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Abstract

On-line Analytical Processing (OLAP) has be-
come one of the most powerful and prominent
technologies for knowledge discovery in VLDB
(Very Large Database) environments. Central
to the OLAP paradigm is the data cube, a
multi-dimensional hierarchy of aggregate val-
ues that provides a rich analytical model for de-
cision support. Various sequential algorithms
for the efficient generation of the data cube
have appeared in the literature. However,
given the size of contemporary data warehous-
ing repositories, multi-processor solutions are
crucial for the massive computational demands
of current and future OLAP systems.

In this paper we discuss the development of
MCMD-CUBE, a new parallel data cube con-
struction method for multi-core processors with
multiple disks. We present experimental re-
sults for a Sandy Bridge multi-core processor
with four parallel disks. Our experiments indi-
cate that MCMD-CUBE achieves very close to
linear speedup. A critical part of our MCMD-
CUBEFE method is parallel sorting. We devel-
oped a new parallel sorting method termed
MCMD-SORT for multi-core processors with
multiple disks which significantly outperforms
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the best previous method (PMSTXXL).

1 Introduction

While database and data management systems
have always played a vital role in the growth
and success of corporate organizations, changes
to the economy over the past decade have even
further increased their significance. To keep
pace, IT departments began to exploit rich new
tools and paradigms for processing the wealth
of data and information generated on their be-
half. Along with relational databases, the ven-
erable cornerstone of corporate data manage-
ment, knowledge workers and business strate-
gists now look to advanced analytical tools in
the hope of obtaining a competitive edge. This
class of applications comprises what are known
as Decision Support Systems (DSS). They are
designed to empower the user with the ability
to make effective decisions regarding both the
current and future state of an organization. To
do so, the DSS must not only encapsulate static
information, but it must also allow for the ex-
traction of patterns and trends that would not
be immediately obvious. Users must be able to
visualize the relationships between such things
as customers, vendors, products, inventory, ge-
ography, and sales. Moreover, they must un-
derstand these relationships in a chronological
context, since it is the time element that ulti-
mately gives meaning to the observations that
are formed.



One of the most powerful and prominent
technologies for knowledge discovery in DSS
environments is On-line Analytical Process-
ing (OLAP). OLAP is the foundation for a
wide range of essential business applications,
including sales and marketing analysis, plan-
ning, budgeting, and performance measure-
ment [10, 14]. The processing logic associated
with this form of analysis is encapsulated in
what is known as the OLAP server. By ex-
ploiting multi-dimensional views of the under-
lying data warehouse, the OLAP server allows
users to “drill down” or “roll up” on hierar-
chies, “slice and dice” particular attributes, or
perform various statistical operations such as
ranking and forecasting. Figure 1 illustrates
the basic model where the OLAP server repre-
sents the interface between the data warehouse
proper and the reporting and display applica-
tions available to end users.
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Figure 1: The three-tiered OLAP model.

To support this functionality, OLAP relies
heavily upon a data model known as the data
cube [9, 11]. Conceptually, the data cube al-
lows users to view organizational data from dif-
ferent perspectives and at a variety of sum-
marization levels. It consists of the base
cuboid, the finest granularity view containing
the full complement of d dimensions (or at-
tributes), surrounded by a collection of 2¢ — 1
sub-cubes/cuboids that represent the aggrega-
tion of the base cuboid along one or more di-

mensions. Figure 2 illustrates a small four-
dimensional data cube that might be associ-
ated with the automotive industry. In addition
to the base cuboid, one can see a number of
various planes and points that represent aggre-
gation at coarser granularity. Note that each
cell in the cube structure corresponds to one or
more measure attributes (e.g. Total Sales).
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Figure 2: A three dimensional data cube for
automobile sales data.

Typically, the collection of cuboids is repre-
sented as a lattice [11] of height d + 1. Start-
ing with the base cuboid — containing the
full complement of dimensions — the lattice
branches out by connecting every parent node
with the set of child nodes/views that can be
derived from its dimension list. In general,
a parent containing k dimensions can be con-
nected to k views at the next level in the lattice
(see Figure 3).

In principle, no special operators or SQL ex-
tensions are required to take a raw data set,
composed of detailed transaction-level records,
and turn it into a data structure, or group
of structures, capable of supporting subject-
oriented analysis. Rather, the SQL group-
by and wnion operators can be used in con-
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Figure 3: The lattice corresponding to a four
dimensional data cube with dimensions A, B,
C and D.

junction with 27 sorts of the raw data set to
produce all cuboids. However, such an ap-
proach would be both tedious to program and
immensely inefficient, given the obvious inter-
relationships between the various views. Con-
sequently, in 1995, the data cube operator (an
SQL syntactical extension) was proposed by
Gray et al. [9] as a means of simplifying
the process of data cube construction. Sub-
sequent to the publication of the seminal data
cube paper, a number of independent research
projects began to focus on designing efficient al-
gorithms for the computation of the data cube
[4, 6, 11, 12, 13, 15, 16, 17, 18, 20, 21, 22, 23].
The algorithms can be divided into top-down
and bottom-up approaches. In the former case,
we first compute the parent cuboids and then
utilize these aggregated views to efficiently
compute the children. Various techniques have
been employed for this purpose, including those
based on sorting, hashing, and the manipula-
tion of in-memory arrays [4, 17, 23]. In all
cases, the goal is to generate coarse granu-

larity tables from views that have previously
been aggregated at a finer level of granularity.
In contrast, bottom-up computation seeks to
first partition the data set on single attributes
[6, 15]. Within each partition, we recursively
aggregate at finer levels of granularity until
we reach the point where no more aggregation
is possible/necessary. Bottom-up algorithms
tend to favor views with a larger number of
dimensions.

In practice, materialized data cubes can be
massive. It is therefore unlikely that single pro-
cessor platforms can handle the massive size of
future decision support systems. To support
very large data cubes, parallel processing can
provide two key ingredients: increased compu-
tational power through multiple processors and
increased 1/0 bandwidth through multiple par-
allel disks.

Recently, multi-core processors have gained
wide acceptance and are now present in nearly
all computer systems. This raises an interest-
ing new problem of developing parallel data
cube construction methods for such architec-
tures. In this paper we discuss the develop-
ment of MCMD-CUBE, a new parallel data
cube construction method for multi-core pro-
cessors with multiple disks. We present experi-
mental results for a ”Sandy Bridge” multi-core
processor with four parallel disks. Our exper-
iments indicate that MCMD-CUBE achieves
very close to linear speedup. Our parallel data
cube construction method is based on the clas-
sical Pipesort [17] which decomposes the lat-
tice into a sequence of chains called pipes, and
computes the views in each chain through one
external memory sort. Therefore, the perfor-
mance of our MCMD-CUBE methods depends
critically on parallel external memory sorting.
At the core of our MCMD-CUBE method a
new parallel sorting method termed MCMD-
SORT for multi-core processors with multiple
disks which significantly outperforms previous
methods.

The remainder of this paper is organized as
follows. In the following Section 2, we outline
our new parallel sorting method MCMD-SORT
for multi-core processors with multiple disks.
In Section 3, we present our new parallel data



cube construction method MCMD-CUBE for
multi-core processors with multiple disks. Sec-
tion 4 concludes our paper.

2 Parallel sorting on multi-
core processors with mul-
tiple disks

As discussed above, the performance of our
MCMD-CUBE data cube computation method
depends crucially on parallel external memory
sorting. In this section we present an out-
line of our MCMD-SORT algorithm for multi-
core processors with multiple disks. Consider
a multi-core processors with p cores, M local
memory and p disks. We assume a fact table
of N data items distributed over those p disks.

2.1 MCMD-MERGE algorithm

Our MCMD-SORT algorithm is based on a
method MCMD-MERGE for merging multiple
sorted sequences stored on the p disks which is
illustrated in Figure 4. For p disk/processor
pairs, each disk contains n sorted sequences
S1,...,5n. The goal is to merge all these sorted
sequences into one sorted list L stored on the
p disks such that each disk stores 1/p-th of L.
Our MCMD-MERGE method is based on an
adaptation of deterministic sample sort [19].
As illustrated in Figure 4, each processor/disk
pair first independently and in parallel merges
its sorted sequences Si,...,.S,, resulting in p
sorted sequences P, ..., P,, one on each disk.
From each sequence P; we select p equidistant
local samplers, collect all p? local samplers in
main memory, sort the p? local samplers, and
then select p global samplers from the sorted
sequence. As shown in [19], these p global sam-
plers define p well balanced buckets. Each of
the p processors now selects the items in its
bucket from the p disks and merges them into
one sorted file on its disk. The entire MCMD-
MERGE procedure can be implemented with
two reads and two writes of the entire data set
from/to the p disks.

2.2 MCMD-SORT algorithm

We now proceed with an outline of our MCMD-
SORT algorithm. The algorithm proceeds in
several stages and is illustrated in Figure 5. We
first split the input into N/M blocks of size M,
load each block into main memory, sort it us-
ing in memory multi-core QuickSort, and write
it back to the respective disk. We then select
N'/2 samples from each block. Here we assume
that the total number of samples, Nl/Q%, is
at most M which implies that N < M3/2. If
N > M3/?, then we will apply an outer level
recursion as discussed below. The at most M
samples are loaded into main memory, sorted
using in memory multi-core QuickSort, and
then M'/2? equidistant global samples are se-
lected. These M'/? global samples define M'/?
buckets of data consisting of N/M pieces of
blocks (sub-buckets). For each bucket, we take
the N/M sub-buckets and apply our MCMD-
MERGE method outlined in Section 2.1.

If N > M3/2, then we apply an outer level
recursion as illustrated in Figure 6. The entire
dataset is partitioned into N'/3 sublists of size
N?/3 and we recurse on each sublist. It is easy
to see that the algorithm will not need to re-
curse for most conceivable cases. For example,
for a memory size M = 2GB holding 256 mil-
lion data item, no recursion is required for up

to N = 32 TB of data.

2.3 MCMD-SORT performance
analysis

We compared the performance of our MCMD-
SORT method with the performance of the
best currently available multi-core/multi-disk
external memory sort (PMSTXXL-SORT)
which is part of the PMSTXXL library [1, 3,
2,5, 7, 8]. More precisely, we implemented our
MCMD-SORT method in C++ and OpenMP,
downloaded PMSTXXL-SORT, and compared
their performance on a machine with a Sandy
Bridge multi-core processor, 16GB of main
memory and four parallel disks. In the fol-
lowing, we will first show some more detailed
performance data for our MCMD-SORT im-
plementation and then show the results of our
comparison with PMSTXXL-SORT.



Figure 7 shows MCMD-SORT runtime as a
function of the number of processors and par-
allel disks. Note that this is a log-log curve.
The straight line indicates that MCMD-SORT
shows a very close to linear speedup. Figure 8
shows MCMD-SORT runtime as a function
of data size (again log-log curve). Here, the
straight line indicates a very close to linear per-
formance as data size increases. The main con-
tributing factor is that, since we do not need to
recurse, the number of reads and writes of the
entire data to/from the parallel disks is fixed,
and independent of data size. Figure 9 shows
MCMD-SORT runtime as a function of main
memory size. We observe the performance im-
provements as main memory size increases.

Figure 10 shows a runtime comparison be-
tween MCMD-SORT and PMSTXXL-SORT.
The upper red curve shows the runtime of
PMSTXXL-SORT and the lower blue curve
shows the runtime of MCMD-SORT, as a func-
tion of data size. Figure 10 illustrates that the
difference in performance between PMSTXXL-
SORT and MCMD-SORT is dramatically in-
creasing with growing data size. For a data
size of 128 GB, MCMD-SORT is more than
30% faster than PMSTXXL-SORT. For a data
size of 128 GB, the difference is so large that we
can run MCMD-SORT in 28K seconds but are
unable to run PMSTXXL-SORT in any reason-
able amount of time.
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Figure 4: Illustration of our MCMD-MERGE
algorithm.
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Figure 5: Illustration of our MCMD-SORT al-
gorithm.
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Figure 6: Ilustration of MCMD-SORT recur-

sion.
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Figure 7: MCMD-SORT runtime as a function
of number of processors and parallel disks (log-
log curve).
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Figure 8: MCMD-SORT runtime as a function
of data size (log-log curve).
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Figure 9: MCMD-SORT runtime as a function

of main memory size.
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Figure 10: Runtime comparison between
MCMD-SORT and PMSTXXL-SORT (up-
per red curve: PMSTXXL-SORT; lower blue
curve: MCMD-SORT)

3 Parallel data cube con-
struction on multi-core

processors with multiple
disks

We now turn our attention towards using
our MCMD-MERGE algorithm for parallel
data cube construction on multi-core proces-
sors with multiple disks. Our method is based
on the classical sequential Pipesort [17] algo-
rithm which decomposes the lattice into a se-
quence of chains called pipes. Figure 11 illus-
trates the Pipesort algorithm. Given e.g. a
five-dimensional fact table with dimensions A,
B, C, D, E, the Pipesort algorithm partitions

the lattice into sequences of views, called pipes,
that share the same prefix. For example, Fig-
ure 11, one such pipe is ABCDE-ABCD-ABC-
AB-A. The full set of pipes in Figure 11 is as
follows:

1. ABCDE-ABCD-ABC-AB-A
2. BCEA-BCE-BC-B
CDEA-CDE-CD-C

-~ W

DEAB-DEA-DE-D

o

EBDC-EBD-EB-E
ADB-AD
BDC-BD
AEB-AE

© »®» N>

CEA-CE
10. ACD-AC

For each pipe, the respective views are cre-
ated by a single sort that creates the first
(largest) view of the pipe. The remaining views
are then a result of a simple linear scan through
the same data because these views are a pre-
fix of the first (largest) view. In fact, the linear
scan can be integrated into the sort. Therefore,
on a multi-core processor with multiple disks,
all views in one pipe can be computed with one
single run of our MCMD-SORT algorithm. For
the example shown in Figure 11, our MCMD-
CUBE algorithm for building the entire data
cube consists of 10 runs of our MCMD-SORT
algorithm.

Figure 12 shows the MCMD-CUBE runtime
as a function of the number of processors and
parallel disks. Note that this is a log-log curve.
The nearly straight line indicates that MCMD-
SORT shows a very close to linear speedup.

4 Conclusion

In this paper we presented MCMD-CUBE, a
new parallel data cube construction method for
multi-core processors with multiple disks and
showed experimental results for a Sandy Bridge
multi-core processor with four parallel disks.



Figure 11: Illustration of the Pipesort algo-
rithm.
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Figure 12: MCMD-CUBE runtime as a func-
tion of number of processors and parallel disks
(log-log curve).

Our experiments indicate that MCMD-CUBE
achieves very close to linear speedup. A critical
part of our MCMD-CUBE method is parallel
sorting. We developed MCMD-SORT, a new
parallel sorting method for multi-core proces-
sors with multiple disks. Our experiments show
that MCMD-SORT significantly outperforms
PMSTXXL-SORT, the best previous parallel
sorting method for multi-core processors with
multiple disks.
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