An O(2°¢%)n3) FPT Algorithm

859

for the Undirected Feedback Vertex Set Problem*

Frank Dehne®, Michael Fellows?, Michael A. Langston?®,
Frances Rosamond?, and Kim Stevens?*

1 Carleton University, Ottawa, Canada
frank@dehne.net

2 University of Newcastle, Callaghan NSW 2308, Australia
{mfellows,fran}@cs.newcastle.edu.au

3 University of Tennessee, Knoxville TN 37996-3450, USA

langston@cs.utk.edu
4 The Mechanics Institute, Bob’s Farm NSW 2316, Australia
wonganellawines@telstra.com

Abstract. We describe an algorithm for the FEEDBACK VERTEX SET
problem on undirected graphs, parameterized by the size k of the feed-
back vertex set, that runs in time O(c*n®) where ¢ = 10.567 and n is the
number of vertices in the graph. The best previous algorithms were based
on the method of bounded search trees, branching on short cycles. The
best previous running time of an FPT algorithm for this problem, due to
Raman, Saurabh and Subramanian, has a parameter function of the form
90 (klogk/loglog k) WWhether an exponentially linear in k& FPT algorithm
for this problem is possible has been previously noted as a significant
challenge. Our algorithm is based on the new FPT technique of iterative
compression. Our result holds for a more general “annotated” form of the
problem, where a subset of the vertices may be marked as not to belong
to the feedback set. We also establish “exponential optimality” for our
algorithm by proving that no FPT algorithm with a parameter function
of the form 0(2"('“)) is possible, unless there is an unlikely collapse of
parameterized complexity classes, namely FPT = M[1].

1 Introduction

The FEEDBACK VERTEX SET problem for undirected graphs can be informally
described as the problem of finding a set of vertices that “covers all the cycles”
in a graph in the sense that every cycle in the graph includes at least one vertex
of a solution set. We consider here a generalization of the problem, where the
vertices of the input graph may be annotated according to whether or not they
are allowed to belong to a solution set. This generalized form of the problem is
formally defined as follows:

* This research has been supported in part by the U.S. National Science Founda-

L.

Wang (Ed.): COCOON 2005, LNCS 3595, pp. 859-869, 2005.

© Springer-Verlag Berlin Heidelberg 2005

tion under grant CCR-0075792, by the U.S. Office of Naval Research under grant
N00014-01-1-0608, by the U.S. Department of Energy under contract DE-AC05-
000R22725, by the Australian Research Council and by the Australian Centre for
Bioinformatics

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.
You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.

GENERAL --
File Options:
 Compatibility: PDF 1.2
 Optimize For Fast Web View: Yes
 Embed Thumbnails: Yes
 Auto-Rotate Pages: Individually
 Distill From Page: 1
 Distill To Page: All Pages
 Binding: Left
 Resolution: [600 600] dpi
 Paper Size: [439.37 666.142] Point

COMPRESSION --
Color Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Grayscale Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 150 dpi
 Downsampling For Images Above: 225 dpi
 Compression: Yes
 Automatic Selection of Compression Type: Yes
 JPEG Quality: Medium
 Bits Per Pixel: As Original Bit
Monochrome Images:
 Downsampling: Yes
 Downsample Type: Bicubic Downsampling
 Downsample Resolution: 600 dpi
 Downsampling For Images Above: 900 dpi
 Compression: Yes
 Compression Type: CCITT
 CCITT Group: 4
 Anti-Alias To Gray: No

 Compress Text and Line Art: Yes

FONTS --
 Embed All Fonts: Yes
 Subset Embedded Fonts: No
 When Embedding Fails: Cancel Job
Embedding:
 Always Embed: []
 Never Embed: []

COLOR --
Color Management Policies:
 Color Conversion Strategy: Convert All Colors to sRGB
 Intent: Default
Working Spaces:
 Grayscale ICC Profile:
 RGB ICC Profile: sRGB IEC61966-2.1
 CMYK ICC Profile: U.S. Web Coated (SWOP) v2
Device-Dependent Data:
 Preserve Overprint Settings: Yes
 Preserve Under Color Removal and Black Generation: Yes
 Transfer Functions: Apply
 Preserve Halftone Information: Yes

ADVANCED --
Options:
 Use Prologue.ps and Epilogue.ps: No
 Allow PostScript File To Override Job Options: Yes
 Preserve Level 2 copypage Semantics: Yes
 Save Portable Job Ticket Inside PDF File: No
 Illustrator Overprint Mode: Yes
 Convert Gradients To Smooth Shades: No
 ASCII Format: No
Document Structuring Conventions (DSC):
 Process DSC Comments: No

OTHERS --
 Distiller Core Version: 5000
 Use ZIP Compression: Yes
 Deactivate Optimization: No
 Image Memory: 524288 Byte
 Anti-Alias Color Images: No
 Anti-Alias Grayscale Images: No
 Convert Images (< 257 Colors) To Indexed Color Space: Yes
 sRGB ICC Profile: sRGB IEC61966-2.1

END OF REPORT --

IMPRESSED GmbH
Bahrenfelder Chaussee 49
22761 Hamburg, Germany
Tel. +49 40 897189-0
Fax +49 40 897189-71
Email: info@impressed.de
Web: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<<
 /ColorSettingsFile ()
 /AntiAliasMonoImages false
 /CannotEmbedFontPolicy /Error
 /ParseDSCComments false
 /DoThumbnails true
 /CompressPages true
 /CalRGBProfile (sRGB IEC61966-2.1)
 /MaxSubsetPct 100
 /EncodeColorImages true
 /GrayImageFilter /DCTEncode
 /Optimize true
 /ParseDSCCommentsForDocInfo true
 /EmitDSCWarnings false
 /CalGrayProfile ()
 /NeverEmbed []
 /GrayImageDownsampleThreshold 1.5
 /UsePrologue false
 /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /AutoFilterColorImages true
 /sRGBProfile (sRGB IEC61966-2.1)
 /ColorImageDepth -1
 /PreserveOverprintSettings true
 /AutoRotatePages /PageByPage
 /UCRandBGInfo /Preserve
 /EmbedAllFonts true
 /CompatibilityLevel 1.2
 /StartPage 1
 /AntiAliasColorImages false
 /CreateJobTicket false
 /ConvertImagesToIndexed true
 /ColorImageDownsampleType /Bicubic
 /ColorImageDownsampleThreshold 1.5
 /MonoImageDownsampleType /Bicubic
 /DetectBlends false
 /GrayImageDownsampleType /Bicubic
 /PreserveEPSInfo false
 /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >>
 /PreserveCopyPage true
 /EncodeMonoImages true
 /ColorConversionStrategy /sRGB
 /PreserveOPIComments false
 /AntiAliasGrayImages false
 /GrayImageDepth -1
 /ColorImageResolution 150
 /EndPage -1
 /AutoPositionEPSFiles true
 /MonoImageDepth -1
 /TransferFunctionInfo /Apply
 /EncodeGrayImages true
 /DownsampleGrayImages true
 /DownsampleMonoImages true
 /DownsampleColorImages true
 /MonoImageDownsampleThreshold 1.5
 /MonoImageDict << /K -1 >>
 /Binding /Left
 /CalCMYKProfile (U.S. Web Coated (SWOP) v2)
 /MonoImageResolution 600
 /AutoFilterGrayImages true
 /AlwaysEmbed []
 /ImageMemory 524288
 /SubsetFonts false
 /DefaultRenderingIntent /Default
 /OPM 1
 /MonoImageFilter /CCITTFaxEncode
 /GrayImageResolution 150
 /ColorImageFilter /DCTEncode
 /PreserveHalftoneInfo true
 /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >>
 /ASCII85EncodePages false
 /LockDistillerParams false
>> setdistillerparams
<<
 /PageSize [576.0 792.0]
 /HWResolution [600 600]
>> setpagedevice

860 Frank Dehne et al.

FEEDBACK VERTEX SET (FVS)

Instance: An undirected graph G = (V, E)
(loops and multiple edges are allowed),
an annotated subset U C V of vertices,
and a positive integer k.
Parameter: k
Question: Is there a subset S of the vertices not in U, S CV — U,
of size at most k, |S| < k, such that G — S is acyclic?

The FEEDBACK VERTEX SET problem is NP-complete for both directed
and undirected graphs [GJ79]. There are numerous applications of the prob-
lem in areas such as circuit testing, deadlock resolution, analyzing manufactur-
ing processes and computational biology [BGNR98, ENSS98, FHS03, FHPSS04,
KW090]. The minimization version of the problem is approximable within a factor
of 2 in polynomial time [BBF99].

The FVS problem has been extensively studied from the parameterized point

of view [BBG00, Bod94, DF92, DF99, KPS04, RSS02, RSS05]. A parameterized
problem is said to be fized-parameter tractable (FPT) if it can be solved in time
f(k)ne for some function f (unrestricted), where n is the total input size, k is the
declared parameter and c is a constant independent of k£ and n. This running time
may be written as O*(f(k)) in the notation introduced by Woeginger [Woe03]
that focuses attention on the exponential time costs due to the parameter and
ignores the polynomial time costs due to the overall input size. Highlights of
previous research on the FVS problem in the parameterized framework include:
e A randomized FPT algorithm due to Becker et al. [BBGOO] running in time
O*(4%) finds a minimum feedback vertex set of size k with probability at least
1—(1- 4”“)C4k for an arbitrary constant c.
e After several rounds of improvement, the best previous deterministic FPT
algorithm, due to Raman, Saurabh and Subramanian [RSSO05], refining some
ideas from [RSS02] and [KPS04], has a running time of O*(20(klek/1glgk)) The
basic idea for this and most previous algorithms is to branch on short cycles in a
bounded search tree approach. See [DF99, Nie02, Nie05] for surveys of this and
other FPT techniques.

A number of problems concerning FVS have notably remained open:

(1) TIs there an O*(2°)) FPT algorithm for FVS on undirected graphs?

(2) Is there a polynomial-time algorithm that kernelizes FVS on undirected
graphs to a kernel of size polynomial in k? See [DF99, Nie02, Nie05] for a dis-
cussion of kernelization and FPT.

(3) Is the FVS problem in FPT for directed graphs?

In this paper we answer the first of these significant open problems by
an approach based on the relatively new technique of iterative compression
[RSV04, DFRS04, Ma04, GGHNWO05]. As we prepare the final version of this
paper, we have become aware that independently a solution to (1) has been de-
scribed by Guo, et al. [GGHNWO05], also based on iterative compression. Our
algorithm differs in some details, and has a run time analysis that is superior to

An 0(2°®)n3) FPT Algorithm 861

the apparently slightly earlier solution to question (1) described in the upcoming
conference paper [GGHNWO5].

In the next section we provide a brief discussion of the iterative compression
technique and its application to the FVS problem. In §3 we describe our FPT
algorithm for the solution-compression form of the FVS problem. In §4 we prove
an “optimality” result for our algorithm (giving a lower bound on the possibility
of further qualitative improvements). In §5 we conclude with a review of open
problems.

2 Iterative Compression Applied to FVS

The FPT technique of iterative compression seems first to have appeared in an
FPT algorithm devised by Reed, Smith and Vetta for the problem of deleting &
vertices to render a graph bipartite [RSV04]. The approach was articulated as
a general FPT design technique in [DFRS04]. Some applications of the method
can be found in [RSV04, DFRS04, Ma04, GGHNWO05].

Here we use this approach to solve the FVS decision problem by recursively
solving the following constructive solution-compression form of the problem:

SoLUTION COMPRESSION FOR FEEDBACK VERTEX SET
Instance: An undirected graph G = (V, E)

(loops and multiple edges are allowed),
an annotated subset U C V of vertices,
a solution set S CV — U such that G — S is acyclic,
where |S| =k + 1.
Parameter: k
Output: Either: (1) a solution set S’ of size k, or
(2) NO (i.e., no solution of size k is possible).

We employ an FPT algorithm for the above compression form of the FVS
problem in the following way. We recursively solve a constructive form of the
problem of deciding whether a graph G = (V| E) admits a feedback vertex set
of size k with vertices to be chosen from V' — U. In this constructive form of the
decision problem we are required either to produce a solution of size k, if one
exists, or to return NO otherwise.

Given an instance (G = (V, E),U C V,k), we recursively address the con-
structive decision problem for the instance (G — v, U, k) where v is an arbitrarily
chosen vertex in V — U. If this recursive call on G — v returns NO, that is, no
k-vertex solution for G — v is possible, then clearly the correct answer for G is
NO as well.

Alternatively, if the recursive call on the instance (G — v, U, k) returns a k-
element solution S C V — U, then S U {v} is a solution of size k + 1 for G. We
now employ as a subroutine the FPT algorithm for the solution compression
problem. If f(k)n® is the running time for SOLUTION COMPRESSION FOR FV'S,
then our recursive solution to the constructive decision problem runs in time
f(k)nctt where n is the number of vertices in the graph G.

862 Frank Dehne et al.

3 An FPT Algorithm for FVS Solution Compression

We will use the following reduction rules that can be easily applied to simplify
(or summarily decide) an instance of the problem. Recall that some vertices (the
vertices in U in the problem definition) may be annotated as not to belong to a
solution set.

Rule 1: The Degree One Rule. If v is a vertex (annotated or not) of degree
1 in G, then delete v and adjust the rest of the input data accordingly.

Rule 2: The Degree Two Rule. If v is a vertex (annotated or not) of degree
2 in G, with neighbors a and b (allowing possibly a = b), then modify G by
replacing v and its two incident edges with a single edge between a and b (or a
loop on a = b) and adjust the rest of the input data accordingly.

Rule 3: Annotation Contraction. If u and v are adjacent annotated vertices
(that is, u,v € U) then contract one of the edges between v and v and adjust
the rest of the input data accordingly.

Rule 4: The Loop Rules. If there is a loop on an annotated vertex v then
answer NO. If there is a loop on an unannotated vertex v € V' — U then take v
into the solution set, and reduce to the instance (G — v, U, k — 1).

Rule 5: Multiedge Reduction. If there are more than two edges between u
and v (annotated or not) then delete all but two of these.

Rule 6: Multiedge Selection. If there is an annotated vertex u that is con-
nected by two edges to an unannotated vertex v, then take v into the solution
set, that is, reduce to the instance (G — v, U, k — 1).

The soundness of all these reduction rules is self-evident. In time O(n) we
can determine if any of the above reduction rules can be applied to a problem in-
stance. Note that applications of the rules may cascade. We say that an instance
is reduced if none of the reduction rules can be applied.

Note that if we reduce an instance (G, U, k) to an instance (G',U’, k") by a
series of applications of the above reduction rules, then given a solution S’ of
size k' for G’, we can in time O(n) recover a solution S of size k for G. We will
always assume that the instance we are working with is reduced.
Algorithm for Solution Compression for FVS
Input: A reduced instance (G = (V, E),U C V, k), and a solution S CV — U of
size k + 1.
Output: Either a solution of size at most k, or NO if none exists.
Step 1: Branch on all 2¥*! — 1 subsets of S of size at most k. The branch
corresponding to a subset A C S represents the search for a size k solution S’
that includes the vertices of A, that is, A C S’, and that does not include any
of the vertices of S — A = A’.

Thus, in the instance (G',U’, k') that represents this branch of Step 1:
(1) the vertices of A are deleted,
(2) the vertices of A’ are annotated,
(3) k¥ =k — 4|, and
(4) the instance is further reduced according to Reduction Rules (1-6).

An 0(2°®)n3) FPT Algorithm 863

We will argue below that for the reduced instance (G' = (V', E’),U’, k)
considered on any of the branches of Step 1, we have either:
(i) [V =U'| < 4k, or
(ii) we can immediately determine that the answer is NO.

Step 2: On each branch of Step 1, exhaustively analyze the resulting reduced
instance by checking each k’-element subset of the unannotated vertices to see
if any provides a solution.

Step 2 requires checking at most (4kk) subsets. A simple bound on the running
time of our algorithm is O(ckn?) where ¢ = 18.963, since

<4:> ~ (9.4815)F

A morerefined version of our algorithm, detailed in §3.3, runs in time O*(10.567%).

3.1 The Reduced Instance Bound for Step 1

The correctness of the algorithm is obvious because of its extreme simplicity.
What is less obvious is the claimed bound of 4k on the number of unannotated
vertices in the reduced instance generated on a branch of Step 1 that need to be
considered further.

Let AC S and A’ =5 — A as in the description of Step 1. The immediate
instance graph G’ on the A-branch of Step 1 consists of two sets of vertices:
(1) The (now) annotated vertices of A’, where we have the bound |A’| < k + 1.
(2) The other vertices, which we denote F'. Some of these may be annotated.

This immediate branch instance is further reduced, and this reduction process
may result in some modification of the above picture. For example, connected
components of the subgraph generated by A’ would be contracted to a single
vertex, by repeated applications of Rule 3. To simplify the argument, we will
assume that the immediate branch instance is already reduced so that our de-
scription of the vertices of G’ as partitioned into A’ and F is accurate (these sets
would be modified by further reduction, but a bipartition with the same prop-
erties we make use of below would result in any case). The following structural
claims hold.

Lemma 1. The subgraph (F') induced by F is acyclic.
Proof. Otherwise S would not be a solution for G.

Henceforth we may use F (for convenience) to denote also the forest induced
by the vertices in the vertex set F'.

Lemma 2. Fach leafl of the forest F' is adjacent to at least two distinct vertices
in A’

Proof. In view of Lemma 1 and Reduction Rules 1 and 2, there must be at least
two edges connecting [to vertices in A’. Reduction Rule 6 would apply if [were
connected to only one vertex of A’.

864 Frank Dehne et al.

The vertices in the forest F' can be partitioned into three sets. Let L denote
the leaves of F, let J be the vertices that have degree 2 in the forest subgraph
(F). We will refer to the vertices of J as the subdivision vertices of F. Let B, the
branch vertices of F, be the vertices of degree at least 3 in the subgraph (F).

Lemma 3. Fach vertex j € J is connected to at least one vertex of A’.
Proof. Otherwise, in view of Lemma 1, Reduction Rule 2 would apply.

Definition 1. Let F be a forest with vertex set partitioned into the three sets:
(1) the leaves L, (2) the subdivision vertices J, and (3) the branch vertices B of
F. A path-matching of the J-vertices of F' of size r consists of:

(1) r mutually disjoint 2-element subsets {x;,y;} CJ, 1 <i<r,

(2) for eachi, 1 <i <r, a path p; in F from x; to y;, subject to the requirement
that for i # j, the paths p; and p; are vertex disjoint.

Definition 2. The potential w(F) of the forest F is defined to be the sum of
the number of leaves |L| of F' and the size of a mazimum path-matching of the
J-vertices. (See Figure 1 for an example.)

Fig. 1. A maximum path-matching of the subdivision vertices (“J vertices”) of the
forest F', showing that 7(F) =11+3 =14

Lemma 4. Suppose that for the reduced instance (G',U’ k') with vertex set
partitioned into A’ and F as above we have w(F) > k' 4+ |A’|. Then the answer
for this instance is NO.

Proof. If it were a YES-instance (for k") then there would be a feedback vertex set
S’ consisting of at most k" unannotated vertices. But then there would necessarily
be at least |A’| leaves and J —matching paths p; in F having empty intersection
with S’. Since S’ N A’ = () (because the vertices of A’ are annotated), there are

An 0(2°®)n3) FPT Algorithm 865

at least |A’| virtual edges or virtual loops connecting the vertices of A’ through
F —S'. (For example, if a leaf [of F is not in S’, then by Lemma 2 it is adjacent
to two vertices a and b in A’, which we consider here as a virtual edge between
a and b. If the path p; in F' from the J-vertex z; to the J-vertex y; does not
contain any vertices in S’, then together with the connections of z; and y; to
the set A’ guaranteed by Lemma 3, we have what can be considered either a
virtual edge between A’ vertices — or a wirtual loop, in case the A’-adjacencies
guaranteed for x; and y; by Lemma 3 connect these vertices to the same vertex
of A’.) Joining the vertices of A’ by |A’| virtual edges or virtual loops necessarily
implies that there is a cycle not including any vertices of S’ that is, that S’ is
not a feedback vertex set, a contradiction.

Lemma 5. For any forest F' on m vertices, n(F) > (m+1)/2.
The proof of Lemma 5 is intricate, and can be found in the full paper.

Lemma 6. If on the branch of Step 1 corresponding to A C S we have a reduced
instance (G',U’, k') where the vertices of G' are partitioned into A’ and F as in
the discussion above, and where |F| > 4k + 1, then this is a NO-instance.

Proof. By Lemma 5, w(F) > 2k + 1. The rest follows by Lemma 4, since |A’| <
k+1and k' <k.

3.2 A More Efficient Version

Lemma 4 shows that there is a simple way to improve the efficiency of our
algorithm. On the branch of Step 1 corresponding to a subset A of the (k + 1)-
sized solution S, we can answer NO if for the reduced instance we have 7(F) >
k' +|A’|. Since k' = k—|A| and |A’| = k+1—|A], and using Lemma 5, the total
bound on the number of possible solutions explored in Steps 1 and 2 is

Zk:(k—;l)(2((k+1—i)2—_(k;—i)—1)—1) :Z’“:(kjlxzxk;fii—l)

=0 =0

o= ()(47)

and suppose f(z, k) is maximized for 2* = (k). Then our sum above is bounded
by (k+1)- f(z*, k+1).
We next work out two estimates z1 (k) and z2(k) such that

Define

z1(k) < z*(k) < z2(k)

and we will therefore have a bound on our sum of

k41)<4<<k+ 1) —x1<k+1))>

(k+1)- (xQ(kJrl) (k+1)—21(k+1)

866 Frank Dehne et al.

(The reason for the two estimates is that the first part of f(z, k) increases with
x, and the second part decreases with z.)

We study the ratio f(z,k)/f(x + 1, k). The maximizing value z* is located
(essentially) at the point where this ratio is equal to 1. Assuming that k is large,
this ratio is approximately:

f(];(if)k) ~ (Z:) (4)(4/3)°

This yields the estimates:
x1(k) = (27/283)k and
xo(k) = (28/283)k.
Using the bound (based on Stirling’s approximation) that

() < ()

for constants a > b, we obtain the bound on our total cost sum of (k+1)(10.567)".

4 Optimality

Our FPT algorithm for the problem of SOLUTION COMPRESSION FOR FVS
yields, by the approach of §2, an FPT algorithm for the parameterized FEED-
BACK VERTEX SET problem that runs in time O(c*n®) where ¢ = 10.567. In
qualitative terms, we have given an algorithm with a running time of the form
0*(29()). We next show that this is, in a qualitative sense, “optimal” for the
problem.

Theorem 1. There can be no FPT algorithm for FEEDBACK VERTEX SET with
a running time of the form O*(2°F)) unless FPT = M[1].

Proof. Determining whether a graph on n vertices has a vertex cover of size at
most klogn, where the parameter is k, is termed the klogn VERTEX COVER
PROBLEM. This “renormalized” form of the well-known FPT VERTEX COVER
problem is complete for the parameterized complexity class M[1] [DEFPRO03,
CF04]. The theorem follows because there is a linear-size and parameter-preserv-
ing (i.e., k' = k) polynomial-time reduction from VERTEX COVER to FEEDBACK
VERTEX SET, by simply replacing each edge of the VERTEX COVER instance
with a pair of parallel edges. Thus if there were an FPT algorithm for FEEDBACK
VERTEX SET running in time O*(2°(*)) where s is the size of the feedback vertex
set, then we would have an algorithm for the klogn VERTEX COVER PROBLEM
running in time O*(2°(%1°8™)) but as shown in [CJ03], this is an FPT running
time. By the completeness of the klogn VERTEX COVER PROBLEM for M[1] we
would have FPT = M][1].

Remark 1. The consequence FPT = M]1] is highly unlikely, since it is known
that FPT = M][1] if and only if satisfiability of 3SAT instances on n variables
can be decided in time O*(2°("). (See [DEFPR03, CF04] for further information
and discussion.)

An O(2°®)n3) FPT Algorithm 867

Remark 2. A number of other FPT optimality results have been shown for var-
ious problems [DFR03, CJ03]. A notable example is the parameterized PLANAR
DOMINATING SET problem, for which there is an FPT algorithm with a running
time of O*(2°(V%)) [ABFKNO02]. It has been shown that there can be no FPT

algorithm for this problem with a running time of the form O* (20(‘/E)) unless
FPT = M[1] [CJO3].

5 Open Problems

There are two compelling problems concerning FVS that remain unresolved.

e Is the FEEDBACK VERTEX SET problem for directed graphs in FPT? This is
currently open even for the restriction to planar digraphs.

e Is there a polynomial-time kernelization algorithm for FVS on undirected
graphs that reduces an instance (G, k) to (G',k’) where k' < k and the size
of G’ is bounded by a polynomial in k?

Perhaps an iterative compression approach similar to the one employed in
our main result here might be of use in addressing the FVS problem for digraphs.

The potential practical significance of our algorithm should also be investi-
gated. Our approach to the FVS problem here is a new one. The “flat” parallelism
of Step 1 (where there are many branches of the algorithm created “all at once”,
as contrasted with many branches created by repeated binary branching, as is
more typically the case for FPT algorithms) could conceivably be significant for
highly parallel implementations.

The reduction rules that we have employed are all local and elementary in
character. It could be productive to explore if global “crown type” reduction
rules for the problem might be possible, as has turned out to be usefully the
case for VERTEX COVER [ACFLSS04]. Such reduction rules could be important
for addressing the very natural open problem concerning polynomial-size kernel-
ization. Alternatively, perhaps some new lower bound techniques, such as those
recently developed in [CFKX05], can be used to show that no polynomial-time
polynomial-size many:1 kernelization for FVS is possible.

References

[ABFKNO2] J. Alber, H. L. Bodlaender, H. Fernau, T. Kloks and R. Niedermeier.
Fixed parameter algorithms for Dominating Set and related problems
on planar graphs. Algorithmica 33 (2002), 461-493.

[ACFLSS04] F. N. Abu-Khzam, R. L. Collins, M. R. Fellows, M. A. Langston, W.
H. Suters and C. T. Symons. Kernelization algorithms for the vertex
cover problem: theory and experiments. Proceedings of the 6th Workshop
on Algorithm Engineering and Experiments (ALENEX), New Orleans,
January, 2004, ACM/SIAM, Proc. Applied Mathematics 115, L. Arge,
G. Italiano and R. Sedgewick, eds.

[BBF99] V. Bafna, P. Berman and T. Fujito. A 2-approximation algorithm for
the undirected feedback vertex set problem. SIAM Journal on Discrete
Mathematics 12 (1999), 289-297.

868 Frank Dehne et al.

[BBGOO]

[BGNRYS]

[Bod94]

[CF04]

[CJ03]

[CFKXO05]

[DEFPRO3]

[DF92]
[DF9Y]

[DFRO3]

[DFRS04]

[ENSS98]

[FHPSS04]

[FHS03)]

[GGHNWO5]

A. Becker, R. Bar-Yehuda and D. Geiger. Random algorithms for
the loop cutset problem. Journal of Artificial Intelligence Research 12
(2000), 219-234.

R. Bar-Yehuda, D. Geiger, J. Naor and R. Roth. Approximation al-
gorithms for the feedback vertex set problem with applications to con-
straint satisfaction and Bayesian inference. STAM Journal on Computing
27 (1998), 942-959.

H. Bodlaender. On disjoint cycles. International Journal of Foundations
of Computer Science 5 (1994), 59-68.

Y. Chen and J. Flum. On miniaturized problems in parameterized com-
plexity theory. Proceedings of the First International Workshop on Pa-
rameterized and Fxact Computation, Springer-Verlag, Lecture Notes in
Computer Science vol. 3162 (2004), 108-120.

L. Cai and D. Juedes. On the existence of subexponential parameterized
algorithms. Journal of Computer and System Sciences 67 (2003), 789—
807.

J. Chen, H. Fernau, I. Kanj and G. Xia. Parametric duality and ker-
nelization: lower bounds and upper bounds on kernel size. The 22nd
Symposium on Theoretical Aspects on Computer Science (STACS 2005),
Springer-Verlag, Lecture Notes in Computer Science vol. 3404 (2005),
269-280.

R. Downey, V. Estivill-Castro, M. Fellows, E. Prieto-Rodriguez and F.
Rosamond. Cutting up is hard to do: the complexity of k-cut and related
problems. Electronic Notes in Theoretical Computer Science 78 (2003),
205-218.

R. Downey and M. Fellows. Fixed-parameter tractability and complete-
ness. Congressus Numerantium 87 (1992), 161-187.

R. G. Downey and M. R. Fellows. Parameterized Complexity. Springer-
Verlag, 1999.

F. Dehne, M. Fellows and F. Rosamond. An FPT algorithm for set
splitting. Proceedings of the 29th Workshop on Graph Theoretic Con-
cepts in Computer Science (WG 2003), Springer-Verlag, Lecture Notes
in Computer Science 2880 (2003), 180-191.

F. Dehne, M. Fellows, F. Rosamond and P. Shaw. Greedy localization,
iterative compression and modeled crown reductions: new FPT tech-
niques, an improved algorithm for set splitting and a novel 2k kerneliza-
tion for vertex cover. Proceedings of the First International Workshop on
Parameterized and Exact Computation, Springer-Verlag, Lecture Notes
in Computer Science vol. 3162 (2004), 271-280.

G. Even, J. Naor, B. Scheiber and M. Sudan. Approximating minimum
feedback sets and multicuts in directed graphs. Algorithmica 20 (1998),
151-174.

C. Fried, W. Hordijk, S.J. Prohaska, C.R. Stadler and P.F. Stadler. The
footprint sorting problem. J. Chem. Inf. Comput. Sci. 44 (2004), 332
-338.

M. Fellows, M. Hallett and U. Stege. Analogs and duals of the MAST
problem for sequences and trees. Journal of Algorithms 49 (2003), 192
216.

J. Guo, J. Gramm, F. Hueffner, R. Niedermeier, S. Wernicke. Improved
fixed-parameter algorithms for two feedback set problems. Proceedings
of WADS 2005, Springer-Verlag, Lecture Notes in Computer Science
(2005), to appear.

[GJ79]

[KPS04]

[KW90]

[Ma04]

[Nie02]

[Nie05)]

[RSS02]

[RSS05]

[RSVO04]

[Woe03]

An 0(2°®)n3) FPT Algorithm 869

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide
to the Theory of NP-Completeness. W.H. Freeman, 1979.

I. Kanj, M. Pelsmajer and M. Schaefer. Parameterized algorithms for
feedback vertex set. Proceedings of the First International Workshop on
Parameterized and Exact Computation, Springer-Verlag, Lecture Notes
in Computer Science vol. 3162 (2004), 235-247.

A. Kunzmann and H. Wunderlich. An analytical approach to the partial
scan problem. Journal of Electronic Testing: Theory and Applications 1
(1990), 163-174.

D. Marx. Chordal deletion is fixed-parameter tractable. Manuscript,
2004.

R. Niedermeier. Invitation to fired-parameter algorithms, Habilitation-
schrift, University of Tubingen, 2002. (Electronic file available from R.
Niedermeier.)

R. Niedermeier. Invitation to Fized-Parameter Algorithms, Oxford Uni-
versity Press, forthcoming.

V. Raman, S. Saurabh and C. Subramanian. Faster fixed-parameter
tractable algorithms for undirected feedback vertex set. In Proceedings
of the 13th Annual International Symposium on Algorithms and Com-
putation, Springer, Lecture Notes in Computer Science vol. 2518 (2002),
241-248.

V. Raman, S. Saurabh and C.R. Subramanian. Faster algorithms for
feedback vertex set. In: Proceedings of the 2nd Brazilian Symposium
on Graphs, Algorithms and Combinatorics, GRACO 2005, April 27-29,
2005, Angra dos Reis (Rio de Janeiro), Brazil. Elsevier, Electronic Notes
in Discrete Mathematics (2005), to appear.

B. Reed, K. Smith, and A. Vetta. Finding odd cycle transversals. Oper-
ations Research Letters 32 (2004), 299-301.

G. J. Woeginger. Exact algorithms for NP-hard problems: a survey. Pro-
ceedings of 5th International Workshop on Combinatorial Optimization-
Eureka, You Shrink! Papers dedicated to Jack Edmonds, M. Junger, G.
Reinelt, and G. Rinaldi (Festschrift Eds.) Springer-Verlag, Lecture Notes
in Computer Science 2570 (2003), 184-207.

	An O(2O(k)n3) FPT Algorithm for the Undirected Feedback Vertex Set Problem
	1 Introduction
	2 Iterative Compression Applied to FVS
	3 An FPT Algorithm for FVS Solution Compression
	3.1 The Reduced Instance Bound for Step 1
	3.2 A More Efficient Version

	4 Optimality
	5 Open Problems

