
A CGM/BSP Parallel Similarity Algorithm?

C. E. R. Alves1, E. N. C�aceres2, F. Dehne3, and S. W. Song4

1 FTCE - Universidade S~ao Judas Tadeu, S~ao Paulo, SP - Brazil,

prof.carlos r alves@usjt.br
2 Universidade Federal de Mato Grosso do Sul, Campo Grande, MS - Brazil,

edson@dct.ufms.br
3 School of Computer Science, Carleton University, Ottawa, Canada,

frank@dehne.net
4 Universidade de S~ao Paulo, S~ao Paulo, SP - Brazil,

song@ime.usp.br

Abstract. We present a CGM/BSP algorithm for computing an align-

ment (or string editing) between two strings A and C, with jAj = m and

jCj = n. The algorithm requires O(p) communication rounds and O(nm
p
)

local computing time, on a distributed memory parallel computer of p
processors each with O(nm=p) memory. We also present implementation

results obtained on Beowulf machine with 64 nodes.

Topic of interest: Algorithms and applications in Bioinformatics

1 Introduction

Sequence comparison is a fundamental problem in Computational Biology that
appears in more complex problems [12], such as the search of similarities between
biosequences [10, 11, 13]. Furthermore, sequence comparison can be used in the
solution of several other problems [9, 8, 15].

One way to identify similarities between sequences is to align them, with
the insertion of spaces in the two sequences, in such way that the two sequences
became of the same size. We expect that the alignment of two sequences that are
similar will show the parts where they match, and di�erent parts where spaces
are inserted. We are interested in the best alignment between two strings, and
the score of such an alignment gives a measure of how much the strings are alike.

The same idea can be applied when we want to �nd the distance between
two sequences. We want to �nd the minimum number of insertions, deletions and
substitutions needed to transform one sequence into the other. In other words,
we want to edit one of the strings and make it equal to the other. We assign
costs to elementary edit operations and seek the less expensive composition of
these operations. Thus, the distance is a measure of how much the strings di�er.

? Partial support of E. N. C�aceres by CNPq, FINEP-PRONEX-SAI Proc. No.

76.97.1022.00 and FAPESP Proc. No. 1997/10982-0, F. Dehne by the Natural Sci-

ences and Engineering Research Council of Canada, S. W. Song by CNPq grant

52.3778/96-1 and 46.1230/00-3, and CNPq/NSF grant 68.0037/99-3.

F D
C. E. R. Alves, E. N. Caceres, F. Dehne, S. W. Song, "A CGM/BSP parallel similarity algorithm," in Proc. Brazilian Workshop on Bioinformatics, Gramado, RS, Brazil, October 2002, pp. 1-8.

2

Let A = a1a2 : : : am and C = c1c2 : : : cn be two strings over some alphabet
I . An alignment between A and C is a matching of the symbols a 2 A and
c 2 C in such way that if we draw lines between the matched symbols, these
lines cannot cross each other. The alignment shows the similarities between the
two strings. Given an alignment between two strings, we can assign a score to
it as follows. Each column of the alignment receives a certain value depending
on its contents and the total score for the alignment is the sum of the values
assigned to its columns. If a column has two identical characters r = s, it will
receive a value p(r; s) > 0 (a match). Di�erent characters r 6= s will give the
column value p(r; s) < 0 (a mismatch). Finally, a space in a column receives a
value �k, where k 2 N . We look for the value of the best alignment (optimal

alignment) which gives the maximum score. This maximum score is called the
similarity between the two strings to be denoted by sim(A;C) for strings A and
C. There may be more than one alignment with maximum score [12].

A sequential algorithm to compute the similarity between two strings uses
a technique called dynamic programming. The complexity of this algorithm is
O(nm). The construction of the optimal alignment can be done in sequential
time O(m+ n) [12].

Consider jAj = m and jCj = n. We can obtain the solution by computing all
the similarities between arbitrary pre�xes of the two strings starting with the
shorter pre�xes and use previously computed results to solve the problem for
larger pre�xes. There are m + 1 possible pre�xes of A and n + 1 pre�xes of C.
Thus, we can arrange our calculations in an (m + 1) � (n + 1) matrix S where
each S(r; s) represents the similarity between A[1 : : : r] and C[1 : : : s].

Observe that we can compute the values of S(r; s) by using the three previous
elements S(r� 1; s), S(r� 1; s� 1) and S(r; s� 1), because there are only three

ways of computing an alignment between A[1 : : : r] and C[1 : : : s]. We can align
A[1::r] with C[1::s � 1] and match a space with C[s], or align A[1::r � 1] with
C[1::s� 1] and match A[r] with B[s], or align A[1::r� 1] with C[1::s] and match
a space with A[r].

The similarity of the alignment between strings A and C can be computed
as follows:

S(r; s) = max

8<
:
S[r; s� 1]� k
S[r � 1; s� 1] + p(r; s)
S[r � 1; s]� k

An l1� l2 grid DAG (Figure 1) is a directed acyclic graph whose vertices are
the l1l2 points of an l1 � l2 grid, with edges from grid point (i; j) to the grid
points (i; j + 1), (i+ 1; j) and (i+ 1; j + 1).

We associate an (m+1)� (n+1) grid dag G with the similarity problem in
the natural way: the (m+1)(n+1) vertices of G are in one-to-one correspondence
with the (m + 1)(n + 1) entries of the S-matrix, and the cost of an edge from
vertex (t; l) to vertex (i; j) is equal to k if t = i and l = j � 1 or if t = i� 1 and
l = j; and to p(i; j) if t = i� 1 and l = j � 1.

It is easy to see that the similarity problem can be viewed as computing the
minimum source-sink path in a grid DAG.

3

m

n

Fig. 1. Grid DAG G

One way to explore the use of parallel computing is through the use of clus-
ters of workstations or Fast/Gigabit Ethernet connected Unix-based Beowulf
machines, with Parallel Virtual Machine - PVM or Message Passing Interface -

MPI libraries. The latency in such clusters or Beowulf machines of 1Gb/s is cur-
rently less than 10 �s and programming using these resources is today a major
trend in parallel and distributed computing.

EÆcient parallel PRAM (Parallel Random Access Machine) algorithms for
the dynamic programming problem have been obtained by Galil and Park [5,
6]. PRAM algorithms for the string editing problem have been proposed by
Apostolico et al. [2]. A more general study of parallel algorithms for dynamic
programming can be seen in [7]. PRAM algorithms, however, do not take into
account communication and assume the number of available processors to be
the same order of the problem size (�ne granularity). When such theoretically
eÆcient algorithms are implemented on real existing machines, the speedups
obtained are often disappointing.

Valiant [14] introduced a simple coarse granularity model, called Bulk Syn-

chronous Parallel Model - BSP. It gives reasonable predictions on the perfor-
mance of the algorithms implemented on existing, mainly distributed memory,
parallel machines. A BSP algorithm consists of a sequence of supersteps sepa-
rated by synchronization barriers. In a superstep, each processor executes a set
of independent operations using local data available in each processor at the

start of the superstep, as well as communication consisting of send and receive
of messages. An h-relation in a superstep corresponds to sending or receiving
at most h messages in each processor.

A similar model is the Coarse Grained Multicomputers - CGM, proposed by
Dehne et al [3]. In this model, p processors are connected through any inter-
connection network. The term coarse granularity comes from the fact that the
problem size in each processor n=p is considerably larger than the number of
processors. A CGM algorithm consists of a sequence of rounds, alternating well
de�ned local computing and global communication. Normally, during a comput-
ing round we use the best sequential algorithm for the processing of data avail-

4

able locally. A CGM algorithm is a special case of a BSP algorithm where all the
communication operations of one superstep are done in the h-relation. The CGM
algorithms implemented on currently available multiprocessors present speedups
similar to the speedups predicted in theory [4]. The CGM algorithm design goal
is to minimize the number of supersteps and the amount of local computation.

We are interested in obtaining parallel algorithms that can be implemented
on available parallel machines and obtain compatible execution times as pre-
dicted in the CGM model, independent of the particular type of interconnection
network used. To our knowledge there are no implemented results using the
BSP/CGM model for sequence similarity problem. We have implemented it on
a Beowulf with 64 nodes with very promising results.

2 An O(p) Communication Rounds Alignment Algorithm

Let A = fa1 : : : amg and C = fc1 : : : cng be two strings on some alphabet I . We
will design a parallel algorithm to compute the similarity between A and C on
a CGM/BSP with p processors and mn

p
local memory in each processor. Using

this result, we can �nd an optimal alignment between A and C.

The sequential algorithms that solve eÆciently this problem use the technique
of dynamic programming, solving an instance of the problem by taking advantage
of already computed solutions for smaller instances of the same problem [12].

To solve the similarity problem on the CGM/BSP model, we divide C into
p pieces, of size n

p
, and each processor Pi, 1 � i � p, receives the string A and

the i-th piece of C (c(i�1)n
p
+1 : : : cin

p
).

Each processor Pi computes the elements Si(r; s) of the submatrix Si, where
1 � r � m and (i � 1)n

p
+ 1 � s � in

p
using just three previous elements

Si(r� 1; s), Si(r� 1; s� 1) and Si(r; s� 1), because there are only three ways of
computing an alignment between A[1 : : : r] and C[1 : : : s]. We can align A[1::r]
with C[1::s�1] and match a space with C[s], or align A[1::r�1] with C[1::s�1]
and match A[r] with B[s], or align A[1::r � 1] with C[1::s] and match a space
with A[r].

To compute the submatrix Si, each processor Pi uses the best sequential
algorithm locally. It is easy to see that processor Pi, i > 1, can only start
computing the elements Si(r; s) after the processor Pi�1 has computed part of
the submatrix Si�1(r; s).

Denote by Rk

i
, 1 � i; k � p, all the elements of the right boundary (right-

most column) of the k-th part of the submatrix Si. More precisely, Rk

i
=

fSi(r; i
n

p
); (k � 1)m

p
+ 1 � r � km

p
g.

The idea of the algorithm is the following: After computing the k-th part
of the submatrix Si, the processor Pi sends to processor Pi+1 the elements of
Rk

i
. Using Rk

i
, processor Pi+1 can compute the k-th part of the submatrix Si+1.

After p� 1 rounds, the processor Pp receives R1
p�1 and computes the �rst part

of the submatrix Sp. In the 2p � 2 round, the processor Pp receives Rp

p�1 and
computes the p-th part of the submatrix Sp and �nishes the computation.

5

P p�1
1 P p

2
P 2p�2
p

P p

p

P p�1
p

P k

i

P 0
1

P 1
1

P 1
2

P 2
1

P 2
2

P 2
3

m

n

m p

n

p

Rk

i

Fig. 2. An O(p) communication rounds scheduling

Using this schedule (Figure 2), we can see that in the �rst round, only pro-
cessor P1 works. In the second round, processors P1 and P2 work. It is easy to
see that in round k, all processors Pi work, where 1 � i � k.

Algorithm 1 Similarity

Input: (1) The number p of processors; (2) The number i of the processor,
where 1 � i � p; and (3) The string A and the substring Ci of size m and n

p
,

respectively.
Output: S(r; s) = maxfS[r; s� 1]� k; S[r � 1; s� 1] + p(r; s); S[r � 1; s]� kg,
where (i� 1) mp

p
+ 1 � r � i mp

p
and (j � 1)n

p
+ 1 � s � j n

p
.

(1) for 1 � k � p
(1.1) if i = 1 then

(1.1.1) for (k � 1)m
p
+ 1 � r � km

p
and 1 � s � n

p

compute S(r; s);
(1.1.2) send(Rk

i
,Pi+1);

(1.2) if i 6= 1 then
(1.2.1) receive(Rk

i�1; Pi�1);
(1.2.2) for (k � 1)m

p
+ 1 � r � km

p
and 1 � s � n

p

compute S(r; s);
(1.2.3) if i 6= p then

send(Rk

i
,Pi+1);

| End of Algorithm |

Theorem 1. We can solve the problem using 2p�2 communication rounds with

O(mn

p
) sequential computing time in each processor.

Proof. The processor P1 sends Rk

1 to processor P2 after computing the k-th
block of m

p
lines of the mn

p
submatrix S1. After p � 1 communication rounds,

processor P1 �nishes its work. Similarly, processor P2 �nishes its work after p
communication rounds. Then, after p�2+i communication rounds, processor Pi
�nishes its work. Since we have p processors, after 2p�2 communication rounds,
all the p processors have �nished their work.

6

Each processor uses a sequential algorithm to compute the similarity subma-
trix Si. Thus this algorithm takes O(mn

p
) computing time.

Theorem 2. At the end of Algorithm 1, S(m;n) will store the score of the

similarity between the strings A and C.

Proof. Theorem 1 proves that after 2p � 2 communication rounds, processor
Pp �nishes its work. Since we are essentially computing the similarity sequen-
tially in each processor and sending the boundaries to the right processor, the
correctness of the algorithm comes naturally from the correctness of the sequen-
tial algorithm. Then, after 2p� 2 communication rounds, S(m;n) will store the
similarity between the strings A and C.

3 Implementation

m� n 1 2 4 8 16 32 64

512� 512 0.0558 0.0377 0.0220 0.0138 0.0436 0.0459 0.0483

512� 1024 0.1135 0.0787 0.0549 0.0541 0.0449 0.0527 0.0574

1024� 1024 0.2246 0.1546 0.0894 0.0705 0.0629 0.0502 0.0621

1024� 2048 0.4556 0.3355 0.2032 0.1208 0.1040 0.0926 0.0730

2048� 2048 0.9057 0.6588 0.4005 0.2365 0.1526 0.1129 0.1040

2048� 4096 1.9459 1.3030 0.7691 0.4316 0.2508 0.1633 0.1272

4096� 4096 3.7533 2.5544 1.5285 0.8479 0.5058 0.4569 0.2387

4096� 8192 7.5440 5.1274 2.9868 1.6403 0.8875 0.5091 0.3312

8192� 8192 5.8492 3.2054 1.7659 1.0096 0.6237

8192� 16384 6.3080 3.3550 1.8139 1.0178

We have implemented the O(p) rounds similarity algorithm on a Beowulf
with 64 nodes. Each node has 256 MB of RAM memory and more 256 MB for
swap. The nodes are connected through a 100 MB interconection network.

The obtained times show that with small sequences, the communication time
is signi�cant when compared to the computation time with more than 8 and 16
processors, respectively (512�512 and 512�1024).When we apply the algorithm
to sequences greater than 8192, using one or two processors, the main memory
is not enough to solve the problem. The utilization of swap gives us meaningless
resulting times. This would not occur if the nodes have more main memory. Thus
we have suppressed these times.

In general, the implementation of the CGM/BSP algorithm shows that the
theoretical results are con�rmed in the implementation.

4 Conclusion

We have presented a CGM/BSP parallel algorithm with O(p) communication
rounds to compute the score of the similarity between two strings. In this paper
we have worked with a �xed block size of m

p
� n

p
. We are currently working with

7

ÆÆ Æ Æ
Æ Æ Æ

Æ 512x512

�

�

� � � � �

� 1024x1024

�

�

�

� � � �

� 1024x2048

.

.

.

.

.
. .

. 2048x2048

10 20 30 40 50 60

0

0.2

0.4

0.6

0.8

1

Processors

S
ec
o
n
d
s

Fig. 3. Curves of the observed times

an adaptative choice of the optimal block size to further decrease the running
time of the algorithm.

The alignment between the two strings can be obtained with O(p) commu-
nication rounds backtracking from the lower right corner of the grid graph in
O(m + n) time [12]. For this, S(r; s) for all points of the grid graph must be
stored during the computation (requiring O(mn) space). A slightly di�erent al-
gorithm which uses only O(minfm;ng) space is also being implemented on the
CGM/BSP model.

Using the Monge properties [2] of the grid DAG, Alves et al. [1] have proposed
an O(log p) communication rounds CGM/BSP dynamic programming algorithm
for solving the string editing problem between a string A and all substrings of
a string C. We are working with the implementation details on this problem.
Furthermore, we intend to explore the above ideas to solve the multiple alignment
problem.

References

1. C.E.R. Alves, E. N. C�aceres, F. Dehne, and S. W. Song. Parallel dynamic pro-

gramming for solving the string editing problem on a cgm/bsp. In Proceedings

SPAA'02 - 14th ACM Symposium on Paralle Algorithms and Architectures, page

accepted. ACM PRESS, 2002.

2. A. Apostolico, L.L. Larmore M.J. Atallah, and S. Macfaddin. EÆcient parallel

algorithms for string editing and related problems. SIAM J. Comput., 19(5):968{

988, 1990.

8

Æ

Æ

Æ
Æ Æ Æ Æ

Æ 2048x4096

�

�

�

�

�
� �

� 4096x8192

�

�

�

�
�

� 8192x8192
.

.

.

.

. 8192x16384

10 20 30 40 50 60

0

2

4

6

8

Processors

S
ec
o
n
d
s

Fig. 4. Curves of the observed times

3. F. Dehne, A. Fabri, and A. Rau-Chaplin. Scalable parallel geometric algorithms

for coarse grained multicomputers. In Proc. ACM 9th Annual Computational Ge-

ometry, pages 298{307, 1993.
4. F. Dehne (Ed.). Coarse grained parallel algorithms. Special Issue of Algorithmica,

24(3/4):173{176, 1999.
5. Z. Galil and K. Park. Parallel dynamic programming. Technical Report CUCS-

040-91, Columbia University-Computer Science Dept., 1991.
6. Z. Galil and K. Park. Dynamic programming with convexity, concavity ans sparsity.

Theoretical Computer Science, pages 49{76, 1992.
7. M. Gengler. An introduction to parallel dynamic programming. Lecture Notes in

Computre Science, 1054:87{114, 1996.
8. P.A. Hall and G.R. Dowling. Approximate string matching. Comput. Surveys,

(12):381{402, 1980.
9. J.W. Hunt and T. Szymansky. An algorithm for di�erential �le comparison. Comm.

ACM, (20):350{353, 1977.
10. S.B. Needleman and C.D. Wunsch. A general method applicable to the search for

similarities in the amino acid sequence of two proteins. J. Mol. Bio., (48):443{453,

1970.
11. P.H. Sellers. The theory and computation of evolutionary distances: Pattern recog-

nition. J. Algorithms, (1):359{373, 1980.
12. J. Setubal and J. Meidanis. Introduction to Computational Molecular Biology.

PWS Publishing Company, 1997.
13. T.F. Smith and M.S. Waterman. Identi�cation of common molecular subsequences.

J. Mol. Bio., (147):195{197, 1981.
14. L. Valiant. A bridging model for parallel computation. Communication of the

ACM, 33(8):103{111, 1990.
15. S. Wu and U. Manber. Fast text searching allowing errors. Comm. ACM, (35):83{

91, 1992.

