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Abstract. An FPT algorithm with a running time of O(n4 +2O(k)n2.5)
is described for the Set Splitting problem, parameterized by the num-
ber k of sets to be split. It is also shown that there can be no FPT
algorithm for this problem with a running time of the form 2o(k)nc un-
less the satisfiability of n-variable 3SAT instances can be decided in time
2o(n).

1 Introduction

Consider a collection F of subsets of a finite set X. The task is to find a partition
of X into two disjoint subsets X0 and X1 which maximizes the number of subsets
of F that are split by the partition, i.e. not entirely contained in either X0 or
X1. This problem, called the Max Set Splitting problem, is NP-complete [9]
and APX-complete [15].

Andersson and Engebretsen [3] as well as Zhang [16] presented approxima-
tion algorithms that provide solutions within a factor of 0.7240 and 0.7499,
respectively. A 1/2 approximation algorithm for the special case of the Max
Set Splitting problem where the size of X0 is given was presented in [1]. A
variation of the Set Splitting problem, called Max Em Splitting, in which
all sets in F contain the same number of elements m is NP-hard for any fixed
m ≥ 2 [13]. As pointed out in [16], Max Em Splitting is a special case of Max
Em NAE-SAT. Max Em splitting is approximable within a factor of 0.8787
for m ≤ 3 and approximable within a factor of 1

1−21−m for m ≥ 4 [12,17,18],
and it is NP-hard for factor 1

8
7 −1 [10]. In [4] it is shown that a polynomial time

approximation scheme exists for |F | = Θ(|X|k).
In this paper, we show that the set splitting problem is fixed parameter

tractable [8] if we consider as parameter, k, the number of sets in F that are
split by a given partition of X, for arbitrary size sets in F . We present an FPT
algorithm with a running time O(n4 + 2O(k)n2.5), parameterized by the number
k of sets to be split. We also show that there can be no FPT algorithm for
this problem with a running time of the form 2o(k)nc unless the satisfiability of
n-variable 3SAT instances can be decided in time 2o(n).

There are a variety of fundamental computational problems that concern
families F ⊆ 2X of subsets of a base set X, such as Hitting Set (finding a
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small subset X ′ of the base set such that every set in F contains an element of
X ′), Set Packing (finding a large pairwise disjoint subfamily F ′ of F), and
Set Splitting. Important applications of these problems on families of sets
arise in the analysis of micro-array data. Micro-array data can be viewed as
a matrix, where the columns represent “features” such as whether a gene is
“on” or “off”, or whether a sample is cancerous or not, while the rows represent
the samples. Each row can be viewed as representing a subset of the column
space. An example of how Set Splitting is relevant is given by the following
scenario. The set X represents a set of genetic markers (such as SNPs) of an
individual. A set A ∈ F represents a combination of markers associated with a
phenotypic condition that is exhibited by an individual but not by either parent.
The partition of X maximizing the number of sets that are split represents a
parsimonious hypothesis explaining why the phenotypic signals are not present
in the parents (since for a set of markers that is split, the entire set is not present
in either parent).

Since the Set Splitting is NP-complete and APX-complete, it is important
to find new approaches that can solve problem instances of practical importance.
Fixed parameter tractability has provided such solutions for various other NP-
complete problems [8], and FPT algorithms have considerably increased the size
of solvable problem instances for some of these problems [6]. In this paper, we
contribute the first exploration of the parameterized complexity of one of the
classic problems about families of sets, Set Splitting, parameterized by the
number of sets to be split.

2 A FPT Algorithm for Set k-Splitting

A set k-splitting, SSP(X, F, k), for a collection F of n subsets of a finite set
X is formally defined as a partition [X0, X1] of X into two disjoint subsets X0
and X1 such that at least k sets in F are split by the partition. See Figure 1(a)
for an illustration. For the remainder we assume, w.l.o.g., that X =

⋃
S∈F S.

Let |X| = n. Define a predicate ΠSSP(X, F, k) by ΠSSP(X, F, k) = TRUE if
SSP(X, F, k) exists and ΠSSP(X, F, k) = FALSE if SSP(X, F, k) does not exist.

Fig. 1. (a)Illustration Of A Set k-Splitting SSP(X, F, k) = [X0, X1] . (b) A k-Witness
Structure. (c) Illustration Of F(a) And degF (a).
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Definition 1. Consider a problem instance (X, F, k). A sequence W = (b1, . . . ,
bk, w1, . . . , wk) ∈ X2k is called a k-witness structure for F if and only if
(b1, . . . , bk) ∩ (w1, . . . , wk) = ∅ and there exist k subsets Si ∈ F such that
{bi, wi} ⊆ Si for all i = 1, . . . , k.

For a k-witness structure W = (b1, . . . , bk, w1, . . . , wk), we will call bi the
black witness element for Si, and wi the white witness element for Si. See
Figure 1(b) for an illustration. Note that, some black [white] witness elements
bi, bj [wi, wj ] may be identical. A witness element in a k-witness structure W =
(b1, . . . , bk, w1, . . . , wk) is called private if it is unique in W ; otherwise it is called
shared.

For any W = (b1, . . . , bk, w1, . . . , wk), we refer to the process of replacing all
occurrences of an element bi or wj by another element bi′ or wj′ , respectively,
as deleting bi or wj . A k-witness structure W = (b1, . . . , bk, w1, . . . , wk) is non-
redundant if any W ′ obtained from W by deleting any single element bi or wj is
not a k-witness structure.

Observation 1 Consider a problem instance (X, F, k). If there exists a k-
witness structure then there also exists a non-redundant k-witness structure.

Lemma 1. (a) Every k-splitting SSP(X, F, k) = [X0, X1] implies at least one k-
witness structure (b1, . . . , bk, w1, . . . , wk). (b) Every k-witness structure (b1, . . . ,
bk, w1, . . . , wk) implies at least one k-splitting SSP(X, F, k) = [X0, X1]

Proof. (a) Consider a k-splitting SSP(X, F, k) = [X0, X1] which splits k sets
S1, . . . , Sk. This implies a k-witness structure (b1, . . . , bk, w1, . . . , wk) where each
bi is an arbitrary element in Si ∩ X0 and each wi is an arbitrary element in
Si ∩X1, i = 1, . . . , k. (b) A k-witness structure (b1, . . . , bk, w1, . . . , wk) implies a
k-splitting [X0, X1] where X0 = {b1, . . . , bk} and X1 = X −X0.

For a k-witness structure W = (b1, . . . , bk, w1, . . . , wk) let F (W ) = {S ∈
F |{bi, wi} ⊆ S for some 1 ≤ i ≤ k} be the collection of (at least k) sets S ∈ F
which are split by W . For each a ∈ X let F(a) ⊂ F be the collection of sets
S ∈ F , |S| ≥ 2, which contain a, and let degF (a) = |F(a)|. See Figure 1(c) for
an illustration.

Algorithm 1 Kernelization: Convert the given problem instance (X, F, k) into
an equivalent reduced problem instance.

(1) Apply the following rules as often as possible.
Rule 1: IF there exists an element a ∈ X with degF (a)> k THEN report

SSP(X, F, k) = [{a}, X − {a}] and STOP.
Rule 2: IF there exists a set S ∈ F with |S| ≤ 1 THEN set F ← F −{S}.
Rule 3: IF there exists a set S ∈ F with |S| ≥ 2k THEN set F ← F −{S}

and k ← k − 1.
Rule 4: IF there exists a set S ∈ F , |S| ≥ 2, which contains an element

a ∈ S with degF (a) = 1 THEN set F ← F − {S} and k ← k − 1.
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Rule 5: IF there exist three different elements a1, a2, a3 ∈ X with ∅ 	=
F(a1) ⊂ F(a2) ⊂ F(a3) THEN set S ← S−{a1} for all S ∈ F . (Note:
May need to re-apply Rule 2.)

(2) Set X ← ⋃
S∈F S.

— End of Algorithm —

In the following, we prove the correctness of the above rules. The parts
marked “(⇒)” show that ΠSSP(X, F, k) = TRUE before the application of a
rule implies ΠSSP(X, F ′, k′) = TRUE after the application of that rule. The sec-
tions marked “(⇐)” show the opposite direction, i.e. ΠSSP(X, F ′, k′) = TRUE
after the application of a rule implies ΠSSP(X, F, k) = TRUE before the appli-
cation of that rule.

Proof Of Correctness For Rule 1. If degF (a)> k then [{a}, X − {a}] splits
k or more sets. �

Proof Of Correctness For Rule 2. Consider a set S ∈ F with |S| ≤ 1. (⇒)
Since S can not be split by any SSP(X, F, k) = [X0, X1] , any such [X0, X1] also
splits k sets in F−{S}. (⇐) If there exists a SSP(X, F − {S}, k) = [X0, X1] then
the same [X0, X1] is also a set k-splitting SSP(X, F, k). �

Proof Of Correctness For Rule 3. Consider a set S ∈ F with |S| ≥ 2k. (⇒)
If [X0, X1] is a k-splitting for F then [X0, X1] is either a k-splitting for F−{S} (if
S is not split by [X0, X1] ) or [X0, X1] is a k−1-splitting for F −{S} (if S is split
by [X0, X1] ). (⇐) Consider a k − 1-splitting [X0, X1] of F − {S} with witness
structure W = (b1, . . . , bk−1, w1, . . . , wk−1) by Lemma 1(a). Since |S| ≥ 2k, there
exist two elements bk, wk ∈ S −W . Hence (b1, . . . , bk, w1, . . . , wk} is a witness
structure for a k-splitting of F ; see Lemma 1(b). �

Proof Of Correctness For Rule 4. Consider an S ∈ F with |S| ≥ 2 which
contains an element a ∈ S with degF (a) = 1. (⇒) If [X0, X1] is a k-splitting for
F then [X0, X1] is a k − 1-splitting for F − {S}. (⇐) Consider a k − 1-splitting
[X0, X1] for F − {S} with witness structure W = (b1, . . . , bk−1, w1, . . . , wk−1)
by Lemma 1(a). Since degF (a) = 1, a is not an element of W . Since |S| ≥ 2,
S contains another element a′ 	= a. Assume a′ ∈ W , w.l.o.g. a′ = bj for some
1 ≤ j ≤ k − 1, then W ′ = (b1, . . . , bk−1, w1, . . . , wk−1, wk) with wk = a is a
k-witness structure for a k-splitting of F (Lemma 1(b)). Assume a′ /∈ W , then
W ′′ = (b1, . . . , bk−1, bk, w1, . . . , wk−1, wk) with bk = a′ and wk = a is a k-witness
structure and implies a k-splitting of F (Lemma 1(b)). �

Proof Of Correctness For Rule 5. Consider three different elements a1, a2, a3
∈ X with ∅ 	= F(a1) ⊂ F(a2) ⊂ F(a3). Let F ′ = {S−{a1}|S ∈ F}. (⇒) Assume
that [X0, X1] is a k-splitting for F with non-redundant k-witness structure W
= (b1, . . . , bk, w1, . . . , wk). If a1 /∈ W then W is also a witness structure for a
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k-splitting of F ′. Assume a1 ∈W , w.l.o.g. a1 = bi for some 1 ≤ i ≤ k−1. If both,
a2 and a3 were contained in W then they can not both be black [white] witness
elements since, otherwise, W would not be minimal (a2 could be replaced by
a3). However, if a2 and a3 were both contained in W and had different colors,
then W would not be minimal as well since a1 could be replaced by either a2 or
a3. Hence, only either a2 or a3 can be in W and must have a color different from
a1 (otherwise a1 could be replaced by either a2 or a3). Assume, w.l.o.g. a2 = wj

for some 1 ≤ j ≤ k−1. Then, W ′ obtained from W by replacing a1 by a3 is also
a k-witness structure and implies a k-splitting of F ′ (since W ′ does not contain
a1). (⇐) Assume that [X0, X1] is a k-splitting for F ′ then it is also a k-splitting
for F . �

Theorem 1. Let (X, F, k) be any reduced problem instance. If |F | ≥ 2k then
ΠSSP(X, F, k) = TRUE.

Theorem 1 follows from Lemma 2, below.

Lemma 2. “Boundary Lemma”
If (X, F, k) is reduced and ΠSSP(X, F, k) = TRUE and ΠSSP(X, F, k + 1) =
FALSE then |F | ≤ 2k.

Proof. Assume there exists a counter example to Lemma 2, that is, a reduced
problem instance (X, F, k) with ΠSSP(X, F, k) = TRUE and ΠSSP(X, F, k + 1)
= FALSE but |F | > 2k. The following Claims 2 to 2 show that this leads to a
contradiction.

Since ΠSSP(X, F, k) = TRUE, there exists a k-splitting SSP(X, F, k) =
[X0, X1] which splits k sets S1, . . . , Sk ∈ F and, by Lemma 1(a), there exists
a k-witness structure W = (b1, . . . , bk, w1, . . . , wk) such that {bi, wi} ⊂ Si for all
i = 1, . . . , k.

A set S ∈ F is called chosen if S = Si for some i ∈ {1, . . . , k}, otherwise S
is called not chosen. Recall that any element b1, . . . , bk is called black and any
w1, . . . , wk is called white. All other elements a ∈ X −W are called grey.

Claim. If a set S ∈ F is not chosen then it cannot contain both a black and a
white element.

Proof. Otherwise, ΠSSP(X, F, k + 1) = TRUE.

Claim. If a set S ∈ F is not chosen then it consists entirely of black elements or
entirely of white elements.

Proof. Assume, w.l.o.g, that S contains a black element bi and a grey element
a ∈ X −W . If we color a white, i.e. add bk+1 = bi and wk+1 = a to W , then
we obtain a k + 1-witness and, hence, ΠSSP(X, F, k + 1) = TRUE. Assume that
S contains only grey elements. Due to Rule 2, S contains at least two elements
a and b. If we color a white and b black, then we obtain a k + 1-witness and,
hence, ΠSSP(X, F, k + 1) = TRUE.
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Two chosen sets Si, Sj are called connected if bi = bj or wi = wj . Let
C1, . . . , Cr ⊂ F be a partitioning of {S1, . . . , Sk} into maximal collections of
connected chosen sets (i.e. connected components with respect to the above con-
nected relation). We will refer to C1, . . . , Cr as connected components.

A set S ∈ F intersects a component Ct if there exists a chosen set Si ∈ Ct

with bi ∈ S or wi ∈ S.

Claim. If S ∈ F is not chosen then it does not intersect two different components
Ct and Ct′ . (See Figure 2 for an illustration.)

Proof. Consider a set S ∈ F that is not chosen and assume that S intersects two
different components Ct and Ct′ . Hence, there exists a chosen set Si ∈ Ct with
bi ∈ S or wi ∈ S and there exists a chosen set Sj ∈ Ct′ with bj ∈ S or wj ∈ S. If
bi ∈ S and wj ∈ S then S is split by [X0, X1] and, hence, ΠSSP(X, F, k + 1) =
TRUE. Thus, assume w.l.o.g. that bi ∈ S and bj ∈ S. However, if we now invert
the colors of all witnesses for chosen sets in Ct then all chosen sets in Ct are still
split and S is split as well. Thus, ΠSSP(X, F, k + 1) = TRUE; a contradiction.

Fig. 2. Illustration of Claim 2

Claim. For any components Ct, the number of sets which intersect Ct and are
chosen is larger than (or equal to) the number of sets which intersect Ct and are
not chosen.

Proof. Assume that the number of sets which intersect Ct and are not chosen
is larger than the number of sets which intersect Ct and are chosen. Consider
the following undirected graph G = (V, E) where V is the union of the witnesses
{bi, wi} of all sets Si which intersect Ct and are chosen and E = E1∪E2 defined
as follows. For each chosen set Si which intersect Ct, E1 contains an edge e(Si)
= (bi, wi). For each set S ∈ F which intersects Ct and is not chosen, E2 contains
an edge e(S) = (a1, a2) where a1, a2 are two arbitrary (but different) elements
of S. Note that, since (X, F, k) is reduced, |S| ≥ 2. Furthermore, it follows from
Claim 2 that S consists entirely of black elements or entirely of white elements.
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Hence, a1 and a2 are either both black or white elements. See Figure 3 for an
illustration. For any v ∈ V let deg1(v) be the number of edges in E1 that are
incident to v and let deg2(v) be the number of edges in E2 that are incident
to v. From the assumption at the beginning of this proof it follows that |E2|
> |E1|. Hence, there exists a vertex v0 ∈ V such that deg2(v0) > deg1(v0).
As a consequence, if we invert the color of the witness corresponding to v0, we
obtain a new witness structure which splits at least one more set, which implies
ΠSSP(X, F, k + 1) = TRUE; a contradiction.

Fig. 3. Illustration of Claim 2

Claim. The number of sets which are chosen is larger than (or equal to) the
number of sets which are not chosen.

Proof. Follows from Claims 2 and 2.

Since the number of chosen sets is k, it follows from Claim 2 that F ≤ 2k; a
contradiction. This concludes the proof of Lemma 2 and Theorem 1.

Let (X, F, k) be a reduced problem instance. If |F | ≥ 2k then ΠSSP(X, F, k)
= TRUE by Theorem 1. Hence, for the remainder let us assume that |F | < 2k.

Since, by Rule 3 of Algorithm 1, every S ∈ F is of size smaller than 2k, it
follows that X is of size at most 4k2. Thus, there are at most 24k2

possible k-
witness structures which implies an O(n4 + n24k2

) algorithm for set k-splitting.
In the following we will show how to reduce the 24k2

term to 2O(k).
Consider a reduced problem instance (X, F, k) with |F | < 2k. If

ΠSSP(X, F, k) = TRUE then there exists a k-witness structure W =
(b1, . . . , bk, w1, . . . , wk). Assume that W has the largest number of private ele-
ments among all possible k-witness structures for (X, F, k). We shall call such a
k-witness structure maximal. Let X(W ) denote the set of elements a ∈ X that
are contained in W . Consider the collection F (W ) of sets Si ∈ F which are split
by W . Each set Si ∈ F (W ) has a black witness bi and a white witness wi in
W . We partition F (W ) into sets A(W ), B(W ), C(W ), D(W ) where Si ∈ A(W )
if Si has a private black witness and a private white witness, Si ∈ B(W ) if Si

has a private black witness and a shared white witness, Si ∈ C(W ) if Si has a
private white witness and a shared black witness, and Si ∈ D(W ) if Si has a
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shared black witness and a shared white witness. See Figure 4 for an illustration.
Let XA be the set of all elements a ∈ X that are contained in at least one set
Si ∈ A(W ), and let XBCD be the set of all elements a ∈ X that are contained
in at least one set Si ∈ B(W ) ∪ C(W ) ∪D(W ).

Fig. 4. Illustration of A(W ), B(W ), C(W ), D(W ) and XBCD.

Lemma 3. Consider a reduced problem instance (X, F, k) with |F | < 2k and a
maximal k-witness structure W , and let XBCD and X(W ) be defined as above,
then XBCD ⊂ X(W ).

Proof. Consider an element a ∈ XBCD which is not contained in X(W ). By
assumption, a is contained in a set Si ∈ B(W ) ∪ C(W ) ∪D(W ). Note that, by
definition, Si has at most one private witness in W . However, since a is not in
X(W ), we can add a to W as a witness for Si, replacing a shared witness of
Si. This increases the number of private witnesses in W ; a contradiction to the
assumption that W is maximal.

For any F ′ ⊂ F and X ′ ⊂ X let Ĝ(F ′, X ′) be a bipartite graph with vertex
set VF ′ ∪X ′, where VF ′ contains two elements bS and wS for each S ∈ F ′. For
every set S ∈ F ′ and each element a ∈ S ⊂ X ′, the graph Ĝ contains two
edges: one edge between bS and a, and one edge between wS and a. A maximum
matching [11] in the bipartite graph Ĝ(F ′, X ′) is called complete if every vertex
in VF ′ is matched. For such a matching, we call those elements in X ′ matched to
a bS ∈ VF ′ the black elements and those elements in X ′ matched to a wS ∈ VF ′

the white elements.

Algorithm 2 Set k-Splitting
(1) Kernelization

Using Algorithm 1, convert the given problem instance into an equiva-
lent reduced problem instance (X, F, k). IF |F | ≥ 2k THEN report that
ΠSSP(X, F, k) = TRUE and STOP.
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(2) Search
FOR ALL collections {S1, . . . , Sk} of k sets of F

FOR ALL bi-partitions of {S1, . . . , Sk} into A(W ) and Ā(W ) = B(W )
∪ C(W ) ∪ D(W ) such that |XBCD| ≤ 2k

FOR ALL tri-partitions of XBCD into X0
BCD, X1

BCD and X2
BCD

for which [X0
BCD, X1

BCD] splits all sets in B(W ) ∪ C(W ) ∪
D(W )
(Note: X0

BCD represents those elements a ∈ XBCD that are black
witnesses for sets in B(W ) ∪ C(W ) ∪ D(W ), X1

BCD represents
those elements a ∈ XBCD that are white witnesses for sets in
B(W ) ∪ C(W ) ∪ D(W ), and X2

BCD represents the remainder of
XBCD.)

IF there exists a complete matching in Ĝ(A(W ), XA − (
X0

BCD ∪X1
BCD)) with black elements X0

A and white ele-
ments X1

A THEN report that [X0
BCD ∪ X0

A, X1
BCD ∪ X1

A]
splits k sets in F and ΠSSP(X, F, k) = TRUE and STOP.

Report that ΠSSP(X, F, k) = FALSE.
— End of Algorithm —

Theorem 2. Algorithm 2 solves the set k-splitting problem in time O(n4 +
2O(k)n2.5).

Proof. The time for Step 1 is bounded by O(n4). For Step 2, observe that the
number of collections {S1, . . . , Sk} of k sets of F is at most 4k = 22k and the
number of bi-partitions of {S1, . . . , Sk} is at most 2k. Since XBCD ⊂ X(W )
due to Lemma 3, and |X(W )| ≤ 2k, the number of tri-partitions of XBCD is
at most 32k = 2

2 log 3
log 2 k. The computation of a maximum matching requires time

O(n5/2)[11]. Thus, the time for Step 2 is bounded by O(n5/22(3+ 2 log 3
log 2 )k).

3 Optimality

In this section we employ newly developed methods of parameterized complexity
analysis to prove “exponential optimality” for our main FPT result in Section 2.

To illustrate the issue, consider some recent results for the k-vertex cover
problem. An FPT algorithm of the form 2O(k), based on search trees, was first
described by Mehlhorn [14]. In [2] it was shown that the planar k-vertex
cover problem can be solved in time 2O(

√
k)n. This raises two natural questions:

(1) Is there an FPT algorithm for the general k-vertex cover problem with
running time 2O(

√
k)nc? (2) Can the FPT algorithm for the planar k-vertex

cover problem be further improved? For example, is an algorithm with time
2O(k1/3)nc possible? It has been shown that the answers to both questions is
“no” [5]. There is no FPT algorithm with a running time of the form 2o(k)nc

for the general k-vertex cover problem, and there is no FPT algorithm
with a running time 2o(

√
k)nc for the planar k-vertex cover problem unless
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there is an unlikely collapse FPT = MINI[1] in the hierarchy of parameterized
complexity classes

FPT ⊆MINI[1] ⊆W [1].

Such a collapse is considered unlikely because because FPT = MINI[1] if and
only if n-variable 3SAT can be solved in time 2o(n) [7,5].

In the remainder of this section we establish a similar result for the set
k-splitting problem SSP(X, F, k).

Theorem 3. There is no FPT algorithm for set k-splitting with running
time 2o(k)nc unless FPT = MINI[1].

Proof. It is sufficient to show that the following problem is hard for MINI[1]:

MINI Set Splitting
Input: Integers k, n in unary format, a family F ⊆ 2X where |F| ≤ k log n,
and an integer r. Parameter: k. Question: Is there a bipartition of X that
splits at least r sets of F.

Proving that MINI Set Splitting is hard for MINI[1] is sufficient to estab-
lish our theorem because (1) If there is a 2o(s)nc algorithm to determine if s sets
can be split then this algorithm can be used to determine in time 2o(k log n)nc

if r ≤ k log n sets can be split. (2) If g(n, k) = o(k log n) for any fixed k, i.e.
limn→∞

f(k,n)
k log n = 0 for any fixed k, then 2f(k,n)nc is bounded by g(k)nc′

for
appropriately chosen constant c′ and function g(k).

To show that MINI Set Splitting is MINI[1] hard, we reduce from the
MINI[1]-complete problem MINI-3SAT [7]

MINI 3SAT
Input: Integers k, n in unary format, a 3SAT expression E where E has at
most k log n variables and k log n clauses. Parameter: k. Question: Is E sat-
isfiable.

The standard reduction from 3SAT to the variant Not-all-equal 3SAT
for all positive literals is, in fact, a linear-size reduction. That is, the
expression E ′ to which E is transformed satisfies |E ′| ≤ c|E| for some constant c.
This yields immediately an FPT reduction from MINI 3SAT to MINI Not-
all-equal 3SAT For All Positive Literals. The latter is a special case
of MINI Set Splitting (where all sets in the family F have size 3).

4 Conclusion

In this paper, we have presented the first exploration of the parameterized com-
plexity of one of the classic problems about families of sets, Set Splitting,
parameterized by the number of sets to be split. We have presented an FPT
algorithm with a running time of 2O(k)n2.5 and shown that there can be no FPT
algorithm for this problem with a running time of the form 2o(k)nc unless the
satisfiability of n-variable 3SAT instances can be decided in time 2o(n).
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The “final” goal of FPT methods is to increase the size of solvable problem
instances for NP-complete problems like Set Splitting. In this context, an
important open question is whether the 2(3+ 2 log 3

log 2 )k term in the running time
of Algorithm 2 can be further reduced to some 2ck with c < 3 + 2 log 3

log 2 . We
emphasize that this is a first study of the parameterized complexity of Set
Splitting. For a practical implementation, our algorithm will probably also
require more reduction rules in order to “shrink” problem instances as much as
possible during kernelization and thereby further increase the size of solvable
problem instances.
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