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Abstract. Structural variations (SVs) in a genome are now known as a prominent and important type of genetic variation.
Among all types of SVs, the identification of transposon insertion polymorphisms (TIPs) is more challenging due to the
highly repetitive nature of transposon sequences. We developed a computational method, TIP-finder, to identify TIPs through
analysis of next generation personal genome data and their extremely large copy numbers. We tested the efficiency of TIP-
finder with simulated data and are able to detect about 88% of TIPs with precision of >91%. Using TIP-finder to analyze
the Solexa pair-end sequence data at deep coverage for six genomes representing two trio families, we identified a total of
5569 TIPs, consisting of 4881, 456, 91, and 141 insertions from Alu, L1, SVA and HERY, respectively, representing the most
comprehensive analysis of such type of genetic variation.

INTRODUCTION

Structural variations (SVs) in a genome are defined as DNA sequence alternations among individuals including
deletion, duplication, insertion, inversion, translocation and transposition of DNA sequences [1, 2]. In recent years,
with the development of new sequencing technologies, a vast amount of high throughput sequencing personal genome
data has been generated, providing new opportunities for comprehensive analysis of SVs. A number of computational
tools have been developed for identification of SVs using these personal genome data [3], mostly without transposon
insertions. The identification of transposon insertions is more challenging than other SVs due to the highly repetitive
nature of transposon sequences.

Transposons or transposable elements (TEs) are discrete pieces of DNA that can move within a genome. TEs, with
several millions of copies classified into many families and subfamilies, account for approximately 45% of the human
genome, and they play important roles in the evolution of the genome and regulating gene functions [4]. Transposon
insertion polymorphism (TIP) refers to the presence or absence of a transposon insertion at a specific genomic location
in populations of a given species. Recent evidence indicates that about 35 to 40 subfamilies of Alu, L1, SVA elements
and possibly HERV-K elements remain actively mobile in the human genome [5]. However, only a limited number of
TIPs were identified using classical molecular biology techniques, such as locus-specific polymerase chain reactions
(PCR), targeted mutation screening, and transposon differential display PCR [6, 7, 8, 9]. With the availability of
personal genome data at an unprecedented scale, computational approaches are emerging as valuable tools for the
study of TIPs [10, 11].

In this study, we developed a computational method, TIP-finder, to identify TIPs through analysis of next generation
personal genome data. TIP-finder uses a greedy algorithm to identify the candidate TIPs loci which are then enhanced
by a machine-learning approach.

METHODS

Identification of TIPs_ OUT candidate loci

TIP-finder detects TIPs based on pair-end mapping (PEM), which involves the generation of paired end reads that
represent the two short sequencing reads of the two ends of a genomic fragment with a known estimated size, i.e. the



library size. Alignments of paired-end reads to the reference genome are categorized as concordant and discordant
[2]. Paired reads mapped to the reference genome at a distance similar to the insert size and in a correct orientation
represent a concordant PEM, otherwise represent a discordant PEM, which indicates a potential SV. In this study, we
focus on TIPs representing insertions that are present in the test genome but absent in the reference genome (TIPs_OUT
hereafter). For pair-end reads with fragments spanning the boundaries of a TE insertion, one read-mate is expected
to map to the regions flanking the insertion with relatively good reliability, while the other read-mate that falls into
the transposon insertion will have a random match to a similar transposon sequence in the reference genome. The
alignment location of this transposon read is a random pick among all top hits. Sequence alignment data used in this
study were obtained using the MAQ software [12]. MAQ labels reads having correct mapping with a flag of 18 (MF18
reads) and those mapped to two different chromosomes with a flag of 32 (MF32 reads). As there are 23 chromosomes
in the genome, the possibility of the second read (in the transposon insertion) mapped to the same chromosome as the
first read is on average at 4-5%. Therefore, most of these pair-end reads spanning the boundary regions of a TIPs_OUT
would have the two reads mapping to different chromosomes (i.e. MF32 reads).

We developed a greedy algorithm to identify TIPs_OUT candidate loci. TIPs_OUT candidate reads are defined as
paired reads with one read (A;) in the flank region mapped to the reference genome in a non-transposon position and
another (B;) in newly inserted transposon loci. The location of transposons in the reference genome is based on the
RepeatMasker annotation obtained from the UCSC Genome Browser (http://genome.ucsc.edu). We describe below
the algorithms and pipelines included in our TIP-finder tool.

Algorithm 1 TIPs_OUTclusterFinding
(1) Map all paired-end reads of the test genome to the reference genome
(2) Identify TIPs_OUT candidate reads (4;, B;)
(a) Identify and collect all paired MF32 reads.
(b) Map all MF32 reads to a sorted transposon position list on the reference genome.
(c) If A; is not mapped to the transposon positions but B; is, add (A;, B;) into the TIPs_OUT candidate list L.
(3) Sort the list L = [(A1,B1), (A2,B2), -+, (Ay—1,Bn—1), (Ay, By)] based on the mapping position of A;(PosA;)
(4) Cluster (A;,B;) based on PosA;. If 1PosA|-PosA;| < 2xLibrarySize and By and B, are mapped to the same
transposon family, group (A1, B) and (A, B;) into one cluster.
(5) Find the minimum (spos) and maximum (epos) positions of PosA; for each cluster.

TIPs_OUT loci filtering

In order to reduce false positives in predicting TIPs_OUT, the predicted TIPs_OUT candidate loci are filtered by
imposing restrictions on the number of MF32 reads (numMF32), the ratio between numMF32 and the number of MF18
reads (numMF18), and the percentage of MF32 reads showing reliable mapping in the flank region of TIPs_OUT
(percentReliableMF32). To optimize these filtering parameters, a machine learning approach was used based on a
simulated genome containing known TIPs_OUT documented in dbRIP database [13].

Human somatic cells have a diploid genome containing two copies of each chromosome, so TIPs_OUT can exist
in two (“+/47) or one copy (“+/-). In simulating the known TIPs_OUT based on the dbRIP database, we inserted the
781 TIPs_OUT from dbRIP into the reference genome at their corresponding locations to generate a simulated diploid
genome sequence with one copy containing all of these TIPs_OUT and the other copy containing randomly selected
50% of the TIPs_OUT. Therefore, 50% of these TIPs_OUT are in the “+/+” genotype, while the remaining 50% are in
the “+/-" genotype. Based on the sequences of these two copies, we generated paired-end reads with a read length of
35bp (similar to an Illumina Solexa platform) at a size of 260 bp with 60 bp as the standard deviation (SD) using the
sequence simulation utility included in the MAQ package [12]. These reads were then aligned to the reference genome
(UCSC hgl8) using MAQ. Different amounts of sequence data were used to simulate genome coverage at 5X, 11X,
22X, 26X, 32X and 46X. For the 781 TIPs_OUT inserted in the simulated genome, we divided them into two disjoint
sets: dbRIP_setA containing 391 TIPs_OUT and dbRIP_setB containing 390 TIPs_OUT. dbRIP_setA is used to train
our algorithms by identifying the data patterns surround the insertion sites, and it is also used to determine the optimal
combinatorial parameters in filtering the noise. dbRIP_setB is used to assess the performance of our algorithms by
using the filtering parameters generated from dbRIP_setA.

To optimize filtering parameters, at each known transposon insertion site of dbRIP_setA, we collected all MF32
reads and all MF18 reads within a distance of the library size to the insertion site. A percentReliableMF32 is computed
based on flag HO and H1 in the MAQ alignment data which are the number of perfect hits and hits with one difference,



respectively. In this study, the mapping of a read is considered as unreliable under any one of the following conditions:
1DHO > 4; 2)HO =0 and H1 > 10; 3)HO = 0 and H1 = 0. TIPs_OUT are filtered out when percentReliableMF32 is
less than 80%, which is the average of mean — 3 x SD for the training data set at different sequencing coverage. This
excludes TIPs_OUT in the repetitive sequence regions which tend to produce a high level of false positive.

The genotype of a TE insertion can be predicted based on the ratio of numMF18/numMF32. By training and
analyzing the simulated data at each known transposon insertion site for different genome coverage, the cut off values
for defining the genotype are shown in Table 1, which are the means of the optimal cutoff values for different genome
coverage. Since the numMF32 in the insertion with genotype “+/+” should be greater than that of genotype “+/-”,
different cut-off values for numMF32 should be set for genotypes “+/+” and “+/-". In this study, the cut-off values
for minimum numMF32 were searched iteratively so that about 95% of the known insertion sites can be correctly
identified. The regression functions were further generated to show the relationship between the minimal numMF32
and genome coverage for different genotypes. The final filtering parameters used in TIP-finder are summarized in
Table 1.

TABLE 1. Summary of optimal filtering parameters used in TIP-finder

Filtering criteria

percentReliableMF32 percentReliableMF32 > 80%

Genotype “+/+” numMF 18 /numMF32 < 0.8

Genotype “+/-” 0.8 < numMF18/numMF32 <3

numMF32 for “+/+” numMF32 > 1.1 X coverage +2.7

numMF32 for “+/-” numMF32 > 0.3 X coverage +5.8
RESULTS

TIPs_OUT identification in the simulated genome

With the known insertion locations and the defined genotype, dbRIP_setB allowed us to provide an accurate
assessment of the accuracy of TIP-finder in identifying TIPs_OUT in terms of both false positive and false negative
rates, as well as the accuracy in predicting insertion genotype. Here, precision is calculated as percentage of true
positive among all prediction, i.e. (TP/(TP + FP))[%], and sensitivity is calculated as percentage of detected true
positive among all true TIPs_OUT, i.e. (TP/(TP+ FN))[%], where TP, FN, and FP are the number of true positive,
false negative, and false positive, respectively. As shown in Table 2, for genome coverage over 22X, our program is
able to detect most of the known TIPs_OUT with a sensitivity >88% and precision >91%. At a genome coverage of
10X, TIP-finder is able to detect the known TIPs_OUT with sensitivity >87% and precision >93%. In comparison
with >85% sensitivity and >90% precision for a simulated genome at coverage 10X reported by VariationHunter [11],
the only other tool that handles the TIPs, TIP-finder provides slightly improved sensitivity and precision. The accuracy
of genotype prediction is above 80% for all checked levels of genome coverage.

TABLE 2. Summary of TIPs_OUT predictions based on simulation

Genome coverage 5X 10X 22X 26X 32X 46X

TP 328 340 343 345 346 348
TP+FP 355 367 375 378 380 392
TP+FN 390 390 390 390 390 390
Precision 2% 93% 91% 91% 91% 89%
Sensitivity 84% 871% 88% 88% 89% 89%

Genotype match 80% 88% 88% 89% 90% 91%




TIPs_OUT prediction based on six genomes

To identify TIPs_OUT using TIP-finder, we downloaded genome data for the six individuals representing two trio
families (each consisting the two parents and a child) that were subjected to deep sequencing by the 1000 Genome
Project at a coverage from 24X to 36X (http://1000genomes.org). The specific samples are NA12878 (daughter, 34X),
NA12891 (mother, 33X) and NA12892 (father, 28X) for a Utah Caucasian family and NA19238 (mother, 24X),
NA19239 (father, 28X) and NA 19240 (daughter, 36X) for a Nigerian family. We used the alignment data of sequences
generated using the Illumina Solexa platform provided in BAM format by the 1000 genome project using MAQ.

The TIPs_OUT prediction was first performed for each genome individually and then the 6 lists of TIPs_OUT were
combined to generate a non-redundant list of final TIPs_OUT candidate list (see Table 3). TIP-finder identified a total
of 5569 TIPs_OUT consisting of 4881, 456, 91, and 141 insertions from Alu, L1, SVA and HERYV, respectively. Among
the 3 types of TEs that are known to be active in the human genome, Alu has the largest number of TIPs_OUT reflecting
its highest level of transposition as expected. In addition to Alu, L1, and SVA, we identified 141 HERV TIPs_OUT,
suggesting that they are still active contrasting to our current view. We compared the predicted TIPs_OUT with the
781 TIPs_OUT in dbRIP and found 453 (or 58%) overlapping entries. This is a reasonable number considering the
small number of genomes covered in this study. As shown in Table 3, it is worth noting that the numbers of TIPs_OUT
from the two families are dramatically different, with the Nigerian family containing much more TIPs_OUT than the
Utah Caucasian family. This is expected because the reference genome has mainly a Caucasian origin, thus is more
similar to the Utah families than to the Nigerian family. The data suggest that a large number of new TE insertions have
occurred in the genomes of the African populations after the migration of ancestors of current non-African populations
out of Africa. Experimental validation of TIPs_OUT prediction is underway.

TABLE 3. Summary of TIPs_OUT predictions based on the 6 genomes

Genome NA19240 NA19238 NA19239 NA12878 NA12891 NA12892 Total(non-redundant)

SVA 65 25 45 8 5 2 91

L1 224 145 211 101 16 27 456

HERV 58 26 57 33 12 19 141

Alu 2379 1865 2220 799 174 188 4881
CONCLUSIONS

TIP is a type of structural variation difficult to analyze. This study demonstrates the high efficiency of TIP-finder for
the computational identification of TIPs and represents one of the few comprehensive analyses of TIPs performed
so far. Despite the limited number of genomes analyzed, our data revealed an unexpectedly high level of transposon
associated genetic polymorphisms in humans, and thus we expect to identify much more of such genetic variation
by analyzing additional personal genome data, allowing us to explore the contribution of such genetic diversity to
phenotype variations
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