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Motivated by the work of Ng et.al. [2] and the recent
success of another hybrid sequential method, Star-Cubing
[4], we further investigate the use of hybrid approaches for
the parallel computation of very large iceberg-cube queries.
We present “Pipe ’n Prune” (PnP), a new hybrid method
for iceberg-cube query computation. The novelty of our
method is that it achieves a tight integration of top-down
piping for data aggregation with bottom-up Apriori data
pruning. A particular strength of PnP is that it is very ef-
ficient for all of the following scenarios: (1) Sequential
iceberg-cube queries. (2) External memory iceberg-cube
queries. (3) Parallel iceberg-cube queries on shared-nothing
PC clusters with multiple disks.

PnP is a hybrid, sort-based, algorithm for the computa-
tion of very large iceberg-cube queries. The idea behind
PnP is to fully integrate data aggregation via top-down pip-
ing [3] with bottom-up (BUC [1]) Apriori pruning. We
introduce a new operator, called the PnP operator. For a
group-by v, the PnP operator performs two steps: (1) It
builds all group-bys v′ that are a prefix of v through one sin-
gle sort/scan operation (piping [3]) with iceberg-cube prun-
ing. (2) It uses these prefix group-bys to perform bottom-
up (BUC [1]) Apriori pruning for new group-bys that are
starting points of other piping operations. An example of
a 5-dimensional PnP operator is shown in Figure 1a. The
PnP operator is applied recursively until all group-bys of
the iceberg-cube have been generated. An example of a
5-dimensional PnP Tree depicting the entire process for a
5-dimensional iceberg-cube query is shown in Figure 1b.

We performed an extensive performance analysis of PnP
for all of the above mentioned scenarios with the following
main results: In the first scenario, PnP performs very well
for both, dense and sparse data sets, providing an interesting
alternative to BUC and Star-Cubing. In the second scenario,
PnP shows a surprisingly efficient handling of disk I/O, with
an external memory running time that is less than twice the
running time for full in-memory computation of the same
iceberg-cube query. In the third scenario, PnP scales very
well. In [2], Ng et.al. observe for their parallel iceberg-
cube method that “the speedup from 8 processors to 16 pro-
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Figure 1. (a) A PnP Operator. (b) A PnP Tree. (Plain
arrow: Top-Down Piping. Dashed Arrow: Bottom-up Prun-
ing. Bold Arrow: Sorting.)

cessors is below expectation” and attribute this scalability
problem to scheduling and load balancing issues. Our anal-
ysis shows that PnP solves these problems and scales well
for at least up to 16 processors. In more detail, our analysis
of PnP showed the following.

Sequential iceberg-cube queries: We performed an ex-
tensive performance analysis of PnP in comparison with
BUC [1] and StarCube [4]. We observe that the sequen-
tial performance of PnP is very stable even for large vari-
ations of data density and data skew. Sequential PnP typ-
ically shows a performance between BUC and StarCube,
while BUC and StarCube have ranges of data density and
skew where BUC outperforms StarCube or vice versa (Fig-
ure 2a). For the special case of full cube computation, PnP
outperforms both BUC and StarCube (Figure 2b).

External memory iceberg-cube queries: Since PnP is
composed mainly of linear scans and does not require com-
plex in-memory data structures, it is conceptually easy to
implement as an external memory method for very large
iceberg-cube queries. In order to make good use of PnP’s
properties, we have implemented our own I/O manager to
have full control over latency hiding through overlapping
of computation and disk I/O. Our experiments show mini-
mum loss of efficiency when PnP switches from in-memory
to external memory computation. The measured external
memory running time (where PnP is forced to use exter-
nal memory by limiting the available main memory) is less
than twice the running time for full in-memory computa-
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tion of the same iceberg-cube query. In Figure 3 we ob-
serve similarly shaped curves even as we increase the di-
mensionality of the problem due in large part to the effects
of iceberg pruning. The location of the slight jump in time,
corresponding to the switch to external memory, occurs be-
tween 5 million rows and 7 million rows depending on the
dimensionality of the iceberg cube being generated.

Parallel iceberg-cube queries on shared-nothing PC
clusters (with multiple disks): PnP is well suited for
shared-nothing parallelization, where processors do not
share any memory and all data is partitioned and distributed
over a set of disks. The full version of this paper presents
a PnP parallelization which (1) minimizes communication
overhead, (2) balances work load, and (3) makes full use of
our I/O manager by overlapping parallel computation and
parallel disk access on all available disks in the PC cluster.
Extensive experiments show that our new parallel, exter-
nal memory, PnP method provides close to linear speedup
particularly on those data sets that are hard to handle for
sequential methods. Most importantly, parallel PnP scales
well and provides near linear speedup for larger numbers
of processors (thereby solving the scalability problem ob-
served in [2]). Figure 4 shows the running time and corre-
sponding speedup for parallel PnP for input data sizes be-
tween t = 1 and 8 million rows. Near linear speedup is ob-
served when there are at least n/p = 500, 000 rows per pro-
cessor. Figure 5 shows the running time and corresponding
speedup for increasing dimensionality. Again we observe
near optimal linear speedup all the way up to 16 processor.
With 32 processors the parallel version of PnP achieves at
least 50% speedup when generating cubes of between 8 and
10 dimensions and near optimal linear speedup when gen-
erating a 11 dimensional cube. Note that the best speedup
is achieved on the problems which are hardest to solve se-
quentially, that is those that involve the largest problems in
terms of input size and/or dimensionality.
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Figure 2. Sequential PnP. (a) Iceberg cube, varying cardi-
nality. Fixed t=5M, d=6, s=0, m=100. (b) Full cube, vary-
ing cardinality. Fixed t=1M, d=6, s=0, m=1.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 1  2  3  4  5  6  7  8  9  10 11 12 13 14 15 16 17 18 19 20

S
ec

on
ds

Rows (Millions)

d=9
d=10
d=11

Figure 3. External Memory PnP. Varying dimensionality.
Fixed c=300, m=1000, s=0, b=500M.
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Figure 4. Parallel PnP. Varying input data size t. Fixed
d=10, c=100, m=100, s=0. (a) Running Time. (b) Speedup.
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Figure 5. Parallel PnP. Varying dimensions. Fixed data
size t=8M, c=100, m=100, s=0. (a) Running Time. (b)
Speedup.
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