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Abstract

Fixed-parameter tractability (FPT) techniques
have recently been successful in solving NP-complete
problem instances of practical importance which were
too large to be solved with previous methods. In
this paper we show how to enhance this approach
through the addition of parallelism, thereby allowing
even larger problem instances to be solved in prac-
tice. More precisely, we demonstrate the potential of
parallelism when applied to the bounded-tree search
phase of FPT algorithms. We apply our methodol-
0gy to the k-VERTEX COVER problem which has im-
portant applications, e.g., in multiple sequence align-
ments for computational biochemistry. We have imple-
mented our parallel FPT method for the k-VERTEX
COVER problem using C and the MPI communication
library, and tested it on a PC cluster. This is the first
experimental examination of parallel FPT techniques.
We have tested our parallel k-VERTEX COVER method
on protein sequences obtained from the National Cen-
ter for Biotechnology Information. As part of our ex-
periments, we solved larger instances of k-VERTEX
COVER than in any previously reported implementa-
tions. For example, our code can solve problem in-
stances with k > 400 in less than 1.5 hours. Since our
parallel FPT algorithm requires only very little com-
munication between processors, we expect our method
to also perform well on Grids.

Key Words: Fixed-Parameter Tractability, k-Vertex
Cover, Computational Biochemistry.

1. Introduction

NP-complete problems abound in many important
application areas ranging from computational biol-
ogy to network optimization. For scientists and en-
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gineers with computational problems, merely learn-
ing that their problems are NP-complete does not sat-
isfy their need to solve these problems for the in-
stances at hand. Fixed-parameter tractability (F'PT)
is a new technique for confronting the obstacle of NP-
Completeness [9, 10, 11, 12, 13, 14]. FPT algorithms
have been successful in solving NP-complete prob-
lem instances of practical importance which were too
large to be solved with previous methods [9]. Most
FPT algorithms consist of two phases: kernelization
where the problem is reduced to a much smaller in-
stance and bounded-tree search where the problem is
solved on the smaller instance through the traversal of
a search tree. The Computational Biochemistry Re-
search Group at the ETH Ziirich has successfully incor-
porated the F'PT approach for VERTEX COVER prob-
lems arising in multiple sequence alignments for com-
putational biochemistry research [18, 22, 25]. In this
paper, we further increase the size of problems that can
be solved via FPT methods by showing how the FPT
approach can be effectively parallelized on a cluster.
We have implemented a parallel F/PT method for the
k-VERTEX COVER problem using C and the MPI com-
munication library, and tested it on a PC cluster. This
is the first experimental examination of parallel FPT
techniques. Our experiments, presented in Section 4,
study the speedup and scalability of our method on
conflict graphs for gene sequences obtained from the
National Center for Biotechnology Information. For
scientists and engineers who have NP-complete prob-
lems to solve, the real test for any new method is how
large a “real-world” problem instance it can solve. In
[9], the authors consider the k-VERTEX COVER prob-
lem solvable for £ < 200 within an 8 hour running
time. In contrast, our parallel code is able to solve in-
stances of the k-VERTEX COVER problem with k£ >
400 in less than 1.5 hours, using 27 processors. This
is a significant improvement since the time of sequen-
tial F'PT algorithms grows exponentially in k. We
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are currently in the process of building a web portal
where Biochemists can submit gene sequences, have
the conflict graph computed, and then have the conflict
graph processed by our parallel £-VERTEX COVER al-
gorithm.

Another important aspect of our parallel k- VERTEX
COVER method is that it requires only a very small
amount of communication between processors. Hence,
we expect our method to also perform well on Grids.
Michael A. Langston and his group at the University
of Tennessee are currently in the process of porting our
method to a Grid environment [19].

This paper does, in fact, present a general method-
ology for parallelizing the bounded-tree search phase
of FPT algorithms. For ease of presentation, we in-
troduce our tree search parallelization method by de-
scribing immediately its application to the k- VERTEX
COVER problem. The generalization to parallel tree
search for other F'PT algorithms is straight-forward.

Parallel F'/PT algorithms have previously been pre-
sented in [2, 6] but without experimental performance
analysis. These methods parallelize only the kernel-
ization phase of the respective sequential FPT algo-
rithm and leave the tree search unchanged. The par-
allel methods in [2, 6] are shown to be in NC (for fixed
parameter k) which is the main goal of those papers.
Unfortunately, these results are of little use in practice.
Typical FPT implementations spend minutes on the
kernelization and hours on the tree search. Hence, it
is important to parallelize both phases to obtain any
speedup in practice. The main contribution of this pa-
per is to provide an efficient implementation of parallel
bounded-tree search on a PC cluster.

The remainder of this paper is organized as fol-
lows. Section 2 reviews the definition of fixed parame-
ter tractability and the k- VERTEX COVER problem. In
Section 3, we present our main result, a parallel F'PT
algorithm for the k-VERTEX COVER problem. Sec-
tion 4 presents the experimental performance results
for our method on a PC cluster, and Section 5 con-
cludes the paper.

2. Review: Fixed-Parameter Tractability
and the £-VERTEX COVER Problem

Fixed-parameter tractability (F'PT) has been pro-
posedstudied in [1, 9, 10, 11, 12, 13, 14] as a means
of confronting the obstacle of NP-Completeness. Let
> be a finite alphabet and let L be a parameterized
problem such that . C ¥* x X*. Problem L is fixed-
parameter tractable, or FPT, if there exists an algo-
rithm that decides, given an input (z,y) € ¥* x X*,
whether (z,y) € L, intime f(k) +n®, where |z| = n,
ly| = k is a parameter, « is a constant independent of
n and k, and f is an arbitrary function. The goal is to
isolate, in the parameter k, the component of the input
that causes the exponential time. The two fundamental
algorithmic techniques for solving F'/PT problems are
kernelization and bounded-tree search [10]. As a two
phase approach, kernelization and bounded-tree search
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form the basis of many FPT algorithms. The first
phase, kernelization, reduces the problem, in polyno-
mial time, to another problem instance bounded in size
by a function of k. It was shown in [9] that a problem
is in FPT if and only if it is kernelizable. The sec-
ond phase, bounded-tree search, then attempts to solve
the latter problem by exhaustive search, requiring time
exponential in k.

The k-VERTEX COVER problem has important ap-
plications in multiple sequence alignments for com-
putational biochemistry [25]. The VERTEX COVER
problem is defined as follows [17]: given a graph,
G = (V,E), determine a set, VC' C V, contain-
ing a minimum number of vertices such that for all
(x,y) € E, eitherz € VC ory € VC. The k-
VERTEX COVER problem consists of finding a VER-
TEX COVER of size k. In multiple alignments between
gene sequences, whenever there are conflicts between
sequences, a way to resolve these conflicts is to ex-
clude some sequences from the sample. Define a con-
flict graph as a graph where every sequence is a vertex
and every edge is a conflict between two sequences. A
conflict may be defined when the alignment of these
two sequences has a very poor score. The goal is to re-
move the fewest possible sequences that will eliminate
all conflicts, which is equivalent to finding a minimum
VERTEX COVER for the conflict graph.

The VERTEX COVER problem is known to be NP-
Complete, but in the context of parameterized com-
plexity the problem is fixed-parameter tractable [3, 5,
9,10, 11, 12, 13, 14, 15, 20, 24, 25]. The current the-
oretically best sequential F'PT" algorithm for the k-
VERTEX COVER Problem has a time complexity of

O(kn + 1.271%k2?) [5]

3. Parallel Kernelization and Bounded-
Tree Search for the k-VERTEX COVER
Problem

This paper describes an efficient parallelization of
both, kernelization and bounded-tree search for I'PT
methods. In this section, we describe our general
methodology using the example of the k-VERTEX
COVER problem. For a list of other FPT problems
that can be solved via kernelization and bounded-tree
search see [10]. We first present a brief overview of
our parallel £-VERTEX COVER algorithm, with details
to follow in Sections 3.1 and 3.2.

Our parallel FPT method assumes a set of p pro-
cessors, Py, Pi, ..., P,_1 where each processor has
O(N/p) local memory. Parameter N refers to the total
problem size. Our parallel method uses, as a build-
ing block, portions of two sequential F'PT algorithms
described in [1]. The first algorithm in [1] combines
Buss’ kernelization technique [3] with a 3-level, depth-
first search strategy that produces a 3-ary search tree
(referred to as THEOREM 1 in [1]). The second al-
gorithm in [1] combines Buss’ kernelization technique
with case-based reduction rule application to determine
a k-VERTEX COVER (referred to as THEOREM 2 in
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Figure 1. Search Path For Processor P; in
Algorithm 2, Using THEOREM | And THE-
OREM 2 of [1].

[1]). Our parallel method first performs a parallel ker-
nelization on the problem instance (G = (V, E), k),
with the resulting instance (G, k') then being broad-
cast to all processors. This phase, which is outlined in
Sections 3.1, is straight-forward. Let V', be the
set of vertices determined by the kernelization phase to
be in the vertex cover set, VC. Sections 3.2 then de-
scribes our parallel bounded-tree search method. Each
processor, P;, 0 < ¢ < p — 1, locally and deterministi-
cally executes the search tree phase of the THEOREM
1 algorithm on its instance of (G’ k') as follows: P;
selects exactly the branching nodes that lead it to leaf
¢ at depth logs p of the search tree. This approach is
similar to search-frontier splitting, as each processor
now has a unique problem instance, (GY, k!’). Each
processor, P;, 0 < 7 < p — 1, then locally performs a
randomized depth-first search of the subtree rooted at
leaf 4, starting with instance (G, k!'). See Figure 1.
When a processor finds a solution, V'C;, it outputs the
set VCiern |J VC; and signals all other processors to
terminate.

In the following two sections we describe in de-
tail our parallelization of the kernelization and the tree
search, respectively.

3.1. Parallel Kernelization

The parallelization of the kernelization phase is
straight-forward. For a graph G = (V, E) and parame-
ter k, Buss’ kernelization algorithm consists of the fol-
lowing steps: find the set S consisting of all vertices
v such that deg(v) > k. Let |S| = b. If b > k then
we conclude that there can be no k-sized vertex cover
in GG. Otherwise, include S in the vertex cover, remove
all the elements of S from V.! Let k' = k — b. If the
resulting graph, G’, has more than k - &’ edges, then we
can conclude no k-sized cover is possible. Otherwise,
(G', k') is a kernelized instance of (G, k).

IFor the remainder, we assume that whenever a vertex v is re-
moved from a graph, all edges adjacent to v are removed as well.
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In the parallel setting, this operation reduces to a
constant number of parallel integer sorts where edges
are sorted by vertex id in order to identify the vertices
with deg(v) > k. This sort can be implemented via
deterministic sample sort [4]. Note that other kernel-
ization rules can be applied as described in [9] and [1].
These rules can also be reduced to a constant number
of parallel integer sorts.

Algorithm 1 Parallel Kernelization
Input: (G = (V,E),k). Output:
“No”.

(1.1) Simulate Buss’ kernelization algorithm on G =
(V, E) via O(1) parallel integer sorts, using de-
terministic integer sample sort [4].

(1.2) Output either a kernelized graph (G’ =
(V',E"), k'), or VC (< k), or “No”.

— End of Algorithm —

(G, k") or

Algorithm 1 performs kernelization with local com-
putation time O( %”) and only a constant number of h-

relation (MPI_AllToAllv) operations for communica-
tion between processors.

3.2. Parallel Bounded-Tree Search

We first recall a few facts about sequential bounded-

tree search. Let (G” = (V" E"), k") be a problem
instance associated with a search tree node x currently
under consideration in the bounded-tree search and let
VC be the current set of vertices known to be in the
vertex cover. The algorithm described by THEOREM
1 of [1] consists of repeating the following steps un-
til either the correct VC' is found, or it is determined
that G does not have a k-cover. Step 1: Randomly
select a vertex, v € V. Step 2: Starting from v, per-
form a depth-first search traversing at most three edges.
Step 3: Based on the possible paths derived from the
search in Step 2, either expand node z into three chil-
dren (Cases 1 and 2) or process immediately (Cases 3
and 4):
Case 1. The path obtained in Step 2 is a simple
path of length 3 consisting of a sequence of vertices
v, V1, V2, v3. Associate three children (i.e., subprob-
lems) with node x as follows:

° <G/// — (V// _ {,07,02}’E///)’k/// — k// _ 2>’
Ve = VC U A{v, v}

° <G/I/ — (VI/ _ {Ul,UQ},E”I),kHI — k/l _ 2>’
Ve = VC U {’Ul,vg}

° <G/// — (V// _ {Ul,U?,},EN/),kN/ —

Ve = VO U {’Ul,’Ug}
Case 2. The path obtained in Step 2 is a 3-
cycle consisting of the following sequence of vertices
v,v1,vV2,v. Associate three children with node x as
follows:

° <G/I/ — ( V/I _ {U,Ul},E”/),k”/ — k/l _ 2>’
ve = vC | {v,v1}

° <G/I/ — ( V/I _ {Ul,Ug},E”/),kHI — k/l _ 2>’
VC = VC U {’Ul,’UQ}

K- 2);
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° <GI/I — ( V/I _ {U,UQ},EI/I),kI/I — kl/ _ 2>,
Ve = VC | {v, v}
Case 3. The path obtained in Step 2 is a simple path of
length 2 (i.e., pendant edge) consisting of a sequence
of vertices v, vy, v2. This can be processed immedi-
ately as follows: (G" = (V" — {vy,v2}, "), k" =
E'—1); vC = vC | {v1}.
Case 4. The path obtained in Step 2 is a simple path of
length 1 (i.e., pendant edge) consisting of a sequence
of vertices v, v;. This can be processed immediately
as follows: (G = (V" —{v,n},E"), kK" =
K" —=1); v = vC | {v}.
The sequential time complexity of the algorithm is

O((\/g)kk2 + kn). The algorithm described by THE-
OREM 2 in [1] consists of scanning the adjacency list
associated with a graph instance at a given search tree
node for specific branching cases. See [1] for details re-
garding these reduction rules. Note that, this algorithm
no longer guarantees a 3-ary search tree. The number
of children created can be 2, 3, or 4, while the parame-
ter (k) can decrease by as much as 8, depending on the
rule that is applied. The sequential time complexity of

the algorithm is O((1.324718)" k2 + kn).

Our basic approach for parallelizing the tree search
is as follows. We initially create the first O(log p) lev-
els of the search tree in breadth-first fashion until we
have obtained a search tree with p leaves. This is done
using the algorithm described by THEOREM 1, in a
deterministic fashion. We then assign each of the p
leaves to one processor and let each processor continue
searching the tree from its respective leaf. In this step,
we use the algorithm described by THEOREM 2. We
assure that this part of the tree search is randomized:
that is, when a processor proceeds downwards in the
search tree, it selects a random node among the still
unexplored children. See Figure 1 for an illustration.
The following describes our tree search parallelization
in more detail.

Algorithm 2 Parallel Tree Search

Input: (G',k’). Output: VC (< k), or “No”.

(2.1) Consider the search tree T' obtained by starting
with graph G’ and iteratively expanding the com-
binatorial search tree in breadth-first fashion, us-
ing the THEOREM 1 algorithm, until there are
exactly p leaves 1 ...7y,. Every processor, F;,
0 < ¢ < p— 1, computes the unique path
in T from the root to leaf ~;. Let (GY, k),
0 < i < p— 1, be the subgraphs and updated
parameters associated with ;.

(2.2) Processor P;, 0 < i < p— 1, starts with (G, k
and expands/searches the subtree below ~; in a
randomized, depth-first fashion, using reduction
rules of the THEOREM 2 algorithm, as follows:

Processor P; randomly selects and expands one
of the children, repeating this recursively until
either a solution is found or the parameter is ex-
hausted (i.e., there is no solution). P; then back-
tracks in its subtree and randomly chooses an-
other unexplored child. This process is repeated
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until a solution is found (in which case it noti-
fies all other processors to halt) or the processor’s
subtree has been completely searched.

— End of Algorithm —

While the above algorithm is fairly simple, it is
non-trivial to analyze its performance. Consider the
path A in which a sequential algorithm traverses the
search tree. The sequential processing time is deter-
mined by the number [ ., of nodes in A which need
to be traversed until a first solution is found. The par-
allel algorithm essentially sets p equally spaced start-
ing points on A and starts p search processes, one at
each starting point. Let A; be the portion of A assigned
to processor P;, and let [; be the number of nodes in
A which processor P; needs to traverse until it finds
a first solution. The parallel time is determined by
lpar = Ming<;<p—1 l;, the minimum number of nodes
that a process has to traverse until it reaches a solu-
tion node. The possible speedup observed corresponds
to the ratio between ls¢q and l,q,-. What speedup is
obtained through this parallel exploration of subtrees?
After all, only one solution needs to be found. Clearly,
it is possible that the parallel algorithm examines many
nodes that the sequential algorithm would never reach.
The worst case occurs when [y = ming<;<p—1{; and
we obtain no speedup at all. What kind of speedup can
we expect in the average case? The main problem is
that the distribution of the solutions within the search
tree is unknown [16].

A “balls-in-bins” model was used to predict the
speedup that could be expected for our parallel tree
search algorithm. Consider p processors and a path A
of length L in which a sequential algorithm traverses
the search tree. As a working hypothesis, assume
that there are m solutions in the search tree which are
randomly distributed (with uniform distribution) over
the search path A. Consider an array of p rows and
n = L/p columns. The ith row corresponds to A; and
the entire array corresponds to A. Mark m random ar-
ray elements as solutions and measure ls.q and lpq, =
minogigp_l li.

250

Linear —
m=1 = e
m=10 e
200 m =100 x
m=1000 -
m=10,000 =~

150 | M=100.000 -

100 -

Predicted Speedup

50 | e

0 50 100 150 200 250
Number of Virtual Processors (1,3,9,27,81,243)

0

Figure 2. Simulated relative speedup es-
timation through “Balls in Bins” experi-
ment.
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The results of a simulation of the above “balls-in-
bins” model are shown in Figure 2. Experiments were
performed for L = 1000000, m = 1, 10, 100, 1000,
10000, 100000 and p = 3,9, 27, 81,243 processors.
The x-axis represents the number p of processors and
the y-axis represents the speedup s, = lseq/lpar. Each
data point shown corresponds to the average of 150 ex-
periments. The diagonal line, s, = p represents (opti-
mal) linear speedup. Note that points above the diago-
nal are due to statistical error. The most striking result
of the experiments is how close all data points are to the
diagonal line for m = 1, 10, 100, 1000. These are the
most realistic cases in practice because the number of
actual k-VERTEX COVER solutions is small compared
to the very large, exponential-size, search space. Even
for m = 10000, that is where 1% of the entire search
space correspond to solutions, we observe a speedup
of about p/2. Only for m = 100000, that is where 10%
of the entire search space correspond to solutions, we
observe very low speedup. Note that in this case, any
sequential method would find a solution in such a short
time that parallelization is not even interesting. We ran
the experiment for many other combinations of L, m,
and p, and the results were always very similar.

The close to linear speedup for low density m/L,
under uniform distribution assumption, can be ex-
plained as follows [8]. The expected number of nodes
in A that need to be traversed by the sequential algo-

rithm is given by E(lseq) = miﬂ The expected num-
ber of nodes I, = min;<;<, {; that need to be tra-
versed by the parallel algorithm is bounded by E(,q,)

< i—ﬁ + p. Therefore, we obtain speedup

For m <« L/p the second part of the denominator
becomes negligible and we get an expected speedup
E(s,) of approximately p. This is what we observed in
Figure 2 for m < 1000. It is important to note that the
above inequality is only a coarse lower bound. The ac-
tual speedup can be considerably better. Furthermore,
as the discussion in [23] suggests, the uniform distribu-
tion of the m solutions over the array examined above
does not constitute a good scenario. On the contrary,
when solutions are non-uniformly distributed, the pro-
cessor whose search path starts close to a cluster has a
high probability of finding a solution much faster than
in the uniform case. Therefore it can be expected that
the speedup observed is better in the non-uniform case
than in the uniform case. For bounded-tree search for
the k-VERTEX COVER and other F'PT algorithms, one
can usually assume that the distribution of solutions
within the search tree is not uniform. In fact, this is
what we observe in our experimental results presented
in the next section.
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4. Performance Analysis

In this section we discuss the experimental exami-
nation of our parallel FPT technique. We first discuss
our setup and methodology as well as the data sets used
for the evaluation. We then present the performance re-
sults obtained.

4.1. Experimental Setup and Methodology

We first implemented in C the sequential FPT algo-
rithm described in [1] (THEOREM 2). We will refer to
this sequential C code as Code-s. While recent the-
oretical improvements of the core result in [1], namely
[5, 20], exhibit tradeoffs between small differences in
the asymptotic running time and leading constants, we
believe that execution times measured on a well crafted
implementation of [1] are a good representation of the
current sequential state-of-the-art.

We then implemented our parallel FPT method de-
scribed in Section 3, using C and the MPI communica-
tion library, by adding the relevant C and MPI code to
Code-s. We will refer to this parallel C/MPI code as
Code-p. Note that, Code - s is the same as a one pro-
cessor version of Code-p with all MPI calls disabled
and all code removed that is not required for the one
processor case.

For our experiments, we used a 32 node PC cluster
with 1.8 GHz Intel Xeon processors, 512 MB RAM
per node and 60 GB of disk storage per node. Every
node was running Linux Redhat 7.2 with gcc 2.95.3
and MPI/LAM 6.5.6. The nodes were interconnected
via a Cisco gigabit Ethernet switch. However, given
the low bandwidth requirements of our method, a Fast
Ethernet switch would have more than sufficed.

All sequential times were measured as wall clock
times in seconds. All parallel times were measured as
the wall clock time between the start of the first process
and the termination of the last process. We will refer
to the latter as parallel wall clock time. All times in-
clude the time taken to read the input graph from a file
and write the solution into a file. Furthermore, all wall
clock times were measured with no other user except us
on the parallel machine. Our experiments proceeded in
the following steps.

(1) Sequential Experiments.

(1a) Sequential Code-s: We executed Code-s on
a single processor of our processor cluster and mea-
sured the sequential wall clock time. (1b) Sequential
Code-p: We executed Code-p on a single proces-
sor of our processor cluster, using multiple virtual pro-
cessors (i.e. MPI/LAM processes), and measured the
sequential wall clock time.

(2) Parallel Experiments.

(2a) Code-p Parallel Wall Clock Times: We exe-
cuted Code-p on our processor cluster and measured
the parallel wall clock time. (2b) Code-p Relative
Speedup: We executed Code-p on our processor
cluster and measured the relative speedup with respect
to parallel wall clock time, where the “baseline” (i.e.
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time for one processor) was set to the minimum of the
sequential times measured in Steps la and 1b.

We briefly discuss why Step 1b is required. When
executing Code-p on a single processor using mul-
tiple virtual processors (Code -p/simulated), we ob-
served problem instances where Code -p/simulated is
faster than Code-s. This is a very interesting aspect
of our parallel £-VERTEX COVER method. Even on
a single processor, Code -p/simulated starts multiple
concurrent searches within the search tree. If one of
those searches starts at a point close to an actual solu-
tion then Code -p/simulated can outperform Code - s.
Therefore, for the calculation of the speedup in Step
2b, the minimum of the sequential times measured in
Steps la and 1b must be compared with the parallel
time obtained by Code -p on multiple processors.

4.2. Relative Speedup Measurements

For our speedup experiments we used conflict
graphs derived for gene sequences obtained from
the National Center for Biotechnology Information
(NCBI), http://www.ncbi.nlm.nih.gov/. Protein mod-
ules that comprise large families of organisms were
chosen. Proteins that are closely related have more
similar amino acid sequences for an orthologous pro-
tein than more distantly related proteins. This informa-
tion can be used to construct phylogenetic trees which
represent relatedness of proteins. For our speedup ex-
periments, we selected two sets of sequences: So-
matostatin and WW. Somatostatin is a neuropeptide in-
volved in the regulation of many functions in different
organ systems. WW is a small protein domain that
binds proline rich sequences in other proteins and is
involved in cellular signaling.

The sequences in each data set were aligned using
ClustalW [26], a hierachical multiple alignment pro-
gram that generates pairwise alignments for all of the
input sequences and then ranks the scores of the pair-
wise alignments. The conflict graph, i.e. the input for
the k-VERTEX COVER problem, was created by select-
ing all sequences in the data set as vertices and select-
ing all edges between sequences whose alignment had
a score below a given threshold A. The A values used
are shown in Table 1, together with the sizes of the re-
sulting conflict graphs and the values of k and %’.

| DataSet [AJ[[VI] [E] | k | K]
Somatostatin | 10 | 559 | 33652 | 273 | 255
WW 10 | 425 | 40182 | 322 | 318

Table 1. Sequences Used And Resulting
Graph Sizes.

To explore general graph classes and known hard
problem instances, we also tested our parallel FPT
method on random graphs and grid graphs (see Ta-
ble 2). We show results for one random graph and one
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grid graph which are typical for the results obtained in
our experiments for these classes of graphs.

| [ VI [ [E] [k=VC]] ¥ ]
Random | 220 | 2155 | 122 | 122
Grid | 289 | 544 145 | 145

Table 2. Random and Grid Graphs Used.

30 . . i
Linear Speedup _
Measured Speedup -+
25

20

Relative Speedup (w.r.t. wall clock time)

0 5 10 15 20 25 30
Number of Processors (1,3,9,27)

Figure 3. Average Relative Speedup for
Somatostatin.

30

Linear Speedup =~ ——
Measured Speedup -+
25

20 -

Relative Speedup (w.r.t. wall clock time)

s A L L L
0 5 10 15 20 25 30
Number of Processors (1,3,9,27)

Figure 4. Average Relative Speedup for
Ww.

Figures 3 and 4 show the relative speedups mea-
sured for the Somatostatin and WW data sets and Fig-
ures 5 and 6 shows the relative speedups measured for
the random and grid graphs. Each data point repre-
sents the average of 20 experiments. For Figures 3 and
4, we observe that the average relative speedup does
not grow monotonically. For 27 processors, the aver-
age relative speedup is larger than 20. For a smaller
number of processors we observed some “noise” in the
average relative speedup caused by considerable varia-
tions in individual running times. Some “lucky draw”
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Figure 5. Average Relative Speedup for a
Random Graph
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Figure 6. Average Relative Speedup for a
Grid Graph

or “bad luck” events can occur where the search hap-
pens to find a solution near instantaneously or starts
from points that are all very far away from solutions.
With more starting points, i.e. more processors, the sit-
uation appears to become more stable.

For Figures 5 and 6, we observe that the average rel-
ative speedup grows monotonically in both cases. For
the random graph data set in Figure 5, the slope of the
average relative speedup curve is considerably lower.
We observed the same effect for other random graphs.
For the grid graph data set in Figure 6, we note that
there exist exactly two solutions. As discussed in Sec-
tion 3.2 and illustrated in Figure 2, the number of solu-
tions in the search tree is very important for the relative
speedup. For the grid graph, the number of possible so-
lutions is very small. We conjecture that this is the rea-
son why, in Figure 6, the slope of the average relative
speedup curve is close to linear.

4.3. “Pushing The Envelope”

These experiments consisted of solving, on our PC
cluster, individual problems for large values of k£ and
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[ DataSet | A | [V]]
Thrombin | 15 | 646
SH2 10 | 730
Kinase 16 | 647
PHD 10 | 670

[E]l | k [ ¥ ]
62731 | 413 | 413
95463 | 461 | 397
113122 | 497 | 397
147054 | 603 | 603

Table 3. Sequences Used And Resulting
Graph Sizes

@ average parallel wall clock time in seconds on 27 processors

Thrombin SH2 Kinase PHD

Figure 7. Average Parallel Wall Clock
Times

K.

We processed the following amino acid sequences
obtained from the NCBI: Thrombin, SH2, Kinase, and
PHD. Thrombin is a protease involved in the blood
coagulation cascade and promotes blood clotting by
converting fibrinogen to fibrin. SH2 (src-homology 2)
domain protein modules are involved in targeting pro-
teins to specific sites in cells by binding to phosphor-
tyrosine. Protein kinases comprise a large and impor-
tant family of enzymes involved in cellular regulation.
PHD (pleckstrin homology domain) is a protein do-
main about 100 amino acid residues in length that is
involved in cellular signaling. The sequences in each
data set were again aligned using ClustalW, and con-
flict graphs were obtained using the threshold A val-
ues shown in Table 3. Observe that the conflict graphs
have large values of £ within the 400 to 600 range. Fur-
thermore, &’ is very close to k, indicating that these are
hard instances.

We executed Code-p on 27 processors of our PC
cluster and measured the average parallel wall clock
time. Figure 7 shows the results. Each data point repre-
sents the average of ten experiments. We solved larger
instances of k-VERTEX COVER than in any previously
reported implementation. Our parallel FPT method
is able to solve “real world” problem instances of size
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k > 400 in less than 1.5 hours, whereas previously,
for sequential F'PT methods, only k-VERTEX COVER
problems for k& < 200 were considered solvable [9].
This is a significant improvement since the time of
FPT algorithms for the £-VERTEX COVER problem
grows exponentially in k.

5. Conclusion

In this paper, we have studied the potential of paral-
lelism when applied to the bounded-tree search phase
of FPT algorithms. We have designed and imple-
mented a new parallel F'PT method for the k- VERTEX
COVER problem and tested it on a PC cluster, thereby
providing the first experimental examination of parallel
FPT techniques. By solving, e.g., problem instances
with £ > 400 in less than 1.5 hours, our code can
handle larger instances of k- VERTEX COVER than any
previously reported implementation.

Our parallel F/PT algorithm requires only a very
low amount of communication between processors.
Hence, we expect our method to also perform well
on Grids. Michael A. Langston and his group at the
University of Tennessee are currently in the process of
porting our method to a Grid environment [19].

The High Performance Computing Virtual Labora-
tory (HPCVL, http://www.hpcvl.org), which has been
providing the PC cluster for our experiments, has ex-
pressed interest in providing a “parallel FPT tool” for
Biochemists. We are currently in the process of build-
ing a Web portal where Biochemists can submit gene
sequences, have them aligned by CLUSTAL, and then
have our parallel k-VERTEX COVER algorithm applied
to the conflict graph. Surprisingly, for large numbers of
gene sequences, CLUSTAL has become a bottleneck.
To rectify this, we are currently also in the process of
parallelizing CLUSTAL for use in our web portal. The
combined solution will allow Biochemists to analyze
very large sets of gene sequences via our HPCVL por-
tal.
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