
Parallel ROLAP Data Cube Construction On Shared-Nothing Multiprocessors ∗

Ying Chen
Dalhousie University

Halifax, Canada

ychen@cs.dal.ca

Frank Dehne
Carleton University

Ottawa, Canada

frank@dehne.net

Todd Eavis
Dalhousie University

Halifax, Canada

eavis@cs.dal.ca

Andrew Rau-Chaplin
Dalhousie University

Halifax, Canada

arc@cs.dal.ca

Abstract

The pre-computation of data cubes is critical to improv-
ing the response time of On-Line Analytical Processing
(OLAP) systems and can be instrumental in accelerating
data mining tasks in large data warehouses. In order to
meet the need for improved performance created by growing
data sizes, parallel solutions for generating the data cube
are becoming increasingly important. This paper presents
a parallel method for generating data cubes on a shared-
nothing multiprocessor. Since no (expensive) shared disk
is required, our method can be used on low cost Beowulf
style clusters consisting of standard PCs with local disks
connected via a data switch. Our approach uses a ROLAP
representation of the data cube where views are stored as
relational tables. This allows for tight integration with cur-
rent relational database technology.

We have implemented our parallel shared-nothing data
cube generation method and evaluated it on a PC cluster,
exploring relative speedup, local vs. global schedule trees,
data skew, cardinality of dimensions, data dimensionality,
and balance tradeoffs. For an input data set of 2,000,000
rows (72 Megabytes), our parallel data cube generation
method achieves close to optimal speedup; generating a full
data cube of ≈227 million rows (5.6 Gigabytes) on a 16
processors cluster in under 6 minutes. For an input data set
of 10,000,000 rows (360 Megabytes), our parallel method,
running on a 16 processor PC cluster, created a data cube
consisting of ≈846 million rows (21.7 Gigabytes) in under
47 minutes.

1 Introduction

The pre-computation of the different views (group-bys)
of a data cube, i.e. the forming of aggregates for every
combination of GROUP-BY attributes, is critical to im-
proving the response time of On-Line Analytical Processing
(OLAP) queries in decision support systems [10] and can be
instrumental in accelerating data mining tasks in large data
warehouses [11]. For a given raw data set, R, with n records
and d attributes (dimensions), a view is constructed by an

aggregation of R along a subset of attributes. This results in
2d different possible views. Figure 1a shows the different
possible view identifiers for 4 dimensions “A”, “B”, “C”,
and “D”. An edge between two view identifiers indicates
that one of the respective views can be computed from the
other by aggregation along one dimension. The resulting
graph is called the lattice. As proposed in [10], the pre-
computation of the entire data cube (the set of all 2d views)
allows for the fast execution of subsequent OLAP queries.

There are two basic data cube representations: RO-
LAP representations where views are represented as re-
lational tables and MOLAP representations where views
are represented as multi-dimensional arrays. Many meth-
ods have been proposed for generating the data cube on
sequential [2, 12, 19, 20, 24, 25] and parallel systems
[3, 5, 7, 8, 15, 16, 18]. The size of the data cube is po-
tentially very large. In order to meet the need for improved
performance created by growing data sizes in OLAP ap-
plications, parallel solutions for generating the data cube
have become increasingly important. The current parallel
approaches can be grouped into two broad categories: (1)
work partitioning [3, 5, 15, 16, 18] and (2) data partition-
ing [7, 8].

Work partitioning methods assign different view compu-
tations to different processors. Consider, for example, the
lattice for a four dimensional data cube as shown in Fig-
ure 1a. From the raw data set “ABCD”, 15 views need to
be computed. Given a parallel computer with p processors,
work partitioning schemes partition the set of views into
p groups and assign the computation of the views in each
group to a different processor. The main challenges for
these methods are load balancing and scalability, which are
addressed in different ways by the different techniques stud-
ied in [3, 5, 15, 18, 16]. One distinguishing feature of work
partitioning methods is that all processors need simultane-
ous access to the entire raw data set. This access is usually
provided through the use of a shared disk system (available
e.g. for SunFire 6800 and IBM SP systems).

Data partitioning methods partition the raw data set into
p subsets and store each subset locally on one processor.
All views are computed on every processor but only with
respect to the subset of data available at each processor. A

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

subsequent “merge” procedure is required to agglomerate
data across processors. The advantage of data partitioning
methods is that they do not require all processors to have ac-
cess to the entire raw data set. Each processor only requires
a local copy of a portion of the raw data which can, e.g., be
stored on its local disk. This makes such methods feasible
for shared-nothing parallel machines like the popular, low
cost, Beowulf style clusters consisting of standard PCs con-
nected via a data switch and without any (expensive) shared
disk array; see Figure 2a. The main problem with data par-
titioning methods is that the “merge”, which has to be per-
formed for every view of the data cube, has the potential
to create massive data movements between processors with
serious consequences for performance and scalability of the
entire system. A data partitioning method for MOLAP rep-
resentations has been presented in [7, 8]. This method is
based on a space partitioning of the multi-diminsional ar-
ray and a spatial “merge” between different sub-cubes of
the MOLAP cube. The spatial “merge” operation can be re-
duced to a parallel prefix which is a well studied operation
for parallel computers.

In this paper, we study data partitioning methods for
the ROLAP case where the raw data set is given as a d-
dimensional relation (table of d-tuples) and all views are to
be created as relational tables as well. The principal advan-
tage of ROLAP is that it allows for tight integration with
current relational database technology. Another advantage
of ROLAP is that it requires only linear space and is there-
fore particularly suitable for the construction of very large
data cubes. Our algorithm is, to our knowledge, the first
parallel ROLAP data cube construction method for shared-
nothing multiprocessors. Our method has the additional
advantage that it can be extended to the partial cube case
where not all views but only a subset of views, selected by
the user, are to be created. This case occurs frequently in
practice because the user often knows that some views will
not be required for on-line analytical processing (OLAP)
queries on a given data set.

We have implemented our parallel data cube generation
method and extensively evaluated it on a shared-nothing
PC cluster. Our experiments have explored the following
six performance issues: relative speedup, local vs. global
schedule trees, data skew, cardinality of dimensions, data
dimensionality, and balance tradeoffs. For a raw data set R
of size n = 2,000,000 rows (72 Megabytes) our parallel RO-
LAP data cube generation method achieved close to optimal
speedup; generating a full data cube of ≈227 million rows
(5.6 Gigabytes) in under 6 minutes on 16 processors. For an
input data set of n = 10,000,000 rows (360 Megabytes), our
parallel method created the corresponding data cube con-
sisting of ≈846 million rows (21.7 Gigabytes) in under 47
minutes.

The remainder of this paper is organized as follows. In
Section 2 we present our parallel ROLAP data cube algo-
rithm for shared-nothing multiprocessors. Section 3 shows

how our method can be extended to the partial cube case
where not all views but only a subset of selected views are
to be created. Section 4 discusses our implementation and
presents the performance results achieved by our method.
Section 5 concludes the paper.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

all

ABCD

BCD

AB CD

all

ABC

AC BC

A C

(a) (b) (c)

Figure 1. (a) Lattice for 4 dimensions “A”, “B”,
“C”, and “D”. (b) Schedule tree for a full data
cube (e.g. Pipesort). Bold edges represent
“scan” operations and regular edges repre-
sent “sort” operations. (c) Schedule tree for a
partial data cube. Selected views are marked
by circles.

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

mem

di
sk

proc

NIC

xx
xx
xx

P
0 1

P p-1P

network or switch

(a)
Disk for

P0 1

Disk for
P p-1

Disk for
P

...

...

...
.........

INPUT

OUTPUT

ABCD (raw data set, R)

ABC

ABD

ACD

D
...

(b)

Figure 2. (a) A shared-nothing multiproces-
sor. (b) Input and output data distribution.

2 A Parallel Data Cube Algorithm For
Shared-Nothing Multiprocessors

We consider a shared-nothing parallel machine consist-
ing of p processors P0, P1 ... Pp−1, each with its own
local memory and local disk, connected via a network or
switch; see Figure 2a. There is no shared memory or shared
disk available. Systems of this type include the popular,
low cost, Beowulf style clusters consisting of standard PCs

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

connected via a switch (http://www.beowulf.org/). As in-
put, we assume a raw data set, R, with n records and d
dimensions D0, D1 ... Dd−1 distributed evenly over the p
disks; see Figure 2b. The basic communication operation
used by our data cube algorithm is the h-relation (method
MPI ALL TO ALL v in MPI). Our method uses two basic
local disk operations, applied by each processor to its lo-
cal disk: (1) linear scan and (2) external memory sort [22].
For a processor Pj with local memory size m and a local
disk with block transfer size B, a linear scan through a file
of size n stored on its disk requires O(n

B) block transfers
between disk and memory while an external memory sort
of that file requires O(n

B log m
B

n
B) block transfers [22]. We

will present our method for a shared-nothing multiproces-
sor with one local disk per processor Pj . However, it is easy
to generalize our methods for machines with multiple local
disks per processor by applying the linear scan and external
memory sort methods for a single processor with multiple
local disks presented in [23].

Without loss of generality, let |D0| ≥ |D1| ≥ ... ≥
|Dd−1|, where |Di| is the cardinality for dimension Di,
0 ≤ i ≤ d− 1 (i.e. the number of distinct values for dimen-
sion Di). Let S be the set of all 2d view identifiers. Each
view identifier consists of a subset of {D0, D1 ... Dd−1},
ordered by the cardinalities of the selected dimensions (in
decreasing order). The goal is to create a data cube DC
containing the views in S. We assume that, when our algo-
rithm terminates, every view is distributed evenly across the
p disks; see Figure 2b. It is important to note that, for the
subsequent use of the views by OLAP queries, each view
needs to be evenly distributed in order to achieve maximum
I/O bandwidth for subsequent parallel disk accesses.

2.1 Algorithm Outline

Our parallel algorithm uses as a building block a stan-
dard sequential top-down data cube method such as Pipesort
[20]. Such methods have in common that they consist of a
two phase approach. In the first phase, a schedule tree T is
constructed which is a subgraph of the lattice and contains
as nodes the identifiers of all views to be constructed. Recall
that view v is a parent of a view v ′ if v can be created from
v′. The schedule tree T identifies a sequence in which the
views are to be constructed in the second phase. The main
difference between the various top-down data cube methods
is the schedule tree T that they build. For example, Pipesort
starts with the lattice and assigns to every view identifier
an estimate of the size of the respective view [6, 21]. It
then computes the cost of the aggregate operation associ-
ated with each edge of the lattice. The schedule tree T is
then built by scanning the lattice level by level, starting at
the raw data set, and computing for each two subsequent
levels of nodes, and the edges between them, a minimum
cost bi-partite matching.

Let Si ⊂ S be the subset of view identifiers in S that

start with Di, and let DCi be the data cube for Si. We call
DCi the Di-partition of the data cube DC. Furthermore,
we refer to the view consisting of all dimensions contained
in views of Si as the Di-root; see Figure 3.

ABCD

BCACAB

BCDACDABC

ALL

DCBA

AD CDBD

ABD

A-Partition

B-Partition

C-Partition

D-Partition

A-root

B-root

C-root

D-root

Figure 3. Partitions of a data cube for d = 4.
Dimensions are labelled “A”, “B”, “C”, “D”,

The following describes the global structure of our paral-
lel data cube algorithm for shared-nothing multiprocessors.
The algorithm consists of three main phases: data partition-
ing, computation of local Di-partitions, and merge of local
Di-partitions. Subsequent sections will discuss each phase
in more detail.

Procedure 1 Parallel–Shared–Nothing–Data–Cube
/* Input: Raw data set R (n d-dimensional records) dis-
tributed arbitrarily over the p processors, n/p records
per processor; Output: Data cube, DC, distributed
over the p processors. Each views is evenly distributed
over the p processors’ disks. */

FOR i=0 TO d-1
(1) /* Data Partitioning */

(a) Each processor Pj (j = 0, . . . p − 1) com-
putes locally the Di-root for its subset of
data. (Essentially a sequential sort followed
by a sequential scan.) Let Di-root|j denote
the Di-root created by processor Pj .

(b) /* Sort ∪j=0,...p−1Di-root|j by Di, . . .Dd−1

*/
Adaptive–Sample–Sort(Di-root|0, . . . , Di-
root|p−1; Di, . . . , Dd−1; γ = 1%)

(c) Each processor Pj (j = 0, . . . p − 1) com-
putes locally the Di-root for its subset of
data received in the previous step. Let Di-
root||j denote the Di-root created by pro-
cessor Pj .

(2) /* Computation Of Local Di-Partitions */
(a) Processor P0 locally computes, by apply-

ing the first phase of a sequential top-down
data cube method, the schedule tree Ti for
building the Di-partition with respect to Di-
root||0.

(b) Processor P0 broadcasts Ti to P1 ... Pp−1.
(c) Each processor Pj (j = 0, . . . p − 1) com-

putes locally the Di-partition with respect to

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Di-root||j by applying the second phase of
a sequential top-down data cube method to
the schedule tree Ti received in the previ-
ous step.

(3) /* Merge Of Local Di-Partitions */
Merge–Partitions(Di)

The following Sections 2.2, 2.3 and 2.4 discuss in detail
the three phases of Procedure 1.

2.2 Data Partitioning

Good data partitioning is a key factor in obtaining a
good load balance and, consequently, good performance.
Some researchers partition data on one or several dimen-
sions [17, 9]. In order to achieve sufficient parallelism, they
assume that the product of the cardinalities of these dimen-
sions is much larger than the number of processors [9]. The
advantage of their method is that they do not need to merge
views. For examples, if we partition on A, then ABC and
AC need not to be merged, or if we partition on A and B,
then ABC and ABD need not to be merged. However, in
practice, this assumption is often not true. The cardinality
of some dimensions may be small, such as gender, months
and intervals for a numeric attribute. The number of pro-
cessors in a cluster may be large, especially for clusters of
workstations. Therefore, those methods are often not scal-
able. Our method avoids these problems by partitioning on
all dimensions and then applying a merge procedure. As
our experiments show, the cost for the additional merge is
more than compensated for by better overall performance
and scalability.

To partition data, we use parallel sample sort [14].
As discussed in [14], one global data movement via one
single h-relation is often sufficient to obtain sorted and
well balanced data. The subsequent “global shift” oper-
ation, which needs another h-relation, is not always nec-
essary. In our implementation of parallel sample sort we
measure the imbalance of the sizes of the local data sets
after the first h-relation and perform a second “global
shift” h-relation only if necessary. Let y0, . . . , yp−1 be
the sizes of the sets Y0, . . . , Yp−1 created on proces-
sors P0, . . . , Pp−1, respectively, after the first h-relation.
We calculate the relative imbalance I(y0, . . . , yp−1) =
max{(ymax − yavg)/yavg, (yavg − ymin)/yavg}, where
ymax, ymin, and yavg are the maximum, minimum and av-
erage of y0, . . . , yp−1, respectively. If I(y0, . . . , yp−1) > γ
for some threshold value γ, we apply a subsequent “global
shift” operation. In our implementation we use a thresh-
old value of γ = 1%. As discussed in [14], the imbal-
ance after the first h-relation is less if there are no duplicate
keys. However, in most data, there are many duplicate val-
ues. Therefore, in Step 1a of Procedure 1, we first compute
locally on each processor Pj (j = 0, . . . p − 1) the Di-
root for its subset of data. This eliminates all duplicate keys
Di . . . Dd−1 for the sort in the subsequent Step 1b.

We refer to our sample sort implementation as
Adaptive–Sample–Sort. Since there are so many “folk”
versions of parallel sample sort in the literature, we briefly
review the exact sequence of steps implemented in our sys-
tem.

Procedure 2 Adaptive–Sample–Sort(X0, . . . , Xp−1;
Di1 , . . . , Dik

; γ)
Input: Sets X0, . . . , Xp−1 stored on processors
P0, . . . , Pp−1, respectively.
Output: Sets X0, . . . , Xp−1 globally sorted by dimen-
sions Di1 , . . . , Dik

.
(1) Each processor Pj (j = 0, . . . p−1) locally sorts Xj

by Di1 , . . . , Dik
and selects a set of p local pivots

consisting of the elements with rank 0, (n/p2), . . .
((p − 1)n/p2). Each processor Pj then sends its
local pivots to processor P0.

(2) Processor P0 sorts the p2 local pivots received in
the previous step. Processor P0 then selects a set
of p−1 global pivots consisting of the elements with
rank (p + �p/2
), (2p + �p/2
) . . . ((p− 1)p + �p/2
)
and broadcasts the p global pivots to all other pro-
cessors.

(3) Using the p − 1 global pivots received in the previ-
ous step, each processor Pj (j = 0, . . . p−1) locally
partitions Xj (sorted by Di1 , . . . , Dik

from Step 1)
into p − 1 subsequences X0

j . . . Xp−1
j .

(4) Using one global h-relation, every processor Pj ,
j = 0. . . p − 1, sends each Xk

j , k = 0. . . p − 1, to
processor Pk.

(5) Each processor Pj , j = 0, . . . p − 1, receiving p

sorted sequences Xj
k, k = 0. . . p − 1, in the pre-

vious step, locally merges those sequences into a
single sorted sequence Yj and sends the size yj

of Yj to processor P0.
(6) IF I(y0, . . . , yp−1) > γ, as determined by proces-

sor P0 THEN all processors P0, . . . , Pp−1 balance
the sizes of Y0, . . . , Yp−1 via a “global shift”, imple-
mented by one h-relation operation.

Following the above global sort, each processor P j (j =
0, . . . p − 1) applies in Step 1c of Procedure 1 a sequential
scan to its data set in order to compute the Di-root (Di-
root||j) for its local data.

2.3 Computation Of Local Di-Partitions

In this section, we discuss Step 2 of Procedure 1. The
goal of this step is to compute on each processor Pj the Di-
partition with respect to Di-root||j. For this, we apply on
each processor a sequential top-down data cube construc-
tion method. Such methods, like Pipesort, typically consist
of two phases. In the first phase, a schedule tree T i is con-
structed. The nodes of Ti are the view identifiers of the
Di-partition and an edge (u, v) from parent u to child v in-
dicates that v is created from u. Each edge (u, v) is labelled

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

“scan” or “sort”. If v is a prefix of u, then v can be cre-
ated via a linear scan of u. If v is only a subset of u (but
not a prefix), then the computation of v requires a re-sort
of u. Sequential top-down cube construction methods like
Pipesort attempt to build a schedule tree Ti that minimizes
the work required for cube construction.

For shared-nothing parallel data cube construction, a
problem that arises is that each processor Pj has a differ-
ent data set, namely Di-root||j, and that the schedule trees
can be different for these different sets. Indeed, the compu-
tation of the schedule tree is usually very much data driven.
Pipesort and most other methods make statistical estimates
of the view sizes, based on the data available, and sched-
ule tree construction is based on those view sizes. In our
case, we could allow each processor Pj to build its own lo-
cal schedule tree for its local data set Di-root||j and build its
Di-partition accordingly. However, different local schedule
trees for different processors imply that views of the D i-
partition created on different processors may be in different
sort orders. This creates a problem during the subsequent
merge phase in Step 3 of Procedure 1. When views of the
same partition but for different subsets of data (i.e. on dif-
ferent processors) need to be merged, they need to have the
same sort order or one of them has to be re-sorted. That
re-sort creates a large amount of additional computation.
Another possibility is to let one processor, say P0, build
the schedule tree for its data set Di-root||0, broadcast that
schedule tree, referred to as the global schedule tree, and
then let all processors use the same global schedule tree for
their local cube construction. The advantage of this method
is that we do not need to change the sort order of views
during the merge. A potential disadvantage is that the se-
quential, local, top-down data cube methods (e.g. Pipesort)
may not be using the “optimal” schedule tree for their data
set. Recall that, the schedule trees generated by Pipesort
and other top-down sequential methods are based on size
estimates. As discussed in Section 4.2, our experiments
indicate that, among the above two approaches, the latter
method is far superior. For the data sets that we tested, the
additional work on some processors because of non-optimal
global schedule trees was much less than the overhead cre-
ated through the need to re-sort views during the merge in
Step 3. Therefore, Steps 2a, 2b and 2c of Procedure 1 im-
plement the latter global schedule tree method.

2.4 Merge Of Local Di-Partitions

At the end of Step 2 of Procedure 1, each processor P j

has computed the Di-partition for its local data set. For a
view v of the Di-partition, let vj be the view created by
processor Pj . In Step 3 of Procedure 1 we need to merge,
for each view v in the Di-partition, the p different views
vj created on the p different processors Pj . This merge is
performed in Procedure Merge–Partitions(Di) which will
be discussed in the remainder of this section.

Consider Procedure 1 for i = 0 and the A-partition
shown in Figure 3. In Step 1 of Procedure 1, the A-roots
are globally sorted by ABCD. Then, in Step 2, each pro-
cessor Pj computes locally the A-partition for its data set.
Consider the views ABCDj , ABCj , ABj , and Aj computed
in Step 2. All these views are in the same sort order as the
global sort order created in Step 1 because they are a prefix
of ABCD. We shall refer to these views as the prefix views.
The other views, ABDj , ACj , ACDj and ADj , are not a
prefix of ABCD and are therefore in a sort order that is dif-
ferent from the global sort order. We shall refer to them as
the non-prefix views.

Consider a prefix view v and the problem of merging v 0,
. . . , vp−1 stored on processors P0, . . . , Pp−1. For example,
consider the view v = AB in Figure 3 and the problem of
merging AB0, . . . , ABp−1. The goal is to obtain a global
AB sort order for AB0∪ AB1 . . . ∪ ABp−1 and then ag-
glomerate those items that have the same values for dimen-
sions A and B. Since AB is a prefix of the global sort order,
ABCD, the first part is already done and the only items that,
potentially, need to be agglomerated are the last item of v j

and the first item if vj+1 for each 0 ≤ j < p − 1. There-
fore, in Procedure Merge–Partitions(Di), for each prefix
view v every processor Pj+1 simply sends the first item of
vj+1 to processor Pj which compares it with the last item
of vj . Nothing else needs to be done in order to merge all
vj . Figure 4 illustrates the case of a prefix view v as “Case
1”.

Case 1 Case 2 Case 3

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxx
xxx
xxx
xxx
xxx
xxx

xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx
xxxxx

xxxxx
xxxxx
xxxxx
xxxxx

P
j

P
j+1

P
j+2

v
j

v
j+1

v
j+2

v
j

v
j+1

v
j+2

v
j

v
j+1

v
j+2

Figure 4. Illustration of cases in Procedure
Merge–Partitions

We now study the case of merging the views v0, . . . ,
vp−1 stored on processors P0, . . . , Pp−1 for a non-prefix
view v. For example, consider the view v = AC in Figure 3
and the problem of merging AC0, . . . , ACp−1. Again, the
goal is to obtain a global AC sort order for AC0∪ AC1 . . . ∪
ACp−1 and then agglomerate those items that have the same
values for dimensions A and C. However, AC is not a prefix
of ABCD and, therefore, the different vj can have consid-
erable overlap with respect to AC order. Figure 4 illustrates

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the case of a non-prefix view v as “Case 2” and “Case 3”.
The rectangles represent the vj with respect to AC order.
The shaded areas represent the overlap which, in contrast
to Case 1 (prefix view), can now be considerably more than
just one element. In Procedure Merge–Partitions(Di), for
each non-prefix view v every processor Pj sends its last el-
ement to every other other processor. Each processor P k

then determines its overlap with each Pj and sends that
overlap to Pj . For each processor Pj let v′j be the view
vj plus all the overlap received by processor Pj . We dis-
tinguish two cases which are both illustrated in Figure 4.
“Case 2”: IF I(|v′

0|, |v′1|, . . . |v′p−1|) ≤ γ for a non-prefix
view v THEN each Pj locally sorts v′

j and agglomerates the
items with same values for dimensions in v. “Case 3”: IF
I(|v′0|, |v′0|, . . . |v′0|) > γ for a non-prefix view v THEN the
vj are merged by a global sort. The distinguishing criterion
between Cases 2 and 3 is the balance between the v ′

j . If the
imbalance is smaller than γ (Case 2) then we proceed simi-
lar to Case 1. If the imbalance is larger than γ (Case 3) then
we need to completely re-balance via a global sort. In fact,
for Case 3 we do not wish to even route the overlap between
processors. We rather re-sort immediately. Hence, in order
to determine whether Case 2 or Case 3 applies, each proces-
sor Pk first determines the size of its overlap with each Pj

and sends only the information about the size of that overlap
to Pj .

The following is an outline of Procedure Merge–
Partitions(Di).

Procedure 3 Merge–Partitions(Di)
(1) For each view v ∈ DCi, each processor Pj broad-

casts the last item of vj to every other processor
Pk and receives back the seizes of all overlaps.

(2) For each view v ∈ DCi, every processor Pj deter-
mines |v′j | and sends all of its |v′j | values to proces-
sor P0.

(3) Processor P0 determines for each view v ∈ DCi

whether it is a “Case 1”, “Case 2”, or “Case 3”.
(4) Every processor Pj+1 sends for each “Case 1”

view v ∈ DCi the first item of vj+1 to processor
Pj , and Pj compares/agglomerates that item with
the last item of vj .

(4) Every processor Pk sends for each “Case 2”
view v ∈ DCi its overlap with every vj to the
respective processor Pj . Every processor Pj

merges/agglomerates all received overlaps with
vj .

(5) All remaining “Case 3” views v ∈ DCi are merged
via global sort, using Procedure 2 with γ = 3%.

In the following, we discuss a small extension of Pro-
cedure Merge–Partitions(Di). Note that, all data sets are
stored in secondary memory. For Step 2, a straight forward
implementation would imply that the entire disk needs to be
scanned on each processor in order to determine the |v ′

j | val-
ues. However, we do actually only require a 1/p % accuracy

for the |v′
j | values in order to obtain a 1 % accuracy for the

imbalance I which is sufficient for distinguishing between
cases 2 and 3. Hence, it is sufficient to use a sample of only
100 p equal spaced sample elements of the locally sorted v j

instead of the entire vj . Such a sample can be build during
the local computation of vj in Step 2c of Procedure 1. Note
that, while Pj writes vj to its local disk, the size of vj is not
yet known and hence, the size of the sample and the distance
between sample elements is not yet known. This problem
can be solved as follows. A sample array A[1..a] of size
a = 100p is allocated in main memory. While the first a el-
ements of vj are written to disk, each of them is also copied
into A. While the second a elements of vj are written to
disk, every second is written into every second location of
A, overwriting the previous element stored at that location.
While the third and fourth groups of a elements of v j are
written to disk, every fourth is written into every second lo-
cation of A, and so on. When the entire view vj is written
to disk, an appropriate sample will be available in array A
to determine the |v′

j | values with sufficient accuracy.

3 Partial Data Cube Construction On
Shared-Nothing Multiprocessors

Our method has the advantage that it is easily extended
to the case where not the entire data cube but only a subset
of selected views are to be computed. This case occurs fre-
quently in practice because the user often knows that some
views will not be required for the subsequent OLAP queries
that are executed on the data cube. For example, for a raw
data set with 20 dimensions, it may be clear from the appli-
cation that the OLAP queries will only require views with
at most 5 dimensions. Therefore, it would be wasteful to
create all 220 views when most of them are never used.

For the purpose of computing a partial data cube, we re-
define S. Instead of being the set of all 2d view identifiers
(as defined in Section 2.1), we define S to be the view iden-
tifiers of the subset of selected views. The definitions of
Si, DCi, etc. are then all with respect to the new set S of
selected views. The algorithm in Section 2 remains com-
pletely unchanged except for the construction of the sched-
ule tree Ti in Step 2a of Procedure 1. Instead of using the
first phase of an arbitrary sequential top-down data cube
method, we apply the sequential schedule tree construction
method for partial cubes that we have recently presented
in [4]. For a set S of selected views, our algorithm in [4]
can create a schedule tree that is either a subtree of the tree
that would be generated by Pipesort for the entire cube, or
it can create a schedule tree directly from the lattice. An
example of a schedule tree for a partial cube is shown in
Figure 1c. Note that, for optimal performance, some “in-
termediate” views need to be constructed in addition to the
selected views.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

4 Performance Evaluation

We have implemented our parallel shared-nothing data
cube generation method using C++ and the MPI communi-
cation library. This implementation evolved from the code
base for a fast sequential Pipesort [3] and the sequential
Partial cube method described in [4]. Most of the required
sequential graph algorithms, as well as data structures like
hash tables and graph representations, were drawn from the
LEDA library [13].

Our experimental platform consisted of a 16 node Be-
owulf cluster with 1.8 GHz Intel Xeon processors, 512 MB
RAM per node and two 40 GB 7200 RPM IDE disk drives
per node. Every node was running Linux Redhat 7.2 with
gcc 2.95.3 and MPI/LAM 6.5.6. as part of a ROCKS clus-
ter distribution. All nodes were interconnected via an Intel
100 Megabyte Ethernet switch. Note that on this machine
communication speed is extremely slow in comparison to
computation speed. We will shortly be replacing our 100
Megabyte interconnect with a 1 Gigabyte Ethernet intercon-
nect and expect that this will further improve the relative
speedup results obtainable on this machine.

In the following experiments all sequential times were
measured as wall clock times in seconds. All parallel times
were measured as the wall clock time between the start of
the first process and the termination of the last process. We
will refer to the latter as parallel wall clock time. All times
include the time taken to read the input from files and write
the output into files. Furthermore, all wall clock times were
measured with no other user except us on the Beowulf clus-
ter.

In our experimentation we generated a large number of
synthetic data sets which varied in terms of the following
parameters: n - number of records, d - number of dimen-
sions, |D0|, |D1| . . . |Dd−1| - cardinality in each dimension,
and α0, α1 . . . αd−1 - skew in each dimension.

Our experiments explored the following six performance
issues:

1. Relative Speedup: We investigated the effect of in-
creasing the number of processors on the time required
to solve data cube generation problems and measured
the relative speedup, i.e. the ratio between observed
sequential time and observed parallel time. Sequential
times for computing full cubes and partial cubes were
measured on a single processor of our parallel machine
using our sequential implementations of Pipesort [3]
and Partial cube [4], respectively.

2. Local vs. global schedule trees: We compared the
effect on parallel wall clock time of using local vs.
global schedule trees.

3. Data skew: We investigated the effect on parallel wall
clock time of data sets with varying skewed distribu-
tions. We used the standard ZIPF [26] distribution with

α = 0 (no skew) to α = 3 (high skew) and explored
the relationship between data skew and the amount of
data that must be communicated.

4. Cardinality of dimensions: We investigated the ef-
fect of varying dimension cardinalities on parallel wall
clock time for both skewed and non-skewed data sets.

5. Data dimensionality: We investigated the effect of
varying dimensionality, and therefore the effects of rel-
ative density or sparsity, on parallel wall clock time.

6. Balance Tradeoffs: Lastly, we investigated the effect
of varying the balance threshold parameter γ. As γ is
decreased we improve the balance in the distribution
of views across processors, but at the cost of more data
movement.

4.1 Relative Speedup

Speedup experiments are at the heart of the experimen-
tal evaluation of our parallel shared-nothing data cube gen-
eration method. They consist of incrementally increasing
the number of processors available to our data cube gener-
ation software to determine the parallel speedup obtained.
Figure 5 shows for full cube construction the parallel wall
clock time observed for data sets of varying sizes as a func-
tion of the number of processors used, and the correspond-
ing relative speedup. We observe that for an input size n =
2,000,000 rows (72 Megabytes) our method achieves close
to optimal speedup; generating a full data cube of ≈227
million rows (5.6 Gigabytes) in just under 6 minutes on 16
processors. The speedup for smaller problems is lower as
there is insufficient local computation over which to amor-
tize the cost of communications. On the other hand, our
method works well on very large data sets. For example, on
an input data set of 10,000,000 rows (360 Megabytes), our
parallel method created the corresponding data cube con-
sisting of ≈846 million rows (21.7 Gigabytes), on 16 pro-
cessors, in under 47 minutes.

Note that our speedup results could be further improved
by overlapping communication and local computation. Our
current implementation does not overlap the local compu-
tation of Di-Partitions with the global communication in-
volved in merging Di−1-Partitions. Doing so would mask
between 40% and 60% of the communication overhead and
further improve the speedup results.

Figure 6 shows for partial cube construction the paral-
lel wall clock time observed for a range of different per-
centages of selected views as a function of the number of
processors, and the corresponding relative speedup. We ob-
serve that when 50% or more of the views are selected,
the speedup obtained decreases somewhat in comparison to
the full cube case. However, for as little as 25% selected
views, the speedup obtained is still more than half of op-
timal. Only when the number of views selected gets very

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

small, approaching d, speedup falls off rapidly as the local
work within partitions is little more than the computation of
the root view. In such cases, when there are only a handful
of selected views, creating each view from an independent
sort of the original data set may be preferable.

4.2 Local vs. global schedule trees

As described in Section 2.3, for shared-nothing parallel
data cube construction it is possible for each processor to
use either a local or a global schedule tree. Local schedule
trees are built by each processor Pj relative to their own data
set Di-root||j , whereas a global schedule tree is built by a
single processor, say P0, relative to its data set Di-root||0,
and then broadcast to all other processors.

The use of local schedule trees might appear at first
preferable, since they are optimized relative to a processor’s
own data set. However, they have one serious drawback.
When views of the same partition but for different subsets
of data (i.e. on different processors) need to be merged,
they need to have the same sort order or one of them has
to be re-sorted. That re-sort creates a large amount of ad-
ditional computation. As can be seen in Figure 7, our ex-
periments indicate that local schedule trees offer superior
performance in practice. For the data sets that we tested, the
additional work on some processors because of non-optimal
schedule trees was significantly less than the overhead cre-
ated through the need to re-sort views during the Merge–
Partitions() procedure.

4.3 Data skew

Data sets with skewed distributions can pose an interest-
ing challenge to parallel data cube generation methods. As
skew increases, data reduction tends also to increase, partic-
ularly in top-down generation methods [20, 1]. Data reduc-
tion is typically positive, as it reduces the total amount of
work to be performed. However, if data reduction is large
and unevenly spread across the processors it may unbalance
the computation and cause the amount of data that has to be
communicated to rise sharply.

To explore this issue we generated data sets using the
standard ZIPF [26] distribution in each dimension with
α = 0 (no skew) to α = 3 (high skew). Figure 8a shows
the impact of skew on parallel wall clock time. Figure 8b
shows, for the same data sets, how skew affects the overall
size of the data that must be communicated in performing
the Merge–Partitions() procedure. We observe that, in gen-
eral, as skew is increased parallel time decreases due to data
reduction and decreased local computation. For α = 1 there
is a sharp rise in the amount of data to be communicated,
which offsets some gains from the reduced local computa-
tion. However for α > 1 the data reduction is so significant
that only very little data needs to be communicated and par-
allel time drops significantly.

4.4 Cardinality of dimensions

The cardinality of the dimensions in a data set can affect
the performance of our method. As cardinalities increase
so does the sparsity of the data set and this may adversely
effect parallel time especially given that top-down methods
[20, 1] are designed primarily for dense data cubes. Curves
A, B and C of Figure 9a clearly illustrate this effect. The
sparser data sets require somewhat more time, although, as
can be seen in Figure 9b, this has little effect on the relative
speedup achieved.

A close examination of the details of our algorithm sug-
gests that a potentially difficult input data set for our method
would be one in which the leading dimension has high skew
and large cardinality, while the remaining dimensions have
low skew. In such cases, the global sort used to create the
D0-root may do little to reduce the amount of communi-
cation required in building the views in DC0. Curve D in
Figure 9 shows the results measured for such a case. We
observe that whereas such situations do reduce the speedup
obtained, the reduction is relatively small. Even for this dif-
ficult data set, the speedup obtained by our method is still
close to half of the optimal speedup.

4.5 Data dimensionality

Figure 10 shows parallel wall clock time in seconds as
a function of the dimensionality of the raw data set. Note
that, the number of views that must be computed grows ex-
ponentially with respect to the dimensionality of the data
set. In Figure 10, we observe that the parallel running time
grows essentially linearly with respect to the output size.

4.6 Balance tradeoffs

One important feature of our shared-nothing data cube
generation algorithm is that it balances each view in the
generated data cube over the processors within a balance
threshold γ. The more balanced each view is across the
processors (i.e. the smaller γ) the more balanced any subse-
quent parallel computation on each view will be. However,
the cost of selecting a small γ is that it may cause more data
movement and therefore increase the time required for data
cube generation.

Figure 11 shows parallel wall clock time in seconds as a
function of the number of processors for a range of different
balance thresholds, as well as the corresponding speedup
curves. We observe that while reducing the balance thresh-
old γ increases the parallel time, the effect is small. A γ
of 3% appears to be a good threshold in practice. However,
individual applications may want to tune this parameter ac-
cording to their needs and the performance characteristics
of their parallel machines.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

5 Conclusion

In this paper, we study parallel data partitioning meth-
ods for ROLAP data cubes that can be executed on shared-
nothing multiprocessors. The principal advantage of RO-
LAP is that it allows for tight integration with current rela-
tional database technology. We have implemented our par-
allel data cube method and evaluated it on a PC cluster, ex-
ploring relative speedup, local vs. global schedule trees,
data skew, cardinality of dimensions, data dimensionality,
and balance tradeoffs. We obtained promising speedup re-
sults for a wide range of input data sets. We are currently
exploring the integration of our method with commercial
parallel database systems.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

n=1,000,000
n=2,000,000

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
n=1,000,000
n=2,000,000

Figure 5. (a) Parallel wall clock time in seconds as a
function of the number of processors for data of size n =
1,000,000 rows and n = 2,000,000 rows and (b) correspond-
ing speedup. (Fixed parameters: Dimensions d = 8. Cardi-
nalities |Di| = 256, 128, 64, 32, 16, 8, 6, 6. Skew α = 0.
Percentage of views selected k = 100%.)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

25% Selected
50% Selected
75% Selected

100% Selected

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
25% Selected
50% Selected
75% Selected
100% Selected

Figure 6. (a) Parallel wall clock time in seconds as a func-
tion of the number of processors for a range of different per-
centages of selected views and (b) corresponding speedup.
(Fixed parameters: Data size n = 2,000,000 rows. Dimen-
sions d = 8. Cardinalities |Di| = 256, 128, 64, 32, 16, 8, 6,
6. Skew α = 0.)

References

[1] S. Agarwal, R. Agarwal, P. Deshpande, A. Gupta,
J. Naughton, R. Ramakrishnan, and S. Srawagi. On the
computation of multi-dimensional aggregates. In Proc. 22nd
VLDB Conf., pages 506–521, 1996.

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

Global Schedule Tree
Local Schedule Tree

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
Global Schedule Tree
Local Schedule Tree

Figure 7. (a) Parallel wall clock time in seconds as a func-
tion of the number of processors for local and global sched-
ule tree methods and (b) corresponding speedup. (Fixed
parameters: Data size n = 1,000,000 rows. Dimensions d =
8. Cardinalities |Di| = 256, 128, 64, 32, 16, 8, 6, 6. Skew
α = 0. Percentage of views selected k = 100%.)

0

50

100

150

200

250

300

0 0.5 1 1.5 2 2.5 3

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Skew

Time

0

200

400

600

800

1000

1200

1400

1600

0 0.5 1 1.5 2 2.5 3

D
at

a
C

om
m

un
ic

at
ed

 in
 M

eg
ab

yt
es

Skew

Bytes

Figure 8. (a) Parallel wall clock time in seconds as a func-
tion of the skew for α = 0, 1, 2, 3, and (b) and the size of
corresponding data movements. (Fixed parameters: Data
size n = 1,000,000 rows. Dimensions d = 8. Cardinalities
|Di| = 256, 128, 64, 32, 16, 8, 6, 6. Percentage of views
selected k = 100%. Number of processors p = 16).

[2] K. Beyer and R. Ramakrishnan. Bottom-up computation of
sparse and iceberg cubes. In ACM SIGMOD Conference on
Management of Data, pages 359–370, 1999.

[3] F. Dehne, T. Eavis, S. Hambrusch, and A. Rau-Chaplin. Par-
allelizing the data cube. Distributed and Parallel Databases,
11(2):181–201, 2002.

[4] F. Dehne, T. Eavis, and A. Rau-Chaplin. Com-
puting partial data cubes. Technical report,
http://www.cs.dal.ca/˜arc/publications/2-30/paper.pdf.

[5] F. Dehne, T. Eavis, and A. Rau-Chaplin. A cluster architec-
ture for parallel data warehousing. In Proc IEEE Interna-
tional Conference on Cluster Computing and the Grid (CC-
Grid 2001), Brisbane, Australia, 2001.

[6] P. Flajolet and G. Martin. Probablistic counting algorithms
for database applications. Journal of Computer and System
Sciences, 31(2):182–209, 1985.

[7] S. Goil and A. Choudhary. High performance OLAP and
data mining on parallel computers. Journal of Data Mining
and Knowledge Discovery, 1(4):391–417, 1997.

[8] S. Goil and A. Choudhary. A parallel scalable infrastructure
for OLAP and data mining. In Proc. International Data En-
gineering and Applications Symposium (IDEAS’99), Mon-
treal, 1999.

[9] S. Goil and A. N. Choudhary. High performance multidi-
mensional analysis of large datasets. In International Work-
shop on Data Warehousing and OLAP, pages 34–39, 1998.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

0

500

1000

1500

2000

2500

3000

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

(A)
(B)
(C)
(D)

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
(A)
(B)
(C)
(D)

Figure 9. (a) Parallel wall clock time in seconds as a func-
tion of the number of processors for data sets with different
cardinality mixes, and (b) corresponding relative speedup.
(Fixed parameters: Data size n = 1,000,000 rows. Dimen-
sions d = 8. Cardinalities and skews (A)|Di| = 256, 256,
256, 256, 256, 256, 256, 256. Skew α = 0. (B)|Di| = 256,
128, 64, 32, 16, 8, 6, 6. Skew α = 0. (C)|Di| = 16, 16, 16,
16, 16, 16, 16, 16. Skew α = 0. (D)|Di| = 256, 128, 64,
32, 16, 8, 6, 6. Skew α0 = 3 and αi>0 = 0.)

0

500

1000

1500

2000

2500

6 6.5 7 7.5 8 8.5 9 9.5 10

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Dimensions

data

Figure 10. Parallel wall clock time in seconds as a func-
tion of the the number of dimensions. (Fixed parameters:
Data size n = 1,000,000 rows. Cardinalities |Di| = 256 in
all dimensions. Percentage of views selected k = 100%.
Number of processors p = 16.)

[10] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Re-
ichart, and M. Venkatrao. Data Cube: A relational aggre-
gation operator generalizing group-by, cross-tab, and sub-
totals. J. Data Mining and Knowledge Discovery, 1(1):29–
53, 1997.

[11] J. Han, Y. Fu, W. Wang, J. Chiang, W. Gong, K. Koperski,
D. Li, Y. Lu, A. Rajan, N. Stefanovic, B. Xia, and O. R. Za-
iane. DBMiner: A system for mining knowledge in large
relational databases. In Proc. 1996 Int’l Conf. on Data Min-
ing and Knowledge Discovery (KDD’96), pages 250–255,
Portland, Oregon, 1996.

[12] V. Harinarayan, A. Rajaraman, and J. Ullman. Implementing
data cubes efficiently. ACM SIGMOD Record, 25(2):205–
216, 1996.

[13] M. P. Institute. LEDA. http://www.mpi-sb.mpg.de/LEDA/.
[14] X. Li, P. Lu, J. Schaeffer, J. Shillington, P. S. Wong, and

H. Shi. On the versatility of parallel sorting by regular sam-
pling. Parallel Computing, 19(10):1079–1103, 1993.

[15] H. Lu, X. Huang, and Z. Li. Computing data cubes using
massively parallel processors. In Proc. 7th Parallel Com-
puting Workshop (PCW’97), Canberra, Australia, 1997.

[16] S. Muto and M. Kitsuregawa. A dynamic load balancing
strategy for parallel datacube computation. In ACM Second

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

0 2 4 6 8 10 12 14 16

P
ar

al
le

l W
al

l C
lo

ck
 T

im
e

in
 S

ec
on

ds

Processors

3% threshold
5% threshold
7% threshold

0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16

R
el

at
iv

e
S

pe
ed

up

Processors

Linear Speedup
3% threshold
5% threshold
7% threshold

Figure 11. (a) Parallel wall clock time in seconds as a
function of the number of processors for a range of different
balance thresholds γ and (b) corresponding speedup. (Fixed
parameters: Data size n = 1,000,000 rows. Dimensions d =
8. Cardinalities |Di| = 256, 128, 64, 32, 16, 8, 6, 6. Skew
α = 0. Balance threshold γ = 3%, 5%, and 7%.)

International Workshop on Data Warehousing and OLAP
(DOLAP 1999), pages 67–72, 1999.

[17] S. Muto and M. Kitsuregawa. A dynamic load balancing
strategy for parallel datacube computation. In Proceedings
of the second ACM international workshop on Data ware-
housing and OLAP, pages 67–72. ACM Press, 1999.

[18] R. Ng, A. Wagner, and Y. Yin. Iceberg-cube computation
with pc clusters. In ACM SIGMOD Conference on Manage-
ment of Data, pages 25–36, 2001.

[19] K. Ross and D. Srivastava. Fast computation of sparse dat-
acubes. In Proc. 23rd VLDB Conference, pages 116–125,
1997.

[20] S. Sarawagi, R. Agrawal, and A. Gupta. On computing the
data cube. Technical report rj10026, IBM Almaden Re-
search Center, San Jose, CA, 1996.

[21] A. Shukla, P. Deshpende, J. Naughton, and K. Ramasamy.
Storage estimation for mutlidimensional aggregates in the
presence of hierarchies. In Proc. 22nd VLDB Conference,
pages 522–531, 1996.

[22] J. S. Vitter. External memory algorithms and data struc-
tures: Dealing with massive data. ACM Computing Surveys,
33(2):209–271, 2001.

[23] J. S. Vitter and E. A. M. Shriver. Algorithms for parallel
memory I: Two-level memories. Algorithmica, 12(2-3):110–
147, 1994.

[24] J. Yu and H. Lu. Multi-cube computation. In Proc. 7th In-
ternational Symposium on Database Systems for Advanced
Applications, pages 126–133, Hong Kong, 2001.

[25] Y. Zhao, P. Deshpande, and J.F.Naughton. An array-based
algorithm for simultaneous multidimensional aggregates. In
Proc. ACM SIGMOD Conf., pages 159–170, 1997.

[26] G. Zipf. Human Behavior and The Principle of Least Effort.
Addison-Wesley, 1949.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	IPDPS 2003
	Return to Main Menu

