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Abstract. In this paper, we study the cluster editing problem which is fixed pa-
rameter tractable. We present the first practical implementation of a FPT based
method for cluster editing, using the approach in [6,7], and compare our im-
plementation with the straightforward greedy method and a solution based on
linear programming [3]. Our experiments show that the best results are obtained
by using the refined branching method in [7] together with interleaving (re-
kernelization). We also observe an interesting lack of monotonicity in the run-
ning times for “yes” instances with increasing values of k.

1 Introduction

The CLUSTER EDITING problem is defined as follows. Input: An undirected graph
G = (V, E), and a non-negative integer k. Question: Can we transform G, by inserting
and deleting at most k edges, into a graph that consists of a disjoint union of cliques?
The CLUSTER EDIT DISTANCE for a graph G is the smallest k for which cluster
editing is possible.

Our main target applications are centered around computational biology. We are in
particular interested in the analysis of putative gene co-regulation (transcriptomics via
microarray analysis), putative gene product co-occurrence (proteomics via mass spec or
MALDI), and pathway/network elucidation in data from synthetic genetic arrays (dou-
ble knockout arrays). In all these applications, the underlying biological data is very
expensive and, in some cases, requires years to produce. For example, RI strains take
more than 8 years to make isogenetically pure, pathway/network elucidation for yeast
requires 4,500 synthetic genetic arrays, and Affy U133 arrays contain more than 30k
probesets. Because of the high value of the underlying biological data, saving compu-
tation time for the analysis by using approximation is often not acceptable. Hence, we
turn to FPT based approaches for solving such problems. The cluster editing problem
is an important such problem in the context outlined above.

In this paper, we present the first practical implementation of a FPT based method
for cluster editing, using the approach in [6,7]. In order to evaluate the effectiveness
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of the FPT approach, we also implemented a well known previous method based on
linear programming [3] as well as a greedy approach for cluster editing. The total
programming effort was approx. 120 person hours, producing approx. 2500 lines of
code.

Our experiments show that the best results for cluster editing are obtained by using
the refined branching method in [7] together with interleaving (re-kernelization). Our
experiments show that the refined branching method in [7] is vastly superior to the
basic branching method, which is not obvious because the refined branching method is
considerably more complicated and incurs larger constant factors. We also demonstrate
that, in practice, branching with interleaving is indeed decidedly faster than branching
without interleaving.

A surprising observation from our experiments comes with respect to the problem
of determining the optimum edit value, k. In practice, we do of course not know k
and the general approach would be to determine k via binary search. Things turns out
to be quite different with cluster editing. If we happen to be advancing from below
(that is, solving a “no” instance), then as e.g. with vertex cover run times predictably
increase with rising parameter values. On the other hand, if we are advancing from
above (facing a “yes” instance), then run times may decrease, increase or even stay the
same with sinking parameter values. This is very different from the standard behavior
e.g. for vertex cover. For cluster editing it is not the case that run times are highest
around the optimum value of k. We conclude that a binary search may not be the best
way to implement an FPT based approach for clustering editing, and that one may be
better off steering the parameter as much as possible from below.

The remainder of this paper is organized as follows. Section 2 outlines our experi-
mental setup used throughout the paper. Section 3 outlines our implementation of LP
based and greedy based methods for cluster editing which serve as a baseline for evalu-
ating the FPT based approach. In Section 4 we present a first practical implementation
of an FPT based approach for cluster editing. Section 5 presents our experimental re-
sults for the FPT based approach and Section 6 concludes the paper.

2 Experimental Setup

In the remainder of this paper, we compare the performance of various algorithms un-
der various criteria. Experiments were performed on a Dell OptiPlex GX280 using a
3.2GHz Pentium 4 dual processor, with 1.0 gigabytes (GB) of SDRAM, and running a
Linux 2.6.8-2-686-smp kernel. Algorithms were implemented in C and compiled using
gcc version 3.4.4. The various costs of implementation are listed in Table 1.

Table 1. Implementation costs for the three cluster editing algorithms studied in this paper

Algorithm Development Time Lines of Code Library Used
LP-based method 45 hours 250 lp solve version 5.5
Greedy method 15 hours 250 None
FPT approach 60 hours 2000 None
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Unless otherwise stated, we used as input synthetic graphs for which we know the
optimum edit distances. For this, we built a graph generator which operates as fol-
lows. Our graph generator takes as input parameters the desired number of vertices
(n), clusters (c) and the required edit distance (d). First, a random size (number of
vertices) in the range [0.5(n/c), 1.5(n/c)] is assigned to each cluster. We produce
a clique graph G′ containing c fully connected cliques (clusters) of the sizes deter-
mined above, with no edges between those cliques. Then, we execute d random ed-
its on G′ resulting in an output graph G. An edit consists of randomly inserting or
deleting an edge. More precisely, for each edit we randomly decide whether to insert
or delete an edge. For an insert operation, we randomly chose two vertices i and j
that are not connected by an edge and then add an edge (i, j). For a delete opera-
tion, we randomly select an edge in the graph and remove that edge. Once an edge is
inserted in G it cannot be deleted by a future edit. Similarly once an edge has been
deleted from G it cannot be re-inserted by another edit. For random number genera-
tion we used the Mitchell-Moore algorithm as described in [9]. Note that, the above
method creates in most cases, but not always, a graph G with edit distance d. In some
cases, as observed in our test runs, the edit distance of G is smaller than d because
a different set of clusters than those used by our generator can be created with fewer
edits.

3 A Baseline for Comparisons

In order to evaluate the effectiveness of a fixed parameter tractability approach for clus-
ter editing, we need to establish a baseline to which we can compare our implemen-
tation. One well known previous method [3] is based on linear programming. Another
alternative is to use a greedy approach for cluster editing. Needless to say, both methods
only provide an approximation of the edit distance.

We implemented the LP based cluster editing method described in [3]. Given a graph,
we first build a LP model by setting the objective function and constraints for every pair
of vertices and every triple of vertices. For each pair of vertices i and j, a partitioning
into clusters can be represented with a binary variable xij , where xij = 0 if i and j are
in the same cluster, and xij = 1 if they are in different clusters. The integer constraints
can be relaxed to allow real values for xij , that is, 0 ≤ xij ≤ 1. For each triple of
vertices i, j and k, the triangle inequality xik ≤ xij + xjk holds because if xij = 0
and xjk = 0 then xik = 0. The objective is to minimize the number of edge edits: the
number of edges (i, j) ∈ E for which xij = 1 and the number of pairs of vertices that
are not adjacent (i, j) /∈ E for which xij = 0. After the LP model is built, a linear
programming C library lp solve version 5.5 is used to solve the LP model and get the
values for every variable xij . Finally, the graph is partitioned into clusters based on the
variables xij in the following way: two vertices i and j are put into the same cluster if
xij ≤ 0.5. The edit distance is calculated as the summation of the number of edges that
are needed to be added, which do not exist but the two endpoints are in same cluster,
and the number of edges that are needed to be deleted, which exist but the two endpoints
are in different clusters.
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We also implemented the following greedy method for cluster editing. Consider a
graph G. For an edge insertion consider all possible edges, for an edge deletion consider
only the edges in G. Calculate a cost for each insertion/deletion as follows. For an edge
e = (i, j) define the common neighborhood as the set of common neighbors of i and j,
and define the non-common neighborhood as the set of non-common neighbors of i and
j. For an insertion of an edge e = (i, j), define the cost as the number of edge insertions
required to transform the common and non-common neighborhood of e into a clique.
For a deletion of an edge e = (i, j), define the cost as the number of edge deletions
required to disconnect the common neighborhood of e. Select the edit operation with
smallest cost and iterate until a graph of disjoint cliques is obtained. To implement
this greedy method, we initially mark every pair of vertices as unmarked. For each
unmarked pair of vertices i and j, the smaller of the cost of having an edge between
them and the cost of not having an edge between them is chosen as the cost of i and j.
We select the pair with least cost, perform the edits associated, and mark the pair. This
is repeated until all pairs are marked, which will give a set of connected components.
The edit distance is calculated as the number of edge editions to get the set of connected
components plus the number of edge editions to transform those connected components
into cliques.

The results of our experimental evaluation of the LP and greedy methods are shown
in Figures 1 and 2. Our experiments show that the LP based cluster editing method is
consistently better than the greedy method with respect to both, the computation time
and the value for k obtained. Hence, for the remainder of this paper, we will compare
our implementation of a fixed-parameter tractability approach only to the LP based
cluster editing method.

Fig. 1. A comparison of edit distances computed by LP versus the greedy method
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Fig. 2. A comparison of run times required by LP versus the greedy method

4 An FPT-Based Approach

In this section we present an outline of our adaptation of the algorithm in [7,6] that we
used to obtain the first practical implementation for exact cluster edit distance compu-
tation.

Algorithm 1. Solving the Cluster Edit Problem Via a Fixed-Parameter Tractability
Approach

(1) Extract highly connected (e.g., 2- and 3-connected) components. Our motivation
is to eliminate sparse parts of the input. (Note: level of connectivity depends on
the application.)

(2) Bound the search space for k:
(a) Let kLP be the edit distance determined by the linear programming method

[3].
(b) The search interval for the true edit distance k is [kLP /4, kLP ] (see [3]).

(3) For increasing k, starting with kLP /4:
(a) Execute the kernelization method described in [7], Section 7.2 (see also [6]).
(b) Execute either the basic or the refined bounded tree search method described

in [7], Section 10.1 or Section 10.2, respectively (see also [6]).
(c) Use “interleaving”: at each branch node in the bounded tree search, execute

again the kernelization method from Step 3a.
— End of Algorithm —

Two kernelization rules for the cluster editing problem have been described. The first
rule is based on the neighborhood of every pair of vertices u, v ∈ V . (1) If u and v have
more than k common neighbors, then (u, v) has to belong to E; if (u, v) /∈ E, we add
it to E. (2) If u and v have more than k non-common neighbors, then (u, v) cannot
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belong to E; if (u, v) ∈ E, we delete it. (3) If u and v have both more than k common
and more than k non-common neighbors, then the given instance has no size k solution.
The other kernelization rule is to delete the connected components that are cliques from
the graph.

The bounded search tree method for cluster editing is based on the observation that
an induced path P3, a path with three vertices and two edges, is forbidden for a graph
consisting of disjoint cliques. Given a graph, considering any induced P3 = {u, v, w}
with edges (u, v) and (u, w), we can branch with three cases: delete edge (u, v), delete
edge (u, w), or add edge (v, w). For either case, the parameter k is decreased by one.
For basic branching, this leads the search tree size of O(3k) where a resulting graph
with disjoint cliques is found for k edits. At each branch node, if the parameter k goes
down to be non-positive, no solution of size ≤ k exists on that branch. If no solution
can be found on all branches, then we conclude that no solution of size k exists for the
given graph.

The bounded tree search method can be improved by making a case distinction of
P3 with three cases and giving each case a branching rule. Consider a P3 = {u, v, w}
with edges (u, v) and (u, w). There are three cases based on the neighborhood of u, v
and w: (1) v and w do not share a common neighbor other than u; (2) v and w have a
common neighbor x other than u, and x is adjacent to u; (3) v and w have a common
neighbor x other than u, but x is not adjacent to u. For each pair of vertices, an annota-
tion mapping is employed to facilitate the branching rules. Each vertex pair u and v is
assigned one of the following annotations: “permanent” meaning (u, v) ∈ E and (u, v)
cannot be deleted, “forbidden” meaning (u, v) /∈ E and (u, v) cannot be inserted, or
“none” meaning no information available and it can be edited. For every three vertices
u, v, w ∈ V , if (u, v) and (u, w) are permanent, (v, w) has to be permanent, and if
(u, v) is permanent and (u, w) is forbidden, (v, w) has to be forbidden.

Algorithm 2. Given a graph G = (V, E) and parameter k, consider a P3 = {u, v, w}
with edges (u, v) and (u, w). The refined branching strategy using the above annotation
mapping works as follows.

(1) If v and w do not share a common neighbor other than u, then branch with
(a) (G \ {(u, v)}, k − 1), and
(b) (G \ {(u, w)}, k − 1).

(2) If v and w have a common neighbor x �= u and (u, x) ∈ E, then branch with five
subcases:

(c) (G ∪ {(v, w)}, k − 1);
(d) Set (v, w) to forbidden, and branch with (G \ {(u, v), (v, x)}, k − 2);
(e) Set (v, w) to forbidden, (v, x) to permanent, and branch with (G \ {(u, v),

(u, x), (w, x)}, k − 3);
(f) Set (v, w) to forbidden, and branch with (G \ {(u, w), (w, x)}, k − 2);
(g) Set (v, w) to forbidden, (w, x) to permanent, and branch with (G \ {(u, w),

(u, x), (v, x)}, k − 3).
(3) If v and w have a common neighbor x �= u and (u, x) /∈ E, then branch with five

subcases:
(h) (G \ {(u, v)}, k − 1);
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(i) Set (u, v) to permanent, (v, w) to forbidden, and branch with (G \ {(u, w),
(v, x)}, k − 2);

(j) Set (u, v) to permanent, (v, w) to forbidden, (v, x) to permanent, and branch
with (G ∪ {(u, x)} \ {(u, w), (w, x)}, k − 3);

(k) Set (u, v) and (u, w) to permanent, and branch with (G ∪ {(v, w)}\{(w, x),
(v, x)}, k − 3);

(l) Set (u, v) and (u, w) to permanent, and branch with (G ∪ {(v, w), (u, x)},
k − 2).

— End of Algorithm —

Initially, all vertex pairs are set to “none”. When an edge is added it is set to “per-
manent”, and when an edge is deleted it is set to “forbidden”. The algorithm also stops
when the parameter k reaches 0 or below or when the graph G contains no induced P3.
The search tree size for the refined branching strategy is O(2.27k).

For both basic and refined bounded tree search methods, we applied the kernelization
method at each branch node. Both methods are implemented as recursive functions. For
future improvement, we plan to implement them as iterative functions to achieve better
performance.

5 Experimental Results

To gauge the practical merit of an approach based on fixed-parameter tractability, we
tested the methods just described against each other and against our LP implementation
on a variety of both synthetic and real graphs. We have already described the process
by which we generate synthetic graphs. By “real” graphs, we mean those that natu-
rally arise in application domains, in the present case, from protein domain sequence
similarity. In all cases we report branching times only because the time needed for ini-
tial preprocessing and kernelization is insignificant compared to that required during
branching.

It seems that refined branching is vastly superior to basic branching. The run times
reported in Figure 3, where the edit distance is set to 20, are typical of those we observe.
This was not obvious in advance. It is simply not always the case that asymptotically
faster methods in the worst case translate into better algorithms in the average case.
Unless the data is contrived, additional overhead and complexities incurred by ever
more sophisticated branching strategies can ofttimes negate any real gains in efficiency.

It also seems that branching with interleaving is decidedly faster than branching
without interleaving. The run times reported on larger instances in Figure 4, where the
edit distance is set to 40, are typical. Again, this makes sense, but is neither obvious nor
necessarily the case in general. [8]

Of course we do not know the optimum edit value in advance, and so generally
determine it by performing a binary search. One might expect run times to be rather
predictable. With vertex cover, for example, we have long observed [1,2] that the most
difficult computations are centered around the point at which a “no” instance becomes
a “yes” instance, with the “no” the harder of the two (with “no,” our algorithms cannot
find a solution and halt early). Because we are interested in clique, the situation is
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Fig. 3. FPT run times on a graph with 50 vertices, 5 clusters and edit distance 20

Fig. 4. FPT run times on a graph with 100 vertices, 10 clusters and edit distance 40

reversed but still monotonic above and below the optimum value. A standard example
is illustrated in Figure 5.

Things turn out to be quite different with cluster editing. If we happen to be advanc-
ing from below (that is, solving a “no” instance), then as with vertex cover run times
predictably increase with rising parameter values. On the other hand, if we are advanc-
ing from above (facing a “yes” instance), then run times may decrease, increase or even
stay the same with sinking parameter values. See Figures 6 and 7.
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Fig. 5. The monotonicity of FPT parameter effects as seen when solving clique with vertex cover

Fig. 6. FPT parameter effects on a graph with 100 vertices, 5 clusters and edit distance 40

In retrospect, we find the answer to this conundrum lies in the way solutions are
distributed and the way branching works with parameter values above the optimum.
With vertex cover, for example, a cover of size i ensures a cover of size i + 1 (as long
as i < |V |). With cluster editing, however, it is conceivable that there is a solution with
edit distance i yet no solution with distance i + 1 (or i + 2 and so forth). Thus a higher
parameter value may mean only that a cluster editing algorithm has to do more work.
See Figure 8, which depicts search tree traversals on the graph used to report run times
in Figure 7. From this we conclude that a binary search may not be the best way to
implement an FPT-based approach for clustering editing, and that one may be better off
steering the parameter as much as possible from below.
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Fig. 7. FPT parameter effects on a graph with 100 vertices, 10 clusters and edit distance 40

Fig. 8. Search trees depend on parameter values
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6 Concluding Remarks

The issue of scalability deserves scrutiny, especially if we are to scale to genome-sized
problem instances. Even for covers and cliques, supercomputers and monolithic mem-
ory may be heavily taxed [10]. In this respect, it is noteworthy that well-known prob-
lems such as vertex cover require searching a parameter space of size |V |, while cluster
editing possesses a search space of size |E|. At some problem size, of course, approx-
imation should better optimization. The exact size probably depends on many factors,
including graph density, relative efficiency of implementations, and even machine ar-
chitecture. Initial experiments have produced interesting comparisons. See Figure 9.

Fig. 9. The scalability of approximation via LP versus optimization via FPT

Related questions abound. For example, we are interested in the difficulty of enu-
merating solutions within some fixed number of edge additions and deletions [4]. Such
an enumeration may prove useful in making decisions between multiple and possibly
ambiguous solutions. We are also interested in relaxing the requirement that cluster
editing cliques be disjoint [5]. Such a relaxation makes particular sense in applications
for which vertices represent genes or gene products, because these are often pleiotropic
and thus may rightfully belong in overlapping cliques.
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