Shortest Paths in Time-Dependent FIFO Networks
Using Edge Load Forecasts ~

Frank Dehne
School of Computer Science
Carleton University
Ottawa - Canada
frank@dehne.net

ABSTRACT

We study the problem of finding shortest paths in time-
dependent networks with edge load forecasts where the be-
havior of each edge is modeled as a time-dependent arrival
function with FIFO property. Here, we present a new al-
gorithm that computes for a given start node s and desti-
nation node d, the shortest paths and earliest arrival times
for all possible starting times. Our algorithm runs in time
O((Fa+ N (|E| + |V]log|V])) where Fy is the output size
(number of linear pieces needed to represent the earliest
arrival time function) and A is the input size (number of
linear pieces needed to represent the local earliest arrival
time functions for all edges in the network). Our method
improves significantly on the best previously known algo-
rithm which requires time O(Fimaz|V||E|) where Finaz > Fy
is the maximum number of linear pieces needed to represent
the earliest arrival time function between the start node s
to any node in the network. It has been conjectured that
there are cases where Fi,q. is of super-polynomial size; how-
ever, even in such cases, Fy might still be of linear size. In
such cases, our algorithm would take polynomial time to find
the solution, while other methods require super-polynomial
time. Both of the above methods are not useful in practice
for graphs where Fy is of super-polynomial size. For such
graphs, we present the first approximation method to com-
pute for all possible starting times at s, the earliest arrival
times at d within error at most e. Our algorithm runs in
time O(2(|E| + [V|log|V|)) where A is the difference be-
tween the earliest arrival times at d for the latest and earliest
starting times at s.

1. INTRODUCTION

Finding shortest paths in networks is one of the basic
operations in Transportation Science, Computer Networks,
Robotics, VLSI Design and many other applications. Al-
though well-studied conventional static shortest path algo-

*Research supported by NSERC, SUN Microsystems of
Canada and HPCVL.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.

IWCTS *09 November 3, 2009, Seattle, WA, USA

Copyright 2009 ACM ISBN 978-1-60558-861-2/09/11...$10.00.

Masoud T. Omran
School of Computer Science
Carleton University
Ottawa - Canada
mtomran@scs.carleton.ca

Jorg-Rudiger Sack
School of Computer Science
Carleton University
Ottawa - Canada
sack@scs.carleton.ca

rithms play a fundamental role in applications with non-
changing nature, many real-world applications are changing
over time [1, 2, 6, 4]. For example, in a road network, the
shortest path from a given start node to a destination node
during rush hour is not the same as during low traffic pe-
riods. Here, we study dynamically changing applications in
which network properties are changing over time in a pre-
dictable manner and are given as edge load forecasts. For
example, in many road networks the traffic load on each link
changes predictably during the day. We are interested in
finding the shortest path between two nodes of the network
for any given time during the day. More precisely, a time-
dependent network with edge load forecasts is modeled as a
directed graph G = (V, E) where each edge (v, w) is assigned
an arrival time function a..(t) which represents the arrival
time at node w for departure time ¢ at node v. Typically,
piece-wise linear arrival time functions are used to approx-
imate more complex functions. The notion of arrival time
function is extensible to any path p = (v1,v2,...,v) of the
network. Starting from vy at time ¢ implies an arrival at vy
at time ap(t) = avy_ o (- - - (Quaws (Goyve (t)))). We note that
if the av, v, (t) are piece-wise linear then a,(t) is piece-wise
linear as well. Given a start node s and a destination node
d, our goal is to find the earliest arrival time function Agq(t)
from s to d for all ¢ € [0, T]. Asq(t) is the minimum over all
ap(t) for all possible paths p from s to d. As discussed by
Orda and Rom in [15], this problem is N P-hard in its general
form but there are variations of the problem which are not.
For example, in earlier work [10], we considered a version of
the problem, where the slope of each linear piece is either 0
or 1. This can be viewed as a network in which edges are
available during given intervals and the travel time in each
interval is of fixed value. In such a network, if an edge is
not available for some arrival time, then one can wait until
the next interval becomes available. For such networks, we
proposed an O(k(|E| + [V|Log|V|)) time algorithm. where
k denotes the total number of availability intervals in the
entire graph.

Here, we consider a general class of time-dependent short-
est path problems in which the FIFO property holds. The
FIFO property is very common in many networks, including
road networks, and is defined as having non-decreasing ar-
rival time functions on all edges of the network. This means
that for every edge (v, w), a later start at v implies a later ar-
rival at w which is typically the case for predictable dynamic
networks. A naive algorithm for this case which computes
the earliest arrival time function for every possible path from
s to d and then calculates the lower envelope would need ex-

ponential time in many cases because many networks would
have an exponential number of possible paths between s and
d. As shown by Orda and Rom in [15], the time-dependent
shortest paths problem for a time-dependent network with
FIFO property can be solved in time O(Fmaz|V||E|) where
Fraz > Fy is the maximum number of linear pieces needed
to represent the earliest arrival time function between s and
any node in the network.

In this paper, we present a new algorithm for solving the
time-dependent shortest paths problem for a time-dependent
network with FIFO property. The algorithm runs in time
O((Fa+ N (|E| + |V]log|V])), where Fy is the output size
(number of linear pieces needed to represent the earliest ar-
rival time function) and A is the input size (number of lin-
ear pieces needed to represent the local earliest arrival time
functions for all edges in the network). Our method im-
proves significantly upon the best previously known method
by Orda and Rom [15]. It has been conjectured [9] that there
are cases, where F,q, is of super-polynomial size. Since
Fraz > Fu, even in such cases, F; might still be of lin-
ear size. In such cases, our algorithm would take polyno-
mial time to find the solution, while other methods require
super-polynomial time.

We also study the case where the output size F; might
be [9] super-polynomial. All previously known methods
(including our method outlined above) are not useful in
practice for such graphs. In this paper, we present the
first approximation method for such instances of the time-
dependent shortest path problem. Our method computes
for all possible starting times at s the earliest arrival times
at d within error at most e. Our algorithm runs in time
O(2(|E|+|V|log|V|)) where A is the difference between the
earliest arrival times at d for the latest and earliest starting
times at s.

The remainder of this paper is organized as follows. In
the following Section 2 we discuss previous work and re-
lated relevant results from similar problem settings. In Sec-
tion 3 we discuss some structural properties of the time-
dependent shortest path problem. Our new algorithm which
solves the time-dependent shortest paths problem for a time-
dependent network with FIFO property in time O((Fgq +
AN (|E| + |V]log|V])) is presented in Section 4. Our ap-
proximation algorithm for time-dependent shortest path in-
stances with possibly super-polynomial size output is pre-
sented in Section 5. Section 6 concludes the paper.

2. PREVIOUSALGORITHMSAND

RESULTS

The problem of finding a time-dependents shortest path
was first proposed in 1966 by Cooke and Halsey [7]. They
considered time to have discrete values. In real-world appli-
cations, arrival time functions are usually continuous time
functions and approximated by piece-wise linear functions.
For the remainder, we assume the FIFO property to hold
since this is the case for most practical networks and makes
the problem polynomial time solvable. In the following para-
graphs, we review previous results for this problem setting.

2.1 Lower Envelope Algorithms

By definition, the earliest arrival time function from s to d
is the minimum over all arrival time functions for every path
from s to d. This leads to a simple algorithm: compute the

arrival time functions of all paths from s to d and compute
the lower envelope. For more information on lower envelope
algorithms see e.g. [16]. Although this gives the correct
solution, such an algorithm is not efficient in that there could
be an exponential number of paths from s to d leading to
exponential time complexity.

2.2 Labd Correcting Algorithms

A slightly modified version of standard label-correcting al-
gorithms (e.g., Bellman-Ford [3]) solves the time-dependent
shortest path problem. Here, instead of computing labels for
a specific time, one can do this simultaneously for all val-
ues of ¢t. In this case, instead of working with scalar arrival
times at each node, we consider earliest arrival time func-
tions over all values of time. Orda and Rom [15] proposed
such an algorithm which on a FIFO network with piece-wise
linear functions has time complexity O(Fmaz|V||E|) where
Fraz > Fy is the maximum number of linear pieces needed
to represent the earliest arrival time function between s and
any node in the network. This has been the best known
approach since 1990 when it was presented. Our algorithm
is a significant improvement of this method as well as of the
methods outlined in the following paragraph.

2.3 Labe-Setting Algorithms

In a label-setting algorithm the goal is to compute, in
small pieces, actual correct values of output functions rather
than iteratively revising these functions. This approach is
similar to Dijkstra’s algorithm [11] for the static shortest
path problem. In contrast to label-correcting algorithms, it
is not possible to simply replace scalar label values by func-
tions to solve the problem because a minimum element (i.e.,
one function which is minimum over the entire domain) may
not exist. The main idea of the algorithm is to determine
the latest time ¢, for each node, so that the current earliest
arrival time function for any time less than ¢ gives the actual
earliest arrival time to the node. For FIFO networks with
piece-wise linear arrival time functions, Dean [9] suggested
a label-setting algorithm that performs a single chronolog-
ical scan through time to establish output functions. The
algorithm employs the same approach used for solving para-
metric shortest path problems [5]. In the worst-case, this
algorithm has a running time of O(F*|E|log |V|) where F*
is the total number of pieces over all output functions in the
network.

Recently, Ding et al. [12] presented a simpler label-setting
algorithm for the time-dependents shortest path problem
for FIFO networks with piece-wise linear functions. The
algorithm scans a sequence of time steps the size of which
depends on the values of the arrival time functions. Careful
analysis of this algorithm shows that this approach yields a
solution with time complexity O(v(|E| + |V'|log |V|)) which
contains a factor « that is possibly unbounded because it
depends on the relative values of arrival time functions. An
example instance showing that the number of scanned time
steps can be unbounded and independent on |E|, |V, and A
is depicted in Figure 1.

3. STRUCTURAL PROPERTIES

Our new algorithm makes extensive use of some structural
properties of the problem discussed in this section.

3.1 Solution Function Structure

()

Qg (t 4 () Auguy (1)

) Qugo,
201 20
99
101 101
2
1 98t

100 200 t 99 200 t

Qua (1) g

98 97
5
s T

®
2 94 t
Figure 1: An example instance showing that the

number of scanned time steps for the Ding et al.
[12] algorithm, can be unbounded.

« X-point
« V-point

Figure 2: X and V-points

The earliest arrival time function from s to d, Asq(t), is a
piece-wise linear function since all input arrival time func-
tions are assumed to be piece-wise linear functions and the
function operators used (function inverse, linear combina-
tion, function compound, min, maz) do not change the lin-
earity of the result. We are interested in the points on the
curve A,q(t) that connect its different linear pieces, and will
refer to them as change points. We differentiate between two
types of change points. First, a change point may represent
the intersection between two pieces of arrival time functions
on different paths. Second, a change point may represent a
change point on one of the input arrival time functions for
a path from s to d. We refer to the first type as X-point
and to the second type as V-point. Figure 2 depicts an
arrangement of arrival time functions and identifies X and
V-points. Every V-point corresponds to a change point on
the arrival time function, ap(t), on some path p from s to
d. Each change point on the a,(t) function is the result of
a boundary point between two linear pieces of arrival time
functions on an edge of p introduced because of a compound
operation for computing a,(t). In the following lemma, we
will show that every boundary point of an edge arrival time
function can create at most one V-point on Asq(t).

LEMMA 1. Suppose P. is the set of all paths that include
edge e = (v,w) € E and ac(t) is the arrival time function on
e which has Ae linear pieces. Then, all arrival time functions
ap. (t),pe € Pe, create in total at most Ae V-points on Asq(t).

Proof: Let

0<t<T}
T <t<T?

ait+ B

alt+ B2
ac(t) =4 : :
adet 4+ e TreTl <t < Te
%9 Tre <t

be the arrival time function on e. For every boundary point
T¢i = 1...\e, consider path p¢ to be the concatenation
of a path with the latest starting time (LST) from s which
arrives at v at time T and a path with earliest arrival time
(EAT) to d which starts from v at time T¢. Because of the
definition of pi, for any path p. € P. other than p¢, T} will
create a change point either at (LST, EAT) or to the left
and above this point. Since (LST, EAT) is on a,; (t) and
FIFO property holds, any points that fall to the left and
above (LST, EAT) are not on A.q(t), thereby other paths
can not create new change points on Agsq(t). This proves
that all arrival time functions ap, (t),pe € P, create in total
at most A\ V-points on Agq(t). O

Let A\ = ZeeE Ae be the total number of linear pieces
on edge arrival time functions in the entire network. Since
every V-point comes from a boundary point on some edge
arrival time function, Lemma 1 implies that there can not
be more than O(X) V-points on Aq(t).

3.2 Possibly Super-polynomial Output Size

In [9], the author conjectured that in a FIFO network with
piece-wise linear arrival time functions on edges, the earliest
arrival time function Asq(t) from a source node s to a des-
tination node d may have more than a polynomial number
of linear pieces. This means that there possibly exist net-
work structures that result in super-polynomial complexity
for earliest arrival time functions to some nodes of the net-
work.

The super-polynomial structure could appear as a sub-
graph of the actual input network, resulting in earliest ar-
rival time functions with super-polynomial number of pieces
for destination nodes whose shortest path from s passes
through the super-polynomial structures. However, the ear-
liest arrival time function from s to d could easily be of linear
size since the earliest arrival time path may not intersect the
super-polynomial structure at all. In this case, Finq> would
be of super-polynomial size and Fy would be of linear size.

4. ANEW ALGORITHM FOR INSTANCES
WITH POLYNOMIAL SIZE OUTPUT

Our new algorithm is based on the idea that instead of
building all earliest arrival time functions for all nodes in the
network, we find the earliest arrival time function to desti-
nation node d directly. The main problem here is to find
all starting times for which the earliest arrival time func-
tion from s to d, Asq(t), changes from one linear piece to
another as well as all linear functions between these change
points. In Section 3, we introduced two types of change
points in Asq(t): V-points and X-points. In Section 3, we
also showed that at most O(X) V-points exist on Agq(¢),
where A is the total number of pieces in all input arrival
time functions. Moreover, using Dijkstra’s static shortest
path algorithm for every change point of all arrival time
functions of the input, both forward to d and backward to

A Asa(t)
A
smallest slope Z
> s
greatest slope ¢ _ A
. :
7/ . .
/ - V-point
//L ________ - -points
/
a-
=
Tt

Figure 3: A sample A,4(t) function with all V-points
and their adjacent linear functions.

s, we capture all V-points that can potentially be on Asq(t).
(For reversibility of the time-dependent shortest path prob-
lem see [8].) To construct the entire function Aq(t), we also
compute the linear pieces to the left and to the right of each
V-point. These are pieces with the earliest arrival time and
the smallest (greatest) slope on the right (left) vicinity of
each V-point. Figure 3 shows a sample A.q(t) function once
all V-points have been detected. Note that, given a time o,
the smallest (greatest) slope piece can be computed while
computing the earliest arrival time to d for starting time ¢o.
This is accomplished by keeping the product of slopes for
each node in the shortest path tree as a secondary key when
Dijkstra’s algorithm finds two or more entries of the heap
that have the same arrival time value. In this case, selecting
the entry with smallest (greatest) slope leads to the small-
est (greatest) slope linear piece. To show the correctness of
this approach consider any two paths from s to d starting at
time to with equal arrival times but different slopes on their
arrival time functions. The first time where they have equal
arrival time values is either at d or at some earlier node d'.
In the latter case, they will share the same “postfix” path
from d’ to d. In either case, selecting the smallest (great-
est) slope product from the heap, among equal arrival time
values, maintains the smallest (greatest) slope.

Thus far, we have determined all V-points and the slope
of Asq(t) in their vicinity. We build the remaining part of
Asq(t) by adding the missing piece between every pair of
consecutive V-points on Agq(t). Due to the linearity of the
input arrival functions, the X-points between two consec-
utive V-points are in concave position (seen from below).
Consider two consecutive V-points, V; and V., found in the
previous step together with the linear pieces in their vicinity.
Two cases arise for the linear pieces to the right of V; and to
the left of V,.. They either overlap, or they intersect in some
point I = (x1,yr). If they overlap, then the piece connecting
the two V-points is the solution (Figure 4-a). In case of an
intersection, two cases are possible. First, if calculating a
static shortest path at time x; returns the same arrival time
yr as for the intersection point then the pieces, v; to I and [
to v, are the solution (Figure 4-b). Second, if calculating a
static shortest path at time z; returns a value less than yr,
then we found a new linear piece that is hiding the intersec-
tion point I = (z1,yr) (Figure 4-c). The linear pieces to the
right of V; and to the left of V. intersects the new piece, and
we recurse. See Theorem 1 for further details.

Algorithm 1 below shows the entire TDSP algorithm. It
determines both V-points and X-points in separate sections.
After initializing Asq(t) at the beginning of the algorithm
(Line 2), in Lines 3 through 11 we capture all V-points along

Aty @ Aany © Aty ©
Intersection point; lntorsagtion point

- -7

-~ V-points

- V-points L
New intersection points

t t t

Figure 4: (a) Overlapping pieces (b) Intersection
point on A(t) (c) Intersection point hidden by
another linear piece

with their adjacent linear pieces to their left and right. In
Lines 12 through 36 we detect all X-points on Agq(t). In
the first phase, for every edge e = (v,w) in the network
and for every boundary point 77 corresponding to an edge
e, the algorithm finds the latest starting time (LST') from
s to arrive at v at time T by calculating a static shortest
path algorithm (Dijkstra) backwards from v to s at time T}
(line 5). We also execute a forward static shortest path to
obtain the earliest arrival time (EAT) at d starting from
v at time 7¢ (Line 6). This provides the rightmost and
lowest V-point that could be found on A.q(t) as a result of
boundary point T¢. As shown earlier, for all other paths
that include e, V-points for T will be hidden by some other
linear pieces. In order to make sure that (LST, EAT) is on
the final solution we calculate a static shortest path from s
to d starting at time LST (Line 7). If the arrival time is
the same as EAT, then (LST, EAT) is indeed a V-point on
Asq(t). In this case, to find the linear pieces near V-points
on Asq(t), we find the linear pieces with the smallest slope
and the largest slope adjacent to the left and right of each
V-point, respectively. Finally, we add each V-point found
along with its adjacent linear pieces to a list for use in the
next step (Lines 8 through 11).

In the second part of the algorithm, we first sort all V-
points by ascending order of LST value (Line 12). Then,
starting from the first two V-points, we read pair of con-
secutive points from the list and build the A,q(¢) function
between them as we scan these points (Lines 13, 15 and
35). Two cases are possible: either the linear function to
the right of the first V-point, RFi, and the linear function
to the left of the second V-point, LF», overlap or they in-
tersect. In case of overlap, the linear piece between the two
points must be a piece of Asq(t) (Lines 16 and 17). If RFy
and LF5 intersect, we add the intersection point to a stack
(Lines 19-21). Here, either there is a linear piece below the
intersection point that prevents it from being on the final
solution or the intersection point is on Aq(¢). In the first
case, we find the linear piece with the greatest slope and
add two new intersection points to the stack (Lines 29-33).
If the intersection point is on the final solution (Lines 24-
27) we add the linear piece on RF} between the first V-point
and the intersection point to Asq(t). Line 34 adds the linear
piece to the left of the right V-point. Finally, in Line 36, we
add an unbounded linear piece if the last linear function is
unbounded.

THEOREM 1. Given a source node s and destination node
d, the TDSP algorithm outlined above correctly determines
Asa(t) for allt € [0,00).

Proof: The algorithm first finds all V-points on Aq(¢)

along with linear pieces to the left and right of each V-point.

Algorithm 1: TDSP(G,V, E,s,d)

1 begin

2 A,q(t) — NULL

3 for every edge e = (v, w) € E do

4 for i =0 to Ac do

5 LST « SPbackward(v, s, T})

6 EAT «— SPforward(v,d,T,)

7 TMP «— SPforward(s,d, LST)

8 if EAT = TMP then

9 fi — GSEAT function(s,d, LST)
10 fr «— SSEAT function(s,d, LST)
11 InsertToList(L,{LST, EAT, fi, fr})
12 Sort(L)
13 {LST\, EAT,,LFy, RF\} «— Removeltem(L)
14 while NotEmpty(L) do
15 {LST>, EAT>, LF>, RF>} «— Removeltem(L)
16 if Overlap(RF1, LF>) then
17 | AddLinearPiece(Asq(t), RF1, LSTy, LST>)
18 else
19 (PX1, PY1) — (LSTy, EAT)
20 (PXs2, PY>) <« IntersectionPoint(RFy, LF»)
21 Push(S, (PXQ,PYQ,RFLLFQ))
22 while NotEmpty(S) do
23 (PX2, PYa, fi, fr) < Pop(S)
24 TMP «— SPforward(s,d, PX2)
25 if TMP = PY> then
26 AddLinearPiece(Asq(t), fi, PX1, PX2)
27 PX, «— PX,
28 else
29 fm — GSEAT function(s,d, PX2)
30 (IX1,IY1) <« IntersectionPoint(f;, fm)
31 (IX2,1Y2) « IntersectionPoint(fm,, fr)
32 Push(S, (IX2,1Y2, fm, fr))
33 F”U.S}'L(S7 (IXl,Iyl,fl,fm))
34 AddLinearPiece(Asq(t), fr, PXo2, LSTs)
35 {LSTy, EATy, LFy, RF;} —

| {LST», EAT,, LF>, RF>}
36 if EAT) # oo then
AddLinearPiece(Asq(t), RF1, LST;, o0)

37 return (Agq(t))

38 end

By Lemma 1, no V-points other than those considered can
be on Agq(t). Then, the algorithm picks every two consec-
utive V-points to compute all X-points between them. Let
v = (x1,y1) and v, = (21, z,) be two consecutive V-points
on Agq(t). Also, suppose that RF and LF are the linear
pieces to the right of v; and to the left of v,, respectively.
Either RF' and LF overlap or they intersect. If overlap, the
linear piece on RF' (or LF) from z; to x, is part of the so-
lution function since no other V-points are possible between
v; and v,. On the other hand, if the two functions intersect
in some point I = (x7,ys) and the intersection is on Asq(t),
then the linear piece on RF from x; to zr is on Asq(t) since
no other V-points are possible between v; and v,. If I is not
on Asq(t), then there must be another linear piece prevent-
ing it from being on the solution. The algorithm determines
such a piece with maximum slope. The extension of the lin-
ear piece must intersect both RF' and LF since otherwise
there must be another V-point between v; and v,. Let I;
and I, be the two intersection points. We now recursively
perform what we did for I, first for I; and then I,. Starting
from v;, we add linear pieces to the solution function once I;
is found to be on A4(t). Then, we move to the next inter-
section. As a last step, the algorithm adds to the solution
function the last piece on LF' between the last intersection
and x,. Since we verify every X-point for being on Agq(t)
and no more V-points are possible between two consecutive

V-points, the algorithm finds all X-points. Since V-points
and X-points are the only change points on As4(t), Algo-
rithm TDSP correctly finds all linear pieces of Asq(t). O

THEOREM 2. The time complezity of the TDSP algorithm
outlined above is O((Fq + N)(|E| + |V |log [V])) .
Proof: First, the algorithm executes a slightly modified

version of Dijkstra’s shortest path algorithm both forward
and backward for each edge of the graph to find all pos-
sible V-points. It then executes another modified version
of Dijkstra’s algorithm to find greatest and smallest slope
pieces close to each V-point. Supposing that for every edge
(v,w) and a given starting time at v we can compute the ar-
rival time at w in O(1) time, for a given starting time at s,
the earliest arrival time at d is computed in the same time
as Dijkstra’s algorithm, namely O(|E| + |V|log|V]) using
Fredman and Tarjan’s implementation [13]. Consequently,
the time-complexity of the first part is O(A(|E|+|V]|log|V]))
where) is the total number of linear pieces in all edge arrival
time functions. Then, in the second part, the algorithm ex-
ecutes a modified Dijkstra’s algorithm as many time as we
find intersection points. At each intersection point found,
we determine the linear piece with greatest slope that hides
the intersection point. This guarantees that, every time we
run a modified Dijkstra’s algorithm at the intersection point
we obtain a new linear piece which is part of the solution
Asa(t). As a result, we will execute the modified Dijkstra’s
algorithm at most as many times as there are X-points on
Asa(t). With Fy; defined as the number of linear pieces on
Asa(t), the second part runs in time O(Fy(|E|+|V|log |V])).
Hence, the total time complexity of the TDSP algorithm is
O(Fa + N (|E| + [V log [V])) O

5. AN APPROXIMATION ALGORITHM
FOR INSTANCESWITH
SUPER-POLYNOMIAL SIZE OUTPUT

We now present an approximation algorithm for instances
where the output size Fy might be super-polynomial. Our
method computes for all possible starting times ¢ € [0, 7] at
s the earliest arrival times at d within error at most €. The
algorithm runs in time O(£(|E| 4 [V|log|V|)) where A is
the earliest arrival time at d for the latest possible starting
time at s. In Section 3, we showed that the number of V-
points on As4(t) is bounded by A, the total number of linear
pieces in all edge arrival time functions of the network (in-
put size). Hence, for instances where the output size Fy is
super-polynomial, it follows that the number of X-points on
Asq(t) must be super-polynomial. Our approximation algo-
rithm first computes all V-points on A.4(t) as outlined in the
previous section. Then, for every two consecutive V-points
v = (z,y1) and vr = (zr,yr) we compute an approxima-
tion of Asq(t). If yr — yi < € we simply connect v; and vy
through a linear piece. If y,. — y; > € we calculate the static
shortest path backward from d to s at time y,, = yl;yr and
obtain a point vm = (Tm,Ym) on Asq(t). We recursively
perform this splitting operation until the difference between
arrival times is less than e. As a final step, we connect all
points obtained (V-points plus new points) through linear
pieces. With A = A4z — Amin defined as the difference
between the earliest arrival times Amin = Asq(t = 0) and
Amaz = Asa(t = T'), the time complexity of this algorithm
is O((2 + A)(|E| + [V|log|V])). We can improve this time

complexity to O((2)(|E| +|V|log|V|)) by avoiding the cal-
culation of the V-points altogether. We calculate the static
shortest paths backwards from d to s at all times Anin + i€,
i =1,..., L%J, and then connect the points obtained by
linear pieces. Here, the main complication is the possibility
of discontinuities in Asq(¢). Handling this case within the
same time complexity is possible.

6. CONCLUSION

In this paper, we presented a new algorithm which solves
the time-dependent shortest paths problem for a time-
dependent network with FIFO property. The running time
of our algorithm is O((Fa+\)(|E|+|V|log |V|)), where Fy is
the output size and A is the input size. Our method improves
significantly on the best previously known bound by Orda
and Rom [15]. We also study instances where the output
size Fy is super-polynomial, for which all previously known
methods (including our first method presented here) require
super-polynomial time. We present the first approximation
method for such instances of the time-dependent shortest
path problem. Our method computes for all possible start-
ing times the earliest arrival times within error at most e.
Our algorithm runs in time O(2 (|E|+|V|log [V'])) where A
is the difference between the earliest arrival times at d for
the latest and earliest starting times at s. The methods pre-
sented in this paper are independent of the underlying static
shortest path algorithm, so that more efficient shortest path
algorithms than the generic Dijkstra algorithm can be used
when applicable. E.g., in planar networks, applying linear
time shortest path algorithms [14] will further improve our
results. In many practical networks heuristics such as A*
can be applied to improve the practical performance of our
methods. We are currently implementing our algorithm.

7. ACKNOWLEDGEMENT

We thank Rolf Klein and Florian Berger for insightful dis-
cussions on this topic.

8. REFERENCES

[1] Ravindra K. Ahuja, James B.Orlin, Stefano
Pallottino, and Maria G.Scutella. Dynamic shortest
paths minimizing travel times and costs. Networks,
41:205, 2001.

[2] Ravindra K. Ahuja, James B. Orlin, Stefano
Pallottino, and Maria Grazia Scutella. Minimum time
and minimum cost-path problems in street networks
with periodic traffic lights. Transportation Science,
36(3):326-336, 2002.

[3] Richard Bellman. On a routing problem. Quarterly of
Applied Mathematics, 16:87-90, 1958.

[4] Gerth Stglting Brodal and Riko Jacob.
Time-dependent networks as models to achieve fast
exact time-table queries. Electr. Notes Theor.
Comput. Sci., 92:3-15, 2004.

[5] Patricia June Carstensen. The complezity of some
problems in parametric linear and combinatorial
programming. PhD thesis, University of Michigan,
1983.

[6] Hae Don Chon, Divyakant Agrawal, and Amr El
Abbadi. Fates: Finding a time dependent shortest
path. In MDM ’03: Proceedings of the 4th

(10]

(11]

(12]

International Conference on Mobile Data
Management, pages 165-180, London, UK, 2003.
Springer-Verlag.

K. L. Cooke and E. Halsey. The shortest route
through a network with time-dependent internodal
transit times. Journal of Mathematical Analysis and
Applications, 14(3):493-498, 1966.

Carlos F. Daganzo. Reversibility of the
time-dependent shortest path problem. Transportation
Research Part B: Methodological, 36(7):665-668,
August 2002.

Brian C. Dean. Shortest paths in FIFO
time-dependent networks: Theory and algorithms.
Technical report, MIT Department of Computer
Science, 2004.

Frank. Dehne, Masoud T. Omran, and Jorg-R. Sack.
Minimum travel time on networks with
time-dependent edge availabilities. Technical report,
Carleton University, Ottawa, 2009.

E. W. Dijkstra. A note on two problems in connexion
with graphs. Numerische Mathematik, 1(1):269-271,
December 1959.

Bolin Ding, Jeffrey Xu Yu, and Lu Qin. Finding
time-dependent shortest paths over large graphs. In
EDBT ’08: Proceedings of the 11th international
conference on FExtending database technology, pages
205216, New York, NY, USA;, 2008. ACM.

Michael L. Fredman and Robert Endre Tarjan.
Fibonacci heaps and their uses in improved network
optimization algorithms. J. ACM, 34(3):596-615,
1987.

Monika Rauch Henzinger, Philip N. Klein, Satish Rao,
and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci.,
55(1):3-23, 1997.

Ariel Orda and Raphael Rom. Shortest-path and
minimum-delay algorithms in networks with
time-dependent edge-length. J. ACM, 37(3):607-625,
1990.

Micha Sharir and Pankaj K. Agarwal.
Davenport-Schinzel sequences and their geometric
applications. Cambridge University Press, New York,
NY, USA, 1996.

