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Abstract

The precomputation of the different summary views of
a data cube is critical to improving the response time
of data cube queries for On-Line Analytical Processing
(OLAP). The computation of the full data cube, rep-
resenting all 2¢ views, has been studied extensively.
However, the full cube is often too large to be com-
puted and stored, and for some applications all views
are not even required. Hence, it is important to pro-
vide efficient methods for the computation of partial
data cubes consisting of an arbitrary, user selected,
subset of the 2 possible views. In this paper, we
study the top-down computation of partial ROLAP
data cubes. We present both sequential and parallel
methods for top-down partial data cube construction.
Our experimental results indicate close to linear per-
formance improvement for partial data cube compu-
tation. For example, when selecting 50% of the views
our method requires only 55% of the time required
to build the full cube, and when selecting 75% of the
views our method requires just 82% of the full cube
time.

1 Introduction

The Problem: Generating the Partial Data
Cube
The precomputation of the different summary
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views (group-bys) of a data cube is critical to im-
proving the response time of data cube queries for
On-Line Analytical Processing (OLAP) [9]. Nu-
merous solutions for generating the entire data
cube (i.e. all 2¢ views) have been proposed. See,
for example, the sequential and parallel solutions
for building the entire data cube presented in
[10, 17, 1, 20, 4] and [5, 8, 14, 12, 19], respec-
tively. In contrast, this paper studies the prob-
lem of computing the partial data cube. That is,
given a relation R of size n and dimension d as
well as an arbitrary subset S of the set of all 2¢
possible view identifies, we wish to compute the
subset of views identified in S.

Despite the practical significance of partial
cube generation for OLAP systems, little algo-
rithmic work has been presented in the litera-
ture. In [4], Beyer and Ramakrishnan present a
bottom-up technique for the computation of RO-
LAP Iceberg-cubes. Though primarily designed
for full cube computation — where it is quite ef-
ficient — the algorithm can be extended to sup-
port partial cube generation. Specifically, if end
users only require views up to a specific number
of dimensions, the BUC technique can be utilized.
Because the algorithm is not particularly efficient
at computing low dimensional views, however, it
is unlikely to be effective in practical partial cube
environments such as data visualization. In con-
trast, the algorithms presented in the remainder
of this paper allow for the specification of arbi-
trary subsets and can also support efficient com-
putation for low dimensional environments.
Summary of Results
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Data cube methods can be categorized as follows
[15]: (1) There are two standard datacube rep-
resentations, MOLAP (multi-dimensional array)
and ROLAP (set of relational tables). (2) Data
cube construction methods can be grouped into
top-down methods (aimed at dense relations) and
bottom-up methods (aimed at sparse relations).
In this paper, we study the top-down computa-
tion of partial ROLAP data cubes for both the
sequential and parallel setting.

We present two methods, Tree_Partial_Cube(S,
PC) and Lattice_Partial_ Cube(S, PC). Both meth-
ods create a schedule tree T' to guide top-down
data cube construction. In the former case, T is
a subtree of the Pipesort schedule tree [1] whereas
in the latter case, T is a subgraph of the lattice L.
The heart of our algorithm is a method Partial_-
Cube_Schedule(S, G, T) which builds the schedule
tree T from a guiding graph, G (pruned Pipesort
tree). It first organizes the nodes of S into a tree
of minimum total cost, using a greedy approach.
Then, it adds intermediate nodes which are not in
the selected set S but have the property of further
minimizing the total cost. In Section 3, we show
how the above methods can also be parallelized
for a p processor shared disk multiprocessor, like
the SunFire 6800 [13].

We have implemented our sequential and
parallel methods and tested them on a SunFire
6800 [13]. In comparison to previous top-down
full data cube methods, we observed that our
method has the same performance for full cube
construction but has much improved, close to
linear, performance for partial cube construction.
Our experimental results indicate, for example,
that when selecting 50% of the views our method
requires only 55% of the time required to build
the full cube, and when selecting 75% of the views
our method requires just 82% of the full cube
time. In fact, Lattice_Partial_Cube can be used
as a general purpose replacement for Pipesort,
one that achieves equivalent performance in
the generation of full cubes and is, in addition,
capable of efficiently generating partial cube.
Furthermore, our method is considerably easier
to implement than Pipesort because it does not
require minimum cost bipartite graph matching.

Comparison With Previous Results

For top-down partial cube construction the cen-
tral problem is how to build a schedule tree T of
minimum cost that connects 1) all the selected
views (i.e. S), and 2) some intermediate nodes
(views) chosen in order to reduce the total cost.
An approach to this problem based on Pipesort
was presented in [1]. Recall that Pipesort builds a
schedule tree by proceeding level by level through
the lattice and building minimum cost bipartite
matchings between levels. Since, the schedule
tree for a partial cube may require edges between
nodes at arbitrary levels of the lattice the authors
in [1] suggest augmenting the lattice with Steiner
vertices and edges representing all possible order-
ings of the attributes of all views and edges be-
tween all vertices where the attributes of one ver-
tex are a prefix of the attributes of the other. The
authors in [1] then apply a minimum Steiner tree
approximation algorithm to the augmented lat-
tice in order to create a schedule tree. The main
problem with this approach, besides the mini-
mum Steiner tree problem being NP-complete, is
that the augmented lattice can become extraor-
dinarily large. The number of vertices and edges

in the original lattice L are Zg:0< Z > and

d . .
Z‘,le 1 k, respectively, while the number of
vertices and edges in the augmented lattice with

4N pigs)

Steiner vertices and edges are Zi:o A

and Egzl

tively. The number of Steiner edges is greater
than 79,000,000 for d = 7 and reaches almost 40
trillion for d = 10. This makes such an approach
impractical for relations with more than just a
very small number of dimensions. These exam-
ples suggest that, in order to handle real life data
sets, it is important to find approaches that do
not require Steiner vertices and edges in the lat-
tice. The main contribution of this paper is to
provide such a method.

d
L ) KUYk ﬁ] + |S|, respec-
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2 Sequential Partial Data

Cubes

For a given set S of selected view identifiers (i.e.
sets of dimensions), we wish to create a partial
cube PC containing the views identified in .S. The
main task is to create a schedule tree T' which con-
tains all views of S plus some additional interme-
diate views such that the total cost for computing
all of these views is minimized. A schedule tree
T is a tree where the nodes represent views and
edge (u,v) from parent u to child v indicate that
v is created from w. Each edge (u,v) is labelled
“scan” or “sort” indicating that v is created via
a “scan” or “sort”, respectively.

We present two methods, Tree_Partial_Cube(S,
PC) and Lattice_Partial_Cube(S, PC), which both
create a schedule tree T' that contains the views
in S, and then build the partial data cube PC
according to the schedule implied by T. As a pre-
processing step, we compute the lattice, L, of the
24 possible view indentifiers [9] and use a stor-
age estimator [6, 18] to estimate the approximate
sizes of the views.

Procedure 1 Tree_Partial_Cube(S, PC)

/* Input: set of selected group-bys, S. Output: partial

data cube, PC. Variables: A schedule tree T representing

S with added intermediate nodes and scan/sort relation-

ships. */

(1) Compute the Pipesort spanning tree of the lattice
L and prune it by deleting all nodes which have no
descendent in S. Let G denote the result.

(2) Partial_Cube_Schedule(S, G, T)

(3) Fix_Pipelines(T)

(4) Build the partial data cube PC according to the
schedule tree T.

Procedure 2 Lattice_Partial_Cube(S, PC)

/* Input: set of selected group-bys, S. Output: partial

data cube, PC. Variables: A schedule tree T representing

S with added intermediate nodes and scan/sort relation-

ships. */

(1) Prune all nodes in the lattice L which have no de-
scendent in S. Let G denote the result.

(2) Partial_Cube_Schedule(S, G, T)

(3) Establish_Attribute_Orderings(T)

(4) Build the partial data cube PC according to the
schedule tree T.

The difference between the two methods is
that, in Tree_Partial_Cube(S, PC) the schedule
tree 1" is a subgraph of the Pipesort tree for
complete cube construction whereas in Lattice_-
Partial_Cube(S, PC) the schedule tree T is a sub-
graph of the lattice. The heart of our algorithm is
the method Partial_Cube_Schedule(S, G, T) which
builds the schedule tree T. The guiding graph,
G, captures the valid relationships between views.
For Tree_Partial_Cube(S, PC), G is a subgraph of
the pipesort tree and for Lattice_Partial_Cube (S,
PC), G is a subgraph of the lattice. Each vertex of
G has an additional label indicating the estimated
size of the respective view.

For two adjacent nodes v, w in G we require
an estimate of the cost involved to create view
w from view v. Let scan_cost(v,w) and sort_-
cost(v,w) denote the cost estimates to create w
from v via a scan or complete re-sort, respectively,
including the I/O overhead involved. The esti-
mates scan_cost(v,w) and sort_cost(v,w) are func-
tions of the number of rows of v, |v|, where scan_-
cost(v,w) = cgiskCdim(d)|v] and sort_cost(v,w) =
CdiskCdim(d)|V| 4 csort(d)|v|log |v| for machine de-
pendent values cgisk, Caim(d), and cgort(d). The
constant cg;si, called disk constant, reflects the
ratio between the cost of external disk access and
local memory access. The function cgip(d) <
d represents the increased cost associated with
reading/writing d dimensional records in compar-
ison to one dimensional records. The function
csort(d) reflects the overhead incurred when sort-
ing d dimensional records in main memory.

Let mode(v,w) be “scan” for v,w € G if w can
be created from v via a scan, and “sort” other-
wise. Note that, if G is a subgraph of the pipesort
tree, where the attribute ordering has been fixed,
a node w can be created from v iff the attributes
of w are a prefix of the attributes of v. If G is a
subgraph of the lattice, where the attribute order-
ings have not been fixed, a node w can be created
from v iff the attributes of w are a subset of the
attributes of v. Let cost(v,w) be scan_cost(v,w) if
mode(v,w) = “scan”, and sort_cost(v,w) otherwise.
Let RawDataSet denote the original data set and
let parent(v, T) be the parent node of v in a given
tree T'.
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The method Partial_Cube_Schedule(S, G, T)
proceeds in two steps. In Step 1, it organizes the
nodes of S into a tree of minimum total cost. In
Step 2, it adds intermediate nodes (from G—T') to
the tree to further minimize the total cost. Both
steps make use of “plan” variables. A plan rep-
resents the best way for a given node v to be
inserted into T'. More precisely, a plan variable
contains the following fields: (1) node: the node
v considered to be inserted, (2) parent: the cho-
sen parent of v, (3) parent_mode: the chosen
mode (scan or sort) for computing v from its par-
ent, (4) scan_child: the chosen child of v that
is computed via scan, (5) insertion_scan_child:
the chosen scan child of v in the case of scan in-
sertion, (6) sort_children: the chosen children
of v that are computed via sort, (7) benefit: the
improvement in total cost obtained by inserting
v.

For a plan variable P, the procedure Clear(P)
sets P.benefit to —oco and all other fields to NIL.

Procedure 3 Partial_Cube_Schedule(S, G, T)

/* Input: set of selected group-bys, S, and a guiding
graph G. Output: A schedule tree T representing S with
added intermediate nodes and scan/sort relationships.
Variables: CP (current plan) and BP (best plan) of type

Plan. */

(1) /* Intialize T with nodes from S */
S=5T=90
WHILE S’ not empty

clear(BP)

FOR every v € S’ DO
clear(CP); CP.node = v
Find_Best_Parent(T, G, CP)
Find_Best_Children(T, G, CP)

IF CP.benefit > BP.benefit THEN BP =
Ccp

update T according to BP

remove BP.node from S’

(2) /* Add nodes from G-S to T as long as the total cost
improves */
REPEAT

clear(BP)

FOR every v € G-T-{RawDataSet} DO
clear(CP); CP.node = v
Find_Best_Parent(T, G, CP)
Find_Best_Children(T, G, CP)

IF CP.benefit > BP.benefit THEN BP =
CcpP

IF BP.benefit > 0 THEN add BP.node to T
and update T according to BP
UNTIL BP.benefit <=0

Both, Step 1 and Step 2 of Partial_Cube_-
Schedule(S, G, T) use the two methods Find_-
Best_Parent(T, G, CP) and Find_Best_Children(T,
G, CP). The method Find_Best_ Parent(T, G, CP)
identifies for a given node v the least expensive
node w in T from which v can be computed. We
favor the lengthening of scan pipelines by consid-
ering first the cases where v is either added at the
end of an existing pipeline or v is inserted into
an existing pipeline. Otherwise we consider using
a sort to create v as the start of a new pipeline.
Note that, adding v to T creates a cost (negative
benefit) in the first place and that the “real” ben-
efit will follow from the improved computation of
children of v.

Procedure 4 Find_Best_Parent(T, G, CP)
/* Input: current tree, T, and a guiding graph G. Out-
put: sets the fields CP.parent, CP.parent. mode and
CP.benefit to represent best parent of CP.node. Vari-
ables: parents_scan_child. */
(1) /* Intialize best parent to RawDataSet */
CP.parent = RawDataSet
CP.benefit = 0 - cost(RawDataSet, CP.node)
CP.parent_mode = mode(RawDataSet, CP.node)
(2) /* Improve best parent, if possible */
FOR all w € T - { RawDataSet } where the at-
tributes of CP.node are a subset of the attributes
of w DO

/* Case 1: CP.node is added at the end of an
existing pipeline */
IF w has no scan child AND scan_-
cost(w,CP.node) < abs(CP.benefit) THEN
CP.parent = w
CP.benefit = 0 - scan_cost(w,CP.node)

CP.parent_mode = “scan’ o
/* Case 2: CP.node is inserted into an existing

pipeline */
ELSE IF w has a scan child w' AND mode(w,
CP.node) = *“scan” AND mode(CP.node,
w') = “scan” AND scan_cost(w,CP.node) <
abs(CP.benefit) THEN
CP.parent = w; CP.insertion_scan_child =
w
CP.benefit = 0 - scan_cost(w,CP.node)

CP.parent_mode = “scan”
/* Case 3: CP.node is made the start of a new

pipeline */
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ELSE IF sort_cost(w,CP.node) <
abs(CP.benefit) THEN
CP.parent = w
CP.benefit = 0 - sort_cost(w,CP.node)
CP.parent_mode = “sort”

The method Find_Best_Children(T, G, CP)
identifies for a given node v the set of children
that would create the largest benefit if they were
created from v rather than their current parents
in T. In Step 1, it finds the best scan child, ei-
ther by the scan insertion indicated by Find_Best_-
Parent(T, G, CP) or by comparing the potential
benefit of all possible scan children. In Step 2,
it finds all other potential children that lead to
an improvement in total cost, i.e. can be better

computed from v than from their current parent
inT.

Procedure 5 Find_Best_Children(T, G, CP)

/* Input: current tree, T, and a guiding graph G. Out-

put: sets the fields CP.scan_child, CP.sort_children and

CP.benefit to represent best children of CP.node. Vari-

able: best_scan_ child, best_scan_child_benefit. */

(1) /* Find either a scan insertion (Case 2) or the best
scan child (i.e. the one with largest path cost), if one
exists. */
best_scan_child = nil; best_scan_child_benefit = —co
IF CP.insertion_scan_child != nil THEN

best_scan_child = CP.insertion_scan_child
ELSE FOR all w € T where { the attributes of w are

a subset of the attributes of CP.node } DO
IF mode(parent(w, T), w) = “sort” THEN
IF cost(parent(w,T),w) — cost(CP.node,w) >
best_scan_child_benefit THEN
best_scan_child = w
best_scan_child_benefit =
cost(parent(w,T),w) — cost(CP.node,w)
IF best_scan_child != nil THEN
CP.benefit  +=  cost(parent(w,T)w) —
cost(CP.node,w)
CP.scan_child = best_scan_child
(2) /* Find other children with positive benefit */
FOR all w € T where { the attributes of w are a
subset of the attributes of CP.node
AND w # best_scan_child AND
mode(parent(w,T),w)="sort" } DO
IF  cost(parent(w,T),w) > cost(CP.node,w)
THEN
CP.benefit += cost(parent(w,T),w) —
cost(CP.node,w)
CP.sort_children += w

This concludes the description of our method,
Partial_Cube_Schedule(S, G, T). After Partial-
Cube_Schedule(S, G, T) has generated a sched-
ule tree, both methods, Tree_Partial_ Cube(S, PC)
and Lattice_Partial_Cube(S, PC), continue with
a post-processing method Fix_Pipelines(T) and
Establish_Attribute_Orderings(T), respectively.

The post-processing method Establish_-
Attribute_Orderings(T) has the task of identifying
pipes of possible scan orderings for Lattice_-
Partial_Cube. Note that, while all edges in T
have been identified as either “scan” or “sort”
edges, the attribute orderings for the vertices, i.e.
views, have yet to be established. The method
Establish_Attribute_Orderings(T) identifies all
leaves in the schedule tree T which are scan
children. These leaves mark the bottoms of
existing pipelines. For each such leaf z, a method
Fix_Attributes(x) is called which recursively
walks up the pipeline, starting at x. As the
parent /child scan relationships are examined, the
attribute order of the parent is modified to reflect
the ordering of its child. For example, a pathway
such as B — CB — CGB — DGBC would be
re-ordered as B— BC — BCG — BCGD.

The post-processing method Fix_Pipelines(T),
used in Tree_Partial_Cube, has the task of identi-
fying nodes that have no scan child, create a scan
child for such nodes, and fix the attribute order-
ings. Note that, since in Tree Partial Cube the
guiding graph is a subgraph of the Pipesort tree
for the entire cube, the scan child  of a node y
in the guiding graph may not be in 7" and there-
fore ¥y may not have a scan child at this point.
The method Tree_Partial_Cube identifies all nodes
y with at least one child but no scan child. For
each such node y, one arbitrary child x is made
it’s scan child and Fix_Attributes(x) is invoked to
correctly set the attribute orderings.

Following the construction of the schedule tree
T both methods, Tree_Partial_Cube(S, PC) and
Lattice_Partial_Cube(S, PC), construct the partial
cube, PC, according to the “scan/sort” schedule
given by T
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3 Parallel Partial Data Cubes

In this section we outline how to parallelize our
partial cube generation methods for a p pro-
cessor shared disk multiprocessor, like the Sun-
Fire 6800 [13]. The following methods Parallel -
Tree_Partial_Cube(p, S, PC) and Parallel_Lattice_-
Partial_Cube(p, S, PC) describe parallel versions
of Tree_Partial_Cube and Lattice_Partial_Cube, re-
spectively. In both cases, our approach is to
generate the schedule tree T using Partial Cube -
Schedule(S, G, T), partition T into subtrees
representing workloads of equal size, and then
distribute the workload over the p processors
Py,...,P,. The following procedures show the
structure of our methods.

Procedure 6 Parallel_Tree_Partial_Cube(p, S, PC)
/* Input: number of processors, p, and set of selected
group-bys, S. Output: partial data cube, PC. Variables:
A schedule tree T representing S with added intermediate
nodes and scan/sort relationships. */
(1) Processor P;:
e Compute the Pipesort spanning tree of the lattice
L and prune it by deleting all nodes which have
no descendent in S. Let G denote the result.
e Partial_Cube_Schedule(S, G, T)
e Fix_Pipelines(T)
e Tree_Partition(T, p, s, £1, ..., £;).
(2) On each processor P;, in parallel:
e Compute all group-bys in subset 3J; on processor
P; according to the schedule in T'N %;.

Procedure 7 Parallel_Lattice_Partial_Cube(p, S,
PQC)
/* Input: number of processors, p, and set of selected
group-bys, S. Output: partial data cube, PC. Vari-
ables: A schedule tree T representing S with added
intermediate nodes and scan/sort relationships. */
(1) Processor P;:
e Prune all nodes in the lattice L which have no
descendent in S. Let G denote the result.
e Partial_Cube_Schedule(S, G, T)
e Establish_Attribute_Orderings(T)
e Tree_Partition(T, p, s, 1, ..., &,).
(2) On each processor P;, in parallel:
e Compute all group-bys in subset ¥; according to
the schedule in T'N %;.

The challenge is how to partition 7" into sub-
trees representing workloads of equal size be-
cause the tree partitioning problem is known to

be NP-complete. We apply a tree partitioning
heuristic which we had previously developed in
[5] for parallelizing the computation of the full
data cube. This approximation method makes
use of a related partitioning problem on trees for
which efficient algorithms exist, the min-maz tree
k-partitioning problem [3, 7, 16]. Our tree parti-
tioning heuristic developed in [5] adapts the al-
gorithm in [3] to the partitioning of the schedule
tree T. Note that, min-max k-partitioning does
not necessarily result in a partitioning of T' into
subtrees representing equal workload. To achieve
a better distribution of the workload we apply an
over partitioning strategy: instead of partition-
ing the tree T into p subtrees, we partition it into
s x p subtrees, where s € {1,2,3} is a chosen in-
teger parameter. Then, we use a “packing heuris-
tic” to determine which subtrees belong to which
processors, assigning s subtrees to every proces-
sor. Our packing heuristic considers the weights
of the subtrees and pairs subtrees by weights to
control the number of subtrees. It consists of s
matching phases in which the p largest subtrees
(or groups of subtrees) and the p smallest sub-
trees (or groups of subtrees) are matched up. The
above constitutes our method Tree_Partition(T, p,
S, X1, .- Ep) which has as input the schedule
tree, T, number of processors, p, and overparti-
tioning ratio, s, and creates as output p sets of
trees, X1, ..., Xp, where each set ¥; contains the
s subtrees of T" which will be assigned to proces-
sor P;. As shown in [5], an overpartitioning ratio
of s < 3 is sufficient to obtain a good workload
distribution.

4 Performance Evaluation

In this section we discuss the experimental ex-
amination of Tree_Partial_Cube, Lattice_ Partial_-
Cube, Parallel_Tree_Partial_ Cube, and Parallel_-
Lattice Partial Cube. We first discuss our setup
and methodology and then present the perfor-
mance results obtained.
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4.1 Experimental Setup and Method-
ology

We have implemented Tree_Partial_Cube, Lattice_-
Partial_Cube,  Parallel_Tree_Partial_Cube, and
Parallel_Lattice_Partial_Cube using C and the MPI
communication library [2]. Most of the required
graph algorithms, as well as data structures
like hash tables and graph representations, were
drawn from the LEDA library [11]. Our experi-
mental platform consisted of a Sun Fire 6800 with
24x 750MHz (8 MB E-Cache) UltraSPARC-III
processors, 24 GB of memory and a Sun Storedge
T3 disk storage system. The operating system
was Solaris 8 (HW 04/01) and we used Sun
MPI-5.0 as our MPI platform.

All sequential times were measured as wall
clock times in seconds, running on one proces-
sor of the Sun Fire 6800. All parallel times were
measured as the wall clock time between the start
of the first process and the termination of the last
process. We will refer to the latter as parallel wall
clock time. These times include all I/O. Further-
more, all wall clock times were measured with no
other user except us on the Sun Fire 6800.

Without a partial cube algorithm available,
there are essentially two possible approaches to
build a partial cube: (1) build the full data cube
and then return the selected views only, or (2) cal-
culate each of the selected views by a separate sort
of the raw data set, followed by a scan. Which
of these two approaches is better depends essen-
tially on the percentage of selected views. For a
small number of selected views (less than 25%),
the individuals sorts will often be faster, while
building the full data cube is often faster when
the percentage of selected views is high (more
than 75%). The following method Simple_Partial -
Cube(S, PC), which always selects the faster of
these two approaches, will be used as a “baseline”
against which our algorithms Tree_Partial_Cube
and Lattice Partial Cube will be compared. Note
that, in the remainder of this section, the wall
clock time for Simple_Partial_Cube(S, PC) will be
determined by simply running both approaches
and selecting the wall clock time of the faster one.

Procedure 8 Simple_Partial_Cube(S, PC)

/* Input: set of selected group-bys, S. Output: partial
data cube, PC.*/
Build the partial data cube, PC, for the set of selected
group-bys, S, by using either
(1) Pipesort, or
(2) an individual sort and scan of the raw data set
for each view in S
which ever is faster.

We implemented a data generation program
which creates data sets of various sizes and di-
mensions, with various cardinalities for the in-
dividual dimensions and various data distribu-
tions (from uniform to skewed data created via
ZIPF distributions [21]). In the remainder, un-
less otherwise stated, our data sets were gener-
ated with uniform distribution and mixed cardi-
nalities, varying between 2 and 1000 for the differ-
ent dimensions. In order to eliminate influence of
the storage estimator used on the comparison be-
tween Tree_Partial_Cube, Lattice_Partial_Cube and
Simple_Partial_Cube, we used precise storage sizes
for the views generated. For each experiment
where there was variance in running times due
to variances in input data sets, multiple data sets
were run and data points represent the average
over those experiments.

4.2 Performance Results:
Experiments

Sequential

Figure 1la shows the running time observed
for Simple_Partial_Cube, Tree_Partial_ Cube and
Lattice_Partial Cube as a function of the percent-
age of views from the complete data cube that
are selected at random and generated. The data
sets consisted of 200,000 rows with 8 dimensions
and mixed cardinalities, varying between 2 and
1000 for the different dimensions. We observe
that our two new methods are a significant im-
provement over Simple_Partial_ Cube. When up to
50% of views are selected, a reduction in time of
between 30% and 45% is observed. Even when as
many as 75% of the views are selected an improve-
ment of 18% is observed. When up to 50% of the
views are selected, the methods Tree_Partial_Cube
and Lattice_Partial Cube exhibit very similar per-
formance. Beyond that point the Lattice_Partial -
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Cube method appears to provide better perfor-
mance.

200000 400000 600000 5000001000000
Number of Records

(a) (b)

Figure 1: Sequential wall clock time in seconds as a
function of (a) the percentage of selected views (b) the
data size.

Figure 1b shows the running time observed
for Simple_Partial Cube, Tree Partial Cube and
Lattice_Partial Cube as a function of the data size
when 10% of the views in the complete data cube
are selected at random and generated. The data
sets range in size from 200,000 to 1,000,000 rows.
Again we observe that our two new methods are a
significant improvement over Simple_Partial_Cube.
When only 10% of the views are selected, the
new methods achieve an improvement of approx-
imately 30%.

Figure 2a shows the relative improvement in
running time observed for Tree_Partial_Cube with
respect to Simple_Partial_Cube as a function of the
dimensionality of the data sets when 5%, 10%,
25%, 50% or 75% of the views in the complete
data cube are selected. We observe that when the
dimensionality of the cube is low (i.e. 5 or 6) there
is a lot of variation in the relative improvement.
This is likely because in these cases there are only
a small number of views in total (32 or 64) so that
the addition of just a couple of intermediate views
can have a very significant effect. As the number
of dimensions grows, the curves become smoother
and exhibit a consistent trend of slowly growing
relative improvement.

Figure 2b presents the same data as Figure 2a
in a different way. Here the relative improvement
in running time observed for Tree_Partial_Cube
with respect to Simple_Partial Cube is presented
as a function of the percentage of selected views
when data sets with between 5 and 10 dimen-

Relative Imrpovement (%)

Relative Improvement (%)

7 8 8 10 510 25 50
Dimensions % Selected

(a) (b)

Figure 2: Relative improvement in wall clock time for
sequential Tree_Partial Cube W.R.T. Simple_Partial -
Cube (a) as a function of the number of dimensions, for
different percentages of selected views (b) as a func-
tion of the percentage of selected views, for different
numbers of dimensions.

sions are considered. This figure highlights that
regardless of dimensionality, the performance of
Tree_Partial_Cube is best when between 10% and
50% of the views are selected. There is still some
improvement below 10% and above 50% but it is
relatively smaller, although not insignificant.

Figure 3a shows the relative improvement in
running time observed for Lattice_Partial. Cube
with respect to Simple_Partial Cube as a function
of the dimensionality of the data sets while Fig-
ure 3b, using the same data, presents the relative
improvement as a function of the percentage of se-
lected views. It is interesting to observe how sim-
ilar these curves are to the curves shown in Fig-
ure 2a and 2b. These results for Lattice_Partial -
Cube are a slight improvement over the results
for Tree_Partial_Cube but the general shape of the
curves is the same. Again we can observe that
beyond 7 dimensions the relative improvement is
increasing as the dimensionality of the problem
increases.

Figure 4a shows the running time observed
for Simple_Partial Cube, Tree Partial Cube and
Lattice_Partial Cube as a function of skew when
25% of the views in the complete data cube
are selected. We note that skew is produced
with the Zipfian power-law function, a technique
commonly employed in the data cube literature
[4, 18]. Here, we express the probability of en-
countering a particular value 7 in a given dimen-
sion d as P; ~ 1/i% where 1 < i < Cy and
the probability P is normalized into the range
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Relative Imrpovement (%)

Relative Improvement (%)
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Figure 3: Relative improvement in wall clock time for
sequential Lattice_Partial_ Cube w.r.t. Simple_Partial -
Cube (a) as a function of the number of dimensions,
for different percentages of selected views (b)as a func-
tion of the percentage of selected views, for different
numbers of dimensions.

0...1. Effectively, the data set becomes signifi-
cantly more skewed as « increases from zero (i.e.,
uniformly distributed).

Since data reduction in top-down generation
methods increases with skew, the total time ob-
served is expected to decrease with skew which
is exactly what we observe in Figure 4b. One
might expect that greedy methods like our Tree_-
Partial Cube and Lattice Partial Cube might per-
form poorly in the presence of skew. However, the
main observation of Figure 4b is that our meth-
ods appear to be robust in the presence of skew.
In fact, they appear to do relatively better in sit-
uations of high skew.

4000

3000

Run time (sec)

2000

1000

6 7 & 9 10
Number of Dimensions

(a) (b)

Figure 4: (a) Sequential wall clock time in seconds
as a function of the skew (ZIPF) when 25% of the
views are selected. (b) Computing the entire data cube
(percentage of selected views = 100%). Sequential wall
clock time in seconds as a function of the number of
dimensions.

Although Lattice Partial Cube was designed
for generating partial cubes it can of course also
be used to generate full cubes by simply select-

ing all views. This is an interesting situation to
study because in practice it would be very use-
ful to have a single method (and code base) that
could effectively generate an arbitrary percentage
of the views of a complete data cube. Figure 4b
shows the running time observed for Pipesort and
Lattice_Partial_Cube as a function of the dimen-
sionality of the data sets when the complete data
cube is generated. Please observe how closely the
run time of Lattice Partial Cube tracks the run
time of Pipesort despite the fact that they are
based on fundamentally different schedule tree
generation methods. Note that, the two meth-
ods share the same code for the actual genera-
tion of views, given those schedule trees. The
main observation that can be drawn from Fig-
ure 4b is that Lattice_Partial Cube can be used as
a general purpose replacement for Pipesort, one
that achieves equivalent performance in the gen-
eration of full cubes and is in addition capable of
efficiently generating partial cube.

4.3 Performance Results: Parallel Ex-
periments

For our parallel methods Parallel_Tree_Partial_-
Cube and Parallel_Lattice_Partial_Cube we tested
our methods on up to 16 processors of a SunFire
6800 and observed close to linear relative speedup.

3500

Q3000 -

2500

§88¢88

Run Time (sec)
Run Time (se

g &

H

5 16 1 4 5
Processors Processors

(a) (b)

Figure 5: Parallel wall clock time in seconds as a
function of the number of processors, for different per-
centages of selected views for (a) Parallel_Tree_Partial -
Cube(S, PC) and (b) Parallel_Lattice_Partial_Cube(S,
PQ).

Figures 5a and 5b show the parallel wall clock
time in seconds for Parallel_Tree_Partial_. Cube
and Parallel_Lattice_Partial_Cube, respectively, as
a function of the number of processors when 5%,
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10%, and 25%, of the views in the complete data
cube are selected. (At time of submission, the
curves for 50% and 75% were not available due
to hardware problems. They will be included
in the final version of this paper.) For both
figures, the data sets consist of 1,000,000 rows
with mixed cardinalities, varying between 2 and
1000 for the different dimensions. We observe
that both, Parallel_Tree_Partial_Cube and Parallel -
Lattice_Partial_Cube, achieve near linear relative
speedup for up to 16 processors.
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