A Coarse-Grained Parallel Algorithm for
Spanning Tree and Connected Components*

E. N. Céceres!, F. Dehne?, H. Mongelli', S. W. Song?®, and J. L. Szwarcfiter?

! Universidade Federal de Mato Grosso do Sul, Campo Grande, Brazil,
edson@dct.ufms.br, http://www.dct.ufms.br/~edson,
mongelli@dct.ufms.br, http://www.dct.ufms.br/~mongelli
2 Carleton University, Ottawa, Canada K1S 5B6,
frank@dehne.net, http://www.dehne.net
3 Universidade de S&o Paulo, Séo Paulo, Brazil,
song@ime.usp.br, http://www.ime.usp.br/~song
4 Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil,
jayme@nce.ufrj.br, http://www.cos.ufrj.br/docentes/jayme.html

Abstract. Dehne et al. present a BSP/CGM algorithm for computing
a spanning tree and the connected components of a graph, that requires
O(log p) communication rounds, where p is the number of processors. It
requires the solution of the Euler tour problem which in turn is based
on the solution of the list ranking problem. We present a new approach
that does not need to solve the Euler tour or the list ranking problem.
It is based on the integer sorting algorithm which can be implemented
efficiently on the BSP/CGM model [1].

1 Introduction

Computing a spanning tree and the connected components of a graph are basic
problems and arise as subproblems in many applications. Parallel algorithms for
these problems have been proposed by Hirschberg et al. [2]. An efficient CRCW
PRAM algorithm takes O(logn) time with O((m+n)a(m,n))/logn processors,
where a(m,n) is the inverse of the Ackermann’s function [3]. Dehne et al. [4]
present a coarse-grained parallel algorithm that requires O(log p) communication
rounds, where p is the number of processors. It is based on the Euler tour problem
which in turn is based on the list ranking problem.

We present a new approach that does not need to solve the Euler tour or the
list ranking problem. It still requires O(logp) communication rounds and has
the advantage of avoiding the list ranking computation which has been shown
to require large constants in practical implementations. The proposed algorithm
is based on the integer sorting algorithm which can be implemented efficiently
on the BSP/CGM model.

* Partially supported by FINEP-PRONEX-SAI Proc. No. 76.97.1022.00, CNPq Proc.
No. 30.0317/02-6, 30.5218/03-4, 47.0163/03-8, 55.2028/02-9, FUNDECT-MS Proc.
No. 41/100117/03, and the Natural Sciences and Engineering Research Council of
Canada. We would also like to thank the anonymous referees for their review and
helpful comments.

2 Preliminaries and Main Ideas

We use the Coarse-Grained Multicomputer (CGM) model [5], with p processors
each with an O(N/p) local memory, where N is the input size. A CGM algorithm
consists of alternating local computation and global communication rounds. The
communication cost is modeled by the number of communication rounds.

Consider a bipartite graph H = (V1, Vs, E) with vertex sets V3 and Va2 and
edge set F where each edge joins one vertex of V7 and one vertex in V5. If v is
a vertex of a subgraph H' of H, then dpy(v) denotes the degree of v in H'. Let
the vertices of Vi be ui,ug, -, u,, and the vertices of Vo be v1,va,- -, vp,.

We define a strut ST in V; as a spanning forest of H such that each v; € V5 is
incident in ST with exactly one edge of E, and (u;,v;) is an edge of ST implies
(ug,v;) is not an edge of H, for any ur € Vi, k < j. To define a strut in Vs, the
roles for the sets V3 and V5 in the above definition are exchanged.

A vertex u € Vi is called zero-difference in ST if dy(u) — dgr(u) = 0.
Otherwise, the vertex is referred to as non-zero-difference.

1 v v
2 2 2
3 3
4 4
5 5 5
&
(a) ()

Fig. 1. (a) A bipartite graph (b) a strut (solid lines) (c) the compacted graph.

Fig. 1(a) shows a graph H = (V1,V,,E) with Vi = {1,2,3,4,5}, Vo =
{1,2,8,4,5,6'} and E = {(1,1') (1,2") (1,3) (2,2") (2,4) (3,1") (4,5") (4,6")
(5,4") (5,5')}. We first compute a spanning forest for H by determining a strut
ST in H (see Fig. 1(b)). Now compute the zero-difference vertices in V;. Con-
sider vertex 1. All the (three) edges in H incident with this vertex is also in ST
Thus dg (1) — dsr(1) = 0 and vertex 1 is zero-difference. Likewise vertex 4 is
also zero-difference. Notice that vertex 2 is not zero-difference.

In the example we have two zero-difference vertices. If we have only one
zero-difference vertex, then the problem is easily solved by adding to ST one
arbitrary edge of H — ST incident to each non-zero-difference vertex of ST'. In
case there are two or more zero-difference vertices we can do the following. For
each zero-difference vertex u € Vi compact all the vertices v; € V5 incident with
u by compressing all the vertices v; onto the smallest of the v;. Repeat this until
only one zero-difference vertex remains.

3 The CGM Algorithm for Bipartite Graphs

Let H(V1, Va2, E) be a bipartite graph with |Vi| = ny, |Va2| = ng and |E| = m.
Each of the p processors has O(m/p) or O((n1+nz2)/p) local memory. Algorithm
1 computes a spanning tree of H, in O(logp) communication rounds.

Algorithm 1 - CGM Algorithm for Spanning Tree

Input: A bipartite graph H(V1, Vs, E) where Vi = {u1, ..., un, }, Vo = {v1, ..., 00y}

and |E| = m. An edge (u;,v;) of E has a vertex u; in V; and a vertex v; in Va.
The m edges are equally distributed among the p processors at random.
Output: A spanning tree of G.
Phase I:

1: Initialize Vi := V5 and Vi := V, and E := E.

2: for logp times do

3: Sort the edges (u,v) of E by v and then by u.

4: for each v; of V5 do

5: Choose the smallest vertex u; among all edges (u, v;) and mark the edge
(uj,v;). Let ST be the set of the marked edges.

6: end for

7. Compute the degree of each vertex v € V; in H(Vy, Vs, E).

8: Compute the degree of each vertex u € V; in Hgr(Vi, Vo, ST).

9: Using the degrees computed in the previous steps compute the number of

zero-difference vertices.
10: if number of zero-difference vertices = 1 then
11: the algorithm finishes
12: end if
13: Compact the graph to produce the compacted graph H(Vy, Vs, E).
14: end for
Phase 1II:

1: Compute a spanning forest with the edges of graph H(Vy, Vs, E) that do not
belong to ST and removing those with degree(@w)=1 where @ € V3.

2: Set all processors to active mode.
3: for k:=1 to logp do
4: Partition the active processors into groups of size two.
5: for each group P;, P; of active processors, i < j, in parallel do
6: Processor P; sends its edge set F; to processor P;.
T Processor P; is set to passive mode.
8: Processor P; computes the spanning forest (Vi, Vs, E,) of the graph
SF = (V1,Va, E; U Ej) and sets F; := FEj.
9: end for
10: end for

Consider the graph of Fig. 1(a). We use array EDGE to store edges of E:
(1,1')(1,2')(1, 3')(2, 2')(2, 4')(3, 1') (4, ') (4, 6') (5, 4') (5, 5').

Make a copy of EDGE in EDGE'. Lines 3 to 6 of Algorithm 1 obtain a
strut ST. Line 3 sorts the edges in EDGE’ lexicographically in the following way.
Given two edges (i, j) and (k, 1) then (i,5) < (k,1) when j <lor ((j =1) and (i <

k)). Array EDGE’ contains the sorted edges: (1,1°)(3,1)(1,2')(2,2')(1,3')(2,4')(5,4")
(4,5")(5,5")(4,6").

Lines 4 to 6 find a strut ST in V;. It is represented by solid lines of Fig. 1(b).
Array EDGE' represents ST: (1,1')(1,2')(1,3')(2,4')(4,5')(4, 6").

A strut ST in Vi determines a spanning forest of H. Lines 7 to 9 find the
zero-difference and non-zero-difference vertices of the strut S7T'. Determine the
degrees of each of the vertices in V7 and store in Dy. In our example Dy =
(3,2,1,2,2). Determine now which vertices of V; are zero-difference. For this,
determine the degree of each of the vertices of V7 in EDGE’ and store in Dgr.
Again for our example, Dgr = (3,1,0,2,0). Thus the zero-difference vertices are
vertices {1,4} and the non-zero-difference vertices are vertices {2, 3,5}.

Line 13 produces a compacted graph. For each zero-difference vertex v € V3
compact all the vertices v; € Vo incident with u by merging all the vertices v;
onto the smallest of the v;. The new compacted graph H(V}, Vs, E) is shown in
Fig. 1(c). Note that vertices 2" and 3’ are compressed onto vertex 1’ and therefore
the original edge (2,2’) now becomes (2,1").

Algorithm 1 computes the spanning tree of H = (V1, Vs, E) in O(log p) com-
munication rounds. The proof can be found in [6].

4 Generalization and Main Results

To transform any graph into a bipartite graph, subdivide each edge by adding a
new vertex on each edge. Consider the vertices of the original graph as belonging
to V1 and the new added vertices as V5, then we have a resulting bipartite graph.

To determine the connected components of a graph, in each iteration of Algo-
rithm 1, determine each of the sublists of EDGE’ formed by edges (u,v),u = u;
that forms a tree, labeled by EDGE;, . At the end of the algorithm, we can rep-
resent each tree with the smallest vertex. Each of the different vertices represent
a connected component of the graph.

References

1. Chan, A., Dehne, F.: A note on coarse grained parallel integer sorting. Parallel
Processing Letters 9 (1999) 533-538

2. Hirschberg, D.S., Chandra, A.K., Sarwate, D.V.: Computing connected components
on parallel computers. Comm. ACM 22 (1979) 461-464

3. Karp, R.M., Ramachandran, V.: 17. In: Handbook of Theoretical Computer Science
- J. van Leeuwen (ed.). Volume A. Elsevier/MIT Press (1990) 869-941

4. Dehne, F., Ferreira, A., Céceres, E., Song, S.W., Roncato, A.: FEfficient parallel
graph algorithms for coarse grained multicomputers and BSP. Algorithmica 33
(2002) 183-200

5. Dehne, F., Fabri, A., Rau-Chaplin, A.: Scalable parallel geometric algorithms for
coarse grained multicomputers. In: Proc. ACM 9th Annual Computational Geom-

etry. (1993) 298-307
6. Caceres, E.N., Dehne, F., Mongelli, H., Song, S.W., Szwarcfiter, J.L..: A coarse-

grained parallel algorithm for spanning tree and connected components. Technical
report, USP http://www.ime.usp.br/~song/papers/span.pdf (2003)

