 1 it is sufficient to prove that the sum of the signed areas
of the triangles Di has at most one local maximum in the interior of CN . It is
enough to show that this sum attains at most one maximum along each line
through P (N).
If we substitute, in formula (2) of Lemma 2, the variable Y by coordinates

eX + f of some line G, and perform partial fraction decomposition, we obtain

−SignedArea(Di(X)) =
Ai

X − ai
+ ciX + di.

The pole at X = ai corresponds to the point where the line G intersects the line
Gi through pi, pi+1. Three cases can occur when we hit P (N) from the outside.
If the point G ∩ Gi lies outside the line segment pipi+1 then, in formula (1) of
Lemma 2, we have li > bi, while the sign of the area of Fi changes from − to +.
Consequently, the sign of −Di(X) changes from − to +. But if G intersects the
interior of pipi+1 then li < bi, so that −Di(X) changes from + to −. Finally, if
G happens to run through one of pi, pi+1 then there is no pole at ai, i. e., Ai = 0
holds, as we noted at the end of the proof of Lemma 2.
Let us assume that line G equals the X-axis, and let a1 ≤ a2 ≤ . . . ≤ am ≤

l < r ≤ b1 ≤ . . . ≤ bk denote the n poles that correspond to its intersections with
the lines Gi. By the convexity of P (N), the two intersections of the X-axis with
the boundary of P (N) must be consecutive in this sequence; they are denoted
by l and r.
Figure 3 shows the behavior of

f(X) := −
n∑

i=1

SignedArea(Di) =

=
m∑

i=1

Ai

X − ai
− L

X − l +
R

X − r −
k∑

i=1

Bi

X − bi + cX + d

as a function of X. By the above discussion, we have Ai, L,R,Bi ≥ 0.
We want to prove that f(X) has at most one local minimum in the interval

(l, r). Since f comes from, and returns to, −∞ at l resp. r it is sufficient to show
that its second derivative

2f ′′(X) =
m∑

i−=1

Ai

(X − ai)3
− L

(X − l)3 +
R

(X − r)3 −
k∑

i=1

Bi

(X − bi)3

has at most two zeroes in (l, r). We split function 2f ′′ into two constituent parts,

g(X) :=
m∑

i=1

Ai

(X − ai)3
− L

(X − l)3 and

h(X) :=
k∑

i=1

Bi

(X − bi)3 − R

(X − r)3 ,

such that 2f ′′ = g − h holds, and discuss g and h independently.
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Fig. 3. Discussing the number of minima of f(X) between l and r.

Lemma 3. Each of the functions g and g′′ has at most one zero in (l,∞), and
each of h, h′′ has at most one zero in (−∞, r).
Proof. Let x1 �= x0 ∈ (l,∞) be such that x0 is a zero of g. Then,

0 = g(x0) =
m∑

i=1

Ai

(x0 − ai)3
− L

(x0 − l)3 (3)

=
m∑

i=1

Ai

(x0 − ai)3
(x0 − l)3
(x1 − l)3 − L

(x1 − l)3 (4)

=
m∑

i=1

Ai

(x1 − ai)3

(
(x1 − ai)3

(x0 − ai)3
(x0 − l)3
(x1 − l)3

)
− L

(x1 − l)3 (5)

<

m∑
i=1

Ai

(x1 − ai)3
− L

(x1 − l)3 = g(x1), if x1 > x0 (6)

> g(x1), if x1 < x0; (7)

observe that formula (4) follows from (3) by multiplying both sides by (x0−l)3

(x1−l)3 .
The alternatives (6) or (7) follow from (5) because ai < l < x0, x1 implies that

(x1 − ai)3

(x0 − ai)3
(x0 − l)3
(x1 − l)3

is of value < 1 if x1 > x0 holds, and of value > 1, otherwise. Consequently, g
has at most one zero in (l,∞). The other claims are proven analogously.
As a consequence of Lemma 3, the function g has at most one zero and at

most one turning point to the right of l. Since g has a negative pole at l and
tends to 0 for large values of X, its graph has one of the two possible shapes
shown in Figure 4 (i). The possible shapes of the graph of h are shown in (ii).
Our next lemma implies that 2f ′′ = g − h has at most two zeroes in the

interval (l, r).
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(i)

l l

(ii)

r r

(iii)

l r

Fig. 4. (i) The possible shapes of the function g(x). (ii) Possible shapes of h(x). (iii)
g(x) = h(x) holds for at most two points between l and r.

Lemma 4. The graphs of the functions g and h have at most two points of
intersection over (l, r).

Proof. If neither g nor h have a zero in (l, r) their graphs do not intersect; see
Figure 4. Suppose that h has a zero in (l, r), and assume that p1 and p2 are the
leftmost points of intersection of the two graphs to the right of l.
We argue that p2 must be situated to the right of the minimum, m, of h.

Indeed, m lies below the X-axis, where g is increasing, and h is decreasing to
the left of m, so that only p1 could lie to the left of m. If p2 lies to the left of
the maximum, M , of function g, or if g does not have a maximum, then the two
graphs are separated by their tangents at p2. If p2 lies to the right of M then, to
the right of p2, function g is decreasing while function h is increasing. In either
case, no third point of intersection can exist.

Now we have shown that the function f takes on at most one local minimum
for all points p on L inside the polygon P (N). In the interior of CN ⊂ P (N), we
have, by Lemma 1,

Area(VR(p, S ∪ {p})) = 1
2
(Area(P (N))− f(X)).

This completes the proof of Theorem 1.
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To give an example, let us assume that n points are evenly placed on the
boundary of the unit circle. For n ≤ 4 there is no local maximum of the Voronoi
area. In fact, there is a unique local minimum at the center for n = 3; for n = 4,
the cross formed by the four point sites consists of minimal positions. But for
n ≥ 5 we have a unique local maximum at the center of the circle.

4 Computing the Maximum

In this section we describe a general algorithm for computing, for a new site p,
a location of maximum Voronoi area amidst s existing sites. As p is moved over
the plane, three events may happen. First, the set N of p’s Voronoi neighbors
can change.
Let CN denote a maximal connected region in the plane such that all place-

ments of p inside CN have N as their set of Voronoi neighbors; we call such a
set CN a neighborship cell of N with respect to S. The nature of these cells is
quite simple; the proof of the following lemma follows from standard facts on
the Delaunay triangulation. Observe that for two neighboring sites, q and r, on
the convex hull of S we define, as their Delaunay triangle and circumcircle, the
halfplane defined by the line through q, r that does not contain a site of S.

Lemma 5. Let S be a set of s point sites in the plane.

1. The neighborship cells with respect to S are the cells of the arrangement of
the Delaunay circles of S. Each cell C has, as its neighbor set, all sites that
span a Delaunay circle containing C. The total complexity of all neighborship
cells is in O(s2).

2. Let N ⊂ S be such that P (N) is star-shaped. Then the neighborship cells CN

can be obtained as the intersection of the circumcircles of those Delaunay
triangles that are contained in, and share an edge with the boundary of,
P (N), minus the union of all Delaunay circles passing through points of
S \N .

Lemma 5 is illustrated by Figure 5. Figure 6 shows an example where many
neighborship cells are associated with a set, N , of sites.
The arrangement of O(s) many circles can be constructed in time O(sλ4(s))2

by a deterministic algorithm, or in expected time O(s log s+k), where k denotes
the complexity of the arrangement; see Sharir and Agarwal [8].
Another event happens when p hits the boundary of the convex hull of the

site set S. At this point, the region of p becomes unbounded. To exclude this
phenomenon3 we assume that a certain feasability domain, F , is given, that
consists of neighborship cells contained in the interior of the convex hull of S,
and that the placement of p is restricted to F .
Finally, the position of the new site, p, could coincide with one of the existing

sites, pi ∈ S. At these points the area function fails to be continuous; in fact, the
2 As usual, λt(s) denotes the maximum length of a Davenport-Schinzel sequence of
order t over s characters.

3 Far out of town there are no customers to win.
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Fig. 5. The shaded area is the neighborship cell of p1, . . . , p6. Only the circumcircles
of those Delaunay triangles contribute to its boundary that are contained in the star-
shaped polygon and share one of its edges.

former region of pi is split among p and pi by a bisector through p = pi whose
slope is perpendicular to the direction in which p has approached pi. But apart
from these points, the area function is smooth, as was shown independently by
Okabe and Aoyagi [5] and by Piper [7] who generalized work by Sibson [9].

In order to find the optimum placement of p within the whole feasibility do-
main F , we inspect each cell C of F in turn, and compute the optimal placement
of p within the closure of C. Within the interior of C we apply some Newton-
based approximation algorithm, which is possible thanks to the smoothness of
the area function. If the neighbor set N is convex, we even know that there is
at most one local maximum, by Theorem 1, so that following the gradient leads
straight to the maximum (or to the boundary of C). Next, we have to check for
maxima the boundary of C, which consists of circular arcs, by Lemma 5. This
includes checking all placements of p on top of some site pi; for each of them it
takes time proportional to its Delaunay degree to find the optimum slope of the
bisector. The solution to our problem is then the maximum of these O(s2) many
cell maxima, together with the corresponding placement of p.
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Fig. 6. Each of the shaded cells has p1, . . . , p12 as neighbor set.

5 Conclusions

In this paper we have shown that the Voronoi area of a new site has at most one
local maximum in the interior of each neighborship cell, if the Voronoi neighbors
are in convex position. This result gives rise to many further questions.
The obvious open problem is if the maximum is still unique if the neighbors

are in star-shaped position. The main difference to the convex case is the follow-
ing. The line G, along which the new site p was supposed to move in the proof
of Theorem 1, can now intersect edge extensions of the neighbor polygon P (N)
inside P (N), too. Consequently, the functions g and h in the proof of Lemma 3
become more complicated. We expect that considerably more (mathematical)
effort will be necessary in order to settle this problem.
Other questions concern the customer model. One could specify bounded

populated areas, together with population densities, instead of the uniform dis-
tribution, with or without defining a feasibility domain F . Also, it would be
interesting to study metrics different from the Euclidean, that are frequently
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used in location planning. From a theoretical point of view, it would also be
interesting to minimize the area of a Voronoi region, and to investigate higher
dimensions.
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Oostrum. Competitive facility location along a highway. Proc. 7th Annu. Int.
Conf. (COCOON 2001), Lecture Notes Comput. Sci.(2108):237–246, 2001.

2. Franz Aurenhammer and Rolf Klein. Voronoi diagrams. In Jörg-Rüdiger Sack
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