Parallel Simulated Annealing for Materialized
View Selection in Data Warehousing
Environments

Roozbeh Derakhshan!, Bela Stantic?, Othmar Korn?, and Frank Dehne?

Y ETH Zurich, Switzerland
2 Institute for Integrated and Intelligent Systems
Griffith University, Brisbane, Australia
3 School of Computer Science, Carleton University, Canada

Abstract. In order to facilitate efficient query processing, the informa-
tion contained in data warehouses is typically stored as a set of material-
ized views. Deciding which views to materialize represent a challenge in
order to minimize view maintenance and query processing costs. Some
existing approaches are applicable only for small problems, which are
far from reality. In this paper we introduce a new approach for mate-
rialized view selection using Parallel Simulated Annealing (PSA) that
selects views from an input Multiple View Processing Plan (MVPP).
With PSA, we are able to perform view selection on MVPPs having
hundreds of queries and thousands of views. Also, in our experimental
study we show that our method provides a significant improvement in
the quality of the obtained set of materialized views over existing heuris-
tic and sequential simulated annealing algorithms.

Keywords: Parallel Simulated Annealing, Data Warehousing, Materi-
alized view selection.

1 Introduction

Data warehouses integrate data from multiple heterogeneous databases and other
information sources. A data warehouse(DW) is a repository of historical in-
formation available for querying and analysis. To avoid accessing the original
data sources and increase the efficiency of the warehousing queries, information
within a data warehouse is organized as a set of views from different production
databases. These views are often referred to as materialized views. The large
computation and space required for view materialization implies that it is im-
practical to materialize all possible views. Hence, there is a need for selecting an
appropriate set of views to materialize which increases the query performance,
commonly referred to as the view selection problem [9].

Because materialized views have to be in synchronization with source data,
any change to the source should be reflected to the views as well. Therefore, in
the data warehousing view maintenance cost also has to be considered not just
the query processing cost. The trade-off between query performance and view

A. Bourgeois and S.Q. Zheng (Eds.): ICA3PP 2008, LNCS 5022, pp. 121 , 2008.
© Springer-Verlag Berlin Heidelberg 2008

122 R. Derakhshan et al.

maintenance cost makes materialized view selection one of the most challeng-
ing problems in data warehousing [I3]. Based on a set of frequently asked DW
queries, the task is to select a set of views to materialize so that the total query
processing and view maintenance cost is minimized.

The materialized view selection problem is NP-hard[9]. Several heuristic al-
gorithms have been proposed in the literature to address the view selection
problem. We classified them into four major groups according to [1J:

Deterministic algorithms: The classic solution for this problem uses heuristics
which usually construct or search a solution in a deterministic manner and apply
some kind of heuristics(e.g greedy algorithm) to decrease the solution space
[T0/912]. In [II] an extension is proposed, which improved the quality by using
index on the selected views. In [3] a ”chunk” based precomputation method
was introduced. This method precomputes a subset of chunk aggregates which
provide better but not near optimal results over the heuristic approaches.

Genetic algorithms (GA): The above methods are effective when the num-
ber of views is relatively small. In order to obtain better solutions for a bigger
number of views with respect to view maintenance and query processing costs
genetic algorithms have been introduiced [I6/4]. The basic idea is to start with
a random initial population and generate offspring by random variations (e.g.,
crossover and mutation). The ”fittest” members of the population survive the
subsequent selection. The algorithm terminates as soon as there is no further
improvement over a period or after a predetermined number of generations. The
fittest individual found is the solution. However, the possibility of infeasible so-
lutions creates some problems. In fact, the approach proposed in [4] does not
contain a ”penalty” method to discourage infeasible solutions. This deficiency
has subsequently been addressed in [16].

Randomize algorithms: Algorithms in this class pursue a completely different
approach: a set of moves is defined. These moves constitute edges between the
different solutions of the solution space; two solutions are connected by an edge
if (and only if) they can be transformed into one another by exactly one move.
Simulated Annealing(SA) as a type of randomize algorithm performs a random
walk along the edges according to a cooling schedule, and terminates as soon
as no applicable ones exist or lose all the energy in the system(frozen state). In
[T9/17], SA has been applied to the view selection problem. [I9], showed that by
using SA the cost of a selected set of materialized views is up to 70% less than
the genetic [4] and heuristic algorithms [15].

Hybrid algorithms: Hybrid algorithms combine the strategies of pure deter-
ministic and pure randomized algorithms. Solutions obtained by deterministic
algorithms are used as starting points for randomized algorithms or as initial
population members for genetic algorithms. In [5], hybrid approach has been
applied for the view selection problem, which combines the power of genetic al-
gorithms in global search with heuristic’s ability in fine-grained local search, to
find a good set of materialized views.

In [AT5IT95], GA and SA tries to find the best set of intermediate results
(views) in the Multiple View Processing Plan(MVPP) graph [15] so that the cost

Parallel Simulated Annealing for Materialized View Selection 123

of query processing and view maintenance is minimized. However, the number
of views in the MVPP graph is relatively small(e.g: 60 queries and 250 views). In
[I6/T0] genetic algorithms and heuristics have been proposed to select the best
set of views to materialize from an AND/OR view graph [9]. The number of
nodes in their AND/OR view graph is not going further than 250 either.

In this paper we introduce a new approach for materialized view selection
using Parallel Simulated Annealing (PSA) to select views from an input Mul-
tiple View Processing Plan (MVPP). With PSA, we are able to perform view
selection on MVPPs having a much larger number of queries and views, which
reflects the real data warehousing environment. As solution quality is affected by
the number of times that the initial solution is perturbed, by performing simu-
lated annealing with multiple inputs over multiple compute nodes concurrently,
PSA is able to increase the quality of obtained sets of materialized views. In ex-
perimental study, conducted on real production data with more than 250 queries
and thousand of views (intermediate nodes), we showed that our approach using
PSA in conjunction with MVPP outperforms heuristic method [I5] and sequen-
tial SA [I9] to the extent of factor five considering the cost of obtained set of
views.

The rest of this paper is organized as follows: Section [2 gives an overview
on our framework for the materialize view selection problem, followed by our
running example and some preliminaries for the Multiple View Processing Plan
(MVPP) and its cost model. Section [discusses our Parallel Simulated Anneal-
ing(PSA) approach and how we apply PSA to solve materialized view selection.
Section [A] present and analyse our experimental results. Section [l concludes the

paper.

2 Materialized View Selection

Materialized view selection is an important design decision in data warehouse
construction. Here we present our framework to select a set of views to mate-
rialize based on the given frequently used set of queries in the data warehouse
environment. As figure [Tl shows, the input is a list of frequently used queries.
This list will then be an input to our XML convertor box, which translates the
text queries to XML format. We found that the MVPP builder works better with
XML format than with plain text. The out-put from the XML convertor will go
to the MVPP builder which creates the MVPP graph. The MVPP graph will be
an input to our parallel simulated annealing algorithm. The output from the sim-
ulated annealing algorithm would be an appropriate set of nodes to materialize
in order to minimize the query processing and view maintenance cost.

2.1 Running Example

In this section, we present an example to motivate the discussion of materialized
view selection in data warehouses. Our example is taken from a sample data
warehouse application that analyzes trends in sales, and which was used in [I4].
We used this running example just for explanation, however the data and query

124 R. Derakhshan et al.

UST OF xML

MVPP PN SIMULATED UST OF NODES
QUERIES CONVERTOR

BUILDER ANNEALING TO MATERIALIZE

Fig. 1. A framework for materialized view selection in data warehousing environments

sets which we used for our experiments are explained in section Bl The relations
and the attributes of the running example’s schema are:

Product (Pid, name, Did)
Division (Did, name, city)
Order (Pid,Cid, quantity, date)
Customer (Cid, name, city)
Part (Tid, name, Pid, supplier)

We use Pd, Div, Ord, Cust and Pt to refer to the above relations. Further-
more, we assume that all of these relations are stored at the same site and we do
not need to consider data communication costs in our cost calculation. Suppose
that we have the four following frequently used queries:

Query 1: Select Pd.name
From Pd, Div

Query 2: Select Pt.name
From Pd, Pt, Div

Where Div.city= "LA" and
Pd.Did=Div.Did

Query 3: Select Cust.name,
Pd.name, quantity
From Pd, Div, Ord, Cust
Where Div.city= "LA" and

where ere Div.city="LA"
and Pd.Did=Div.Did
and Pt.Pid=Pd.Pid

Query 4: Select Cust.city,date

From Ord, Cust
Where quantity>100 and
Ord.Cid=Cust.Cid

Pd.Did=Div.Did and
Pd.Pid=0rd.Pid and
Ord.Cid=Cust.Cid and
Date > 7/1/96

In Figure [2 we show a global query access plan for the above four queries.
This plan is referred to as the Multiple View Processing Plan (MVPP)[I5]. The
query access frequencies are indicated above each query node. For simplicity, we
assumed that the base relations Pd, Div, Ord, Cust, and Pt are updated once
during the process of materialized view selection. There are different options for
selection of a set of views to be materialized: (1) materialize all of the nodes in
the MVPP; (2) materialize some of the intermediate nodes (e.g. tmp2, tmp3,
tmp7, etc.); (3) do not materialize any of the nodes in MVPP. Option (1) and
(3) are not realistic because for option (1), we do not have enough time and
space to materialize all of the nodes in MVPP. Option (3) implies that we have

Parallel Simulated Annealing for Materialized View Selection 125

to execute all queries on the raw data set which will result in excessive query
processing times. The best option is to materialize an appropriate subset of views
that minimizes view maintenance and query processing costs.

Suppose there are some materialized intermediate nodes in the MVPP. For
each query, the cost of query processing is its query frequencies multiplied by the
cost of the query accesses to the materialized nodes. The maintenance cost for
materialized view is the cost used for construction of the view (here we assume
that rebuilding is used whenever an update of an involved base relation occurs)
[15]. For example, if tmp2 is materialized, the query processing cost for Q1 is
10 * 35.25. The view maintenance cost is 2 * (35.25 + 0.25). The total cost for
an MVPP is the sum of all query processing and view maintenance costs. What
follows is a specification and the definition of the cost model for an MVPP.

3 Multiple View Processing Plan (MVPP)

We are using an MVPP [I5] together with parallel simulated annealing for se-
lecting the best set of views to materialize. As shown in Figure[2 the MVPP is a
directed acyclic graph (DAG) that represents a query processing plan. The leaf
nodes in this graph represent the base relations, and the root nodes represent
the queries. Analogous to query execution plans there can be more than one
MVPP for the same set of views. This depends upon the access characteristics
of the applications and physical data warehouse parameters. We choose one of
the possible optimal MVPPs. Note that the quality of the selected MVPP can

10 05 08 5
Queryl @3537% Query2 ® 50.082m Query3 @ 12.595m Queryd @12044m
(10)Result 1 — (9) Result 2 — (3) Result3 — (7) Resultd —

TTPd name(tup2) 335 35k TTpg yure(tp3) O 50.08m Tyape, quantity (tmpé) O12.594m Tcity, Date (trup7) O12.043m

(4) tmp3 (3 tmpb — (6 tmp7?—
tmp2°° Pd | (tmpd) O12.035m

6 quantity =100

(G) tp 2 —
Pd® tmpl

@) trpl — 0.25k (1) tmpd 12.035m
Bcity =“La”(Div) 0rd *° Cust,
Product Division Part Order Customer

Fig.2. A MVPP for running example queries

126 R. Derakhshan et al.

effect on our result. An MVPP is a DAG M = (V, A,C¢,C}, fq, fu) where V' is
a set of vertices, A is a set of arcs over V defined as follows:

— For every relational algebra operation in the query tree, for every base rela-
tion, and for every distinct query, create a vertex;

— For v € V,T(v) is the relation generated by the corresponding vertex v. T'(v)
can be a base relation, intermediate node while processing a query, or the
final result for a query;

— For any leaf vertex v, (that is one which has no edges pointing to the vertex),
T'(v) corresponds to a base relation. Let L be a set of leaf nodes;

— For any root vertex v (that is one which has no edges going out of the vertex),
T'(v) corresponds to a global query. Let R be a set of root nodes;

— If the base relation or intermediate result relation 7'(u) corresponding to
vertex u is needed for further processing at a node v, introduce an arc u —
v;

— For every vertex v, let S(v) denote the source nodes which have edges pointed
to v; for any v € L,S(v) = ¢, S*(v) be the set of descendants of v;

— For every vertex v let D(v) denote the destination nodes to which v is is
pointed; for any v € R, D(v) = ¢;

— For v € V,Cf is the cost of query processing q accessing T'(v); Cy, (v) is the
cost of maintaining T (v) based on changes to the base relation S*(v) N R |
if T'(v) is materialized.

— fq, fu denote query frequency and base relation maintenance frequency re-
spectively.

3.1 Cost Model

We can now define the cost function for our problem, similar to the cost function
in [I5]. The cost function has two parts. One is the query processing cost:

Cqueryprocessing (V) = Xqer fqCl(v)
the second part is the materialized view maintenance cost:
Crmaintenance (V) = Zrer fuCh, (v)
the total cost is the sum of the query processing and maintenance costs:
Ciotal(V) = Cyueryprocessing (V) + Craintenance (V)

Our goal is to find the set of views so that if the members of the set are mate-
rialized then the value of Cyyrq will be smallest among all possible feasible sets
of materialized views.

4 Parallel Simulated Annealing for Materialized View
Selection

The motivation to use a Parallel Simulated Annealing (PSA) algorithm in solv-
ing the materialized view selection problem was based on observing that the

Parallel Simulated Annealing for Materialized View Selection 127

data warehouse has a huge number of views and queries. Therefore in the view
selection problem the solution space has many local minimas. A simple local
search algorithm proceeds by choosing a random initial solution and generating
a neighbor from that solution. The neighboring solution is accepted if it is a cost
decreasing transition. Such a simple algorithm has the drawback of often being
trapped to a local minimum. The simulated annealing algorithm, though by it-
self it is a local search algorithm, avoids getting trapped in a local minimum by
also accepting cost increasing neighbors with some probability. In sequential SA
according to [20]: first an initial solution is randomly generated, and a neighbor
is found and is accepted with a probability of min(1,exp(-6/7"), where § is is the
cost difference and T is the control parameter corresponding to the temperature
of the physical analogy and will be called temperature. On the slow reduction
of temperature, the algorithm converges to the global minimum, but the time
taken increases drastically.

Simulated annealing is inherently sequential and hence very slow for problems
with large search space. Therefore, to speed up the computation a parallelization
of SA is very desirable. Also, since solution quality in the SA algorithm is affected
by the number of times that we perturb an initial random solution, the paral-
lelization of SA with multiple inputs over multiple compute nodes concurrently
will lead us to the better quality of solution.

In the following subsections, we describe how to apply PSA to design a so-
lution for the materialized view selection problem. More precisely, we provide
a suitable representation of solution space, followed by PSA’s parameters and
their desirable values.

4.1 Parallel Simulated Annealing Framework

There have been many attempts toward parallelizing simulated annealing. Each
of these methods classified parallel simulated annealing differently. Classification
in [6][12] distinguished between single and multiple-walks (FigureB]). This is the
first distinguishing criterion: the number of paths which are evaluated in the
search space of the optimization problem. In a single-walk algorithm only a
single path in the search space is traversed, whereas in a multiple-walk approach
several different paths are evaluated simultaneously. In single-walk algorithms
after evaluating a part of the neighborhood of the current solution either only
one step is traversed (single-step parallelism) or a sequence of steps is made from
the current solution (multiple-step parallelism). In multiple-walk algorithms the
parallel walks can be independent or may interact according to a communication
pattern.

In this paper, we are using the independent walks parallelization which is
called the Multiple Independent Runs(MIR) [7]. In this parallelization strategy
no communication of moves or solutions is required. Independent runs of sequen-
tial SA are executed in each processor and the best found solution is chosen as
the end result. Therefore, there is no need to add any communication cost to
the total cost of the obtained set of materialized views.

128 R. Derakhshan et al.

Parallel simulated
Annealing

Independent walks

MIR parallelization

[Single-step] [Multiple-step] [Interactingwa]ks]

Clustering parallelization

Fig. 3. Classification of parallel approaches for simulated annealing

4.2 Solution Representation

The problem to be solved can be stated as follows: given a MVPP graph (see
figure 2l) we attempt to find the best set of intermediate nodes (views) that can
answer all queries with minimal cost. We do not use an MVPP directly as input
into our PSA algorithm. We first convert the set of views to a binary string of 1s
and Os to represent views that will and will not be materialized, respectively. Our
mapping strategy differs from [4],[5] and [16]. We number our nodes starting at
the base relations moving left to right, and we continue up to the right-most node
at the top of the graph. Nodes are numbered 0 to m-1 (where m is the number
of intermediate nodes). We use a mapping array of size m-1 where each index in
the array corresponds to a graph node. In our mapping array a ’1’ denotes that
the corresponding node in the graph should be materialized and a ’0’ that the
node is not materialized. For example in the binary string (0,0,0,0,1,1,0,0,1,1,0)
we will materialize nodes 4,5,8 and 9.

4.3 Parallel Simulated Annealing Parameters

The success and quality of the SA algorithms either sequential or parallel relies
on choosing the right parameters. Generally, we can categorize SA parameters
into two separate classes: generic parameters and problem specific parameters.
Generic parameters such as: initial temperature, cooling schedule and run factor
are concerned with parameters of the SA algorithm itself . The problem specific
parameters such as: initial configuration of our solution space, perturbing the
configuration and cost function are dependent on the specific problems.
Here we first explain each of the generic parameters:

Initial temperature: The temperature 7" can affect the number and ratio of
acceptance of each move. This value has traditionally been chosen so that nearly
all moves are accepted. We set our starting temperature large enough to allow

Parallel Simulated Annealing for Materialized View Selection 129

an acceptance value of 90. If the starting temperature is larger, the run length
may increase with no improvement in cost. Too low temperature may lead to
premature levelling off of the algorithm.

Cooling schedule: The temperature decrement factor for the exponential cool-
ing is set to a constant value of 0.7. This value performed sufficiently well on our
problem, although the algorithm is not particularly sensitive to this parameter.

Run factor: In this paper we use MIR which provides a better quality solution
than the solution of a sequential run with the same length. We have another
important parameter which we call run factor. a bigger value of run factor means
more iterations for each run and we will gain the better quality solution. However,
this increasing run length will increase the time length for each run and the
complete annealing process. So we have to choose a run factor big enough to gain
the high quality of answer in a reasonable amount of time. In our experiments,
we found that the quality of answer is heavily depending on the value of run
factor. Thus, we set the appropriate value for run factor after many test runs.
The problem specific parameters are:

Initial configuration: In our initial configuration we map array with a random-
ized set of zeros and ones. We do not employ a penalty function to discourage
infeasible solutions, instead we use a simple verification method. We check the
feasibility of each initial configuration against the number of queries that the so-
lution can answer. If the solution is not feasible, we simply bypass it. For example
the sequence (0,0,0,1,0,0,1,0,0,0,0) is a feasible solution for our sample problem.
In figure [2] the materialized node 3 can answer queries 1 to 3 and materialized
node 6 can answer the 4th query.

Perturbing the configuration: In the spirit of the physical annealing pro-
cess, neighboring configurations must be similar in the sense that they represent
only a slight perturbation in the system’s state[I8]. We define the neighborhood
of a configuration to contain all configurations that differ from it by giving a
50% chance to each randomly chosen node to be materialized or unmaterial-
ized. For example, for solution (0,0,0,1,1,0,1) we randomly pick node number
4 whose value is 1, then we just simply change the value to 0. So our solution
after perturbing would be (0,0,0,0,1,0,1). Our experiments showed that this sim-
ple method ensures that our annealing algorithm will not get trapped in local
minima in early stages.

Cost function: We use the cost function described in section 3.1l For example,
to calculate the overall cost for the solution (0,0,0,1,0,0,1,0,0,0,0) we add Ciotal
for nodes 3 and 4.

5 Experimental Evaluation

To show the practical relevance of our approach to materialized views selec-
tion problem, we performed an extensive experimental evaluation and compared
it with heuristic method [I5] and sequential SA because in previous study it

130 R. Derakhshan et al.

was shown that the sequential SA is better than the GA [I9]. The experiment
involves execution of our PSA application over an optimized MVPP for a set
of queries. The PSA application is a C++ program, which uses a robust PSA
library (parSA 2.1) implementation [8] with the addition of materialized view se-
lection component. Tests are performed on SUN Microsystems V20z dual AMD
Opteron 2.6 GHz with 4GB RAM. The MVPP input is provided by our custom
C++ MVPP builder, which creates an optimized MVPP for testing set of SQL
queries, their frequency of usage and number of rows in tables as a input. The
number of nodes in our MVPP inputs exceeds one thousand. For the testing, we
used the real data from production database. This database is used for genera-
tion of data warehousing database, which analyzes the trend in using university
resources. The source database consist of more than 100 relations. The number
of rows in particular tables is up to 10 million. We have chosen 250 frequently
used queries and assigned frequency according to usage.

5.1 Results

In Figure l] we show results for our PSA algorithm (for 4, 8 and 16 compute
nodes) against the heuristic and sequential SA algorithms. The heuristic algo-
rithm provides a benchmark for our normalized results. The graph shows that
our PSA algorithm approach generates solutions with costs more than 4 times
less than the heuristic algorithm. For a smaller number of queries the results for
sequential SA and PSA are similar. For a larger number of queries (more than
150) the PSA algorithm outperforms sequential SA, particularly for 16 compute

m Heuristic
M SA

¥ PSA4

4 PSA S

@ PSA 16

Result Comparison

T T T T T 1
25 50 I 100 125 150 175 200 225 250

Number of Queries

Fig. 4. Comparison of the solution quality (view maintenance and query processing
costs) between our PSA, sequential SA algorithm, and heuristic method (normalized
to LLl”)

Parallel Simulated Annealing for Materialized View Selection 131

nodes. The PSA results are consistently better than both the sequential SA and
heuristic algorithms.

6 Conclusion and Future Work

In this paper we have described a new approach that is demonstrably better
than the existing approaches for materialized view selection based on Parallel
Simulated Annealing. In experimental study we show that our approach provides
a significant improvement in the quality of the obtained set of materialized views
compared to previously used methods for materialized view selection (Heuris-
tic method and sequential SA). Additionally we show that our method can be
efficiently applied to the large data warehousing systems, this leads to a signif-
icant improvement in query processing time and view maintenance costs. More
specifically, in this study, we:

— Classified the existing methods for materialized view selection problem in
order to identify their advantages and disadvantages,

— Proposed Parallel simulated annealing (PSA) framework which uses as input
Multiple View Processing Plan (MVPP),

— showed that PSA can be efficiently applied to larger number of queries.
Larger number of queries is more representative of real data warehousing
systems,

— Experimentally evaluated the PSA by comparing its performance with
heuristic method and sequential SA, and demonstrated its overall superior
performance. The PSA algorithm approach generates solutions with costs
up to 4 times less than the heuristic algorithm,

— We showed that PSA scaled with the increasing number of compute nodes.

As a future work we intend to do the testing with larger number of com-
pute nodes and to use a more sophisticated parallel approach to achieve further
improvement in the quality of results.

Acknowledgements

This research is partly sponsored by ARC (Australian Research Council) Dis-
covery grant - Coarse Grained Parallel Algorithms, nr. DP0557303.

References

1. Steinbrunn, M., Moerkotte, J., Kemper, A.: Heuristic and Randomized Optimiza-
tion for the Join Ordering Problem. Very Large Data Base 6, 191-208 (1997)

2. Harinarayan, V., Rajaraman, A., Ullman, J.D.: Implementing Data Cubes Effi-
ciently. In: ACM SIGMOD, pp. 205-216 (1996)

3. Shukla, A., Deshpande, P., Naughton, J.: Materialized View Selection of Multi-
dimensional Datasets. In: Proceeding of the 24th VLDB Conference, pp. 488-499
(1998)

132

4.

10.

11.

12.
13.

14.

15.

16.

17.

18.

19.

20.

R. Derakhshan et al.

Zhang, C., Yang, J.: Genetic Algorithm for Materialized View Selection in Data
Warehouse Environments. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS,
vol. 1676, pp. 116-125. Springer, Heidelberg (1999)

Zhang, C., Yao, X., Yang, J.: An Evolutionary Approach to Materialized Views
Selection in a Data Warehouse Environment. IEEE Transactions on Systems and
Cybernetics Part C: Applications and Reviews 31(3), 282-294 (2001)

Aarts, E., Lenstra, K.J.: Local Search in Combinatorial Optimization. John Wiley
(1997)

Kliewer, G., Tschoke, S.: A General Parallel Simulated Annealing Library and its
Application in Airline Industry. In: Proceedings of the 14th International Parallel
and Distributed Processing Symposium (IPDPS), pp. 55-61 (2000)

Kliewer, G., Tschoke, S.: Parallel Simulated Annealing Library (parSA), University
of Paderborn (2007), http://www.uni-paderborn.de/~parsa

Gupta, H., Mumick, S.: Selection of Views to Materialize Under a Maintenance
Cost Constraint. In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540,
pp. 453-470. Springer, Heidelberg (1998)

Gupta, H., Mumick, S.: Selection of Views to Materialize in a Data Warehouse.
IEEE Transactions on Knowledge and Data Engineering 17(11), 24-43 (2005)
Gupta, H., Harinarayan, V., Rajaraman, A., Ullman, J.D.: Index Selection for
OLAP. In: Proc. Int’l Conf. on Data Engineering, pp. 208-219 (1997)

Azencott, I.R.: Simulated Annealing: Parallelization Techniques. Wiley (1992)
Widom, J.: Research Problems in Data Warehouse. In: 4th International Confer-
ance on Information, Knowledge and Managment, pp. 25-30 (1995)

Yang, J., Karlapalem, K., Li, Q.: A Framework for Designing Materialized Views
in Data Warehousing Environment. Technical Report HKUST-CS96-35 (1996)
Yang, J., Karlapalem, K., Li, Q.: Algorithm for Materialized View Design in Data
Warehousing Environment. In: VLDB 1997, pp. 136-145 (1997)

Lee, M., Hammer, J.: Speeding up Materialized View Selection in Data Warehouses
Using a Randomized Algorithm. Int. J. Cooperative Inform. Syst. 10, 327-353
(2001)

Kalnis, P., Mamoulis, N., Papadias, D.: View Selection Using Randomized Search.
Data and Knowledge Engineering 42(1), 89-111 (2002)

Davidson, R., Harel, D.: Drawing Graphs Nicely using Simulated Annealing. ACM
Transactions on Graphics 15, 301-331 (1996)

Derakhshan, R., Dehne, F., Korn, O., Stantic, B.: Simulated Annealing for Mate-
rialized View Selection in Data Warehousing Environment. In: Proceedings of the
24th TASTED international conference on Database and applications, pp. 89-94
(2006)

Janaki, R., Sreenivas, T.H., Subramaniam, G.K.: Parallel Simulated Annealing
Algorithms. Journal of parallel and distributed computing 37, 207-212 (1996)

http://www.uni-paderborn.de/~parsa

	Parallel Simulated Annealing for Materialized View Selection in Data Warehousing Environments
	Introduction
	Materialized View Selection
	Running Example

	Multiple View Processing Plan (MVPP)
	Cost Model

	Parallel Simulated Annealing for Materialized View Selection
	Parallel Simulated Annealing Framework
	Solution Representation
	Parallel Simulated Annealing Parameters

	Experimental Evaluation
	Results

	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

