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Abstract—One of the most powerful and prominent tech-
nologies for knowledge discovery in Decision Support systems
is On-line Analytical Processing (OLAP). Most of the traditional
OLAP research, and most of the commercial systems, follow
the static data cube approach proposed by Gray etal. and
materialize all or a subset of the cuboids of the data cube
in order to ensure adequate query performance. Practitioners
have called for some time for a real-time OLAP approach where
the OLAP system gets updated instantaneously as new data
arrives and always provides an up-to-date data warehouse for
the decision support process. However, a major problem for
real-time OLAP are significant performance issues with large
scale data warehouses. The aim of our research is to address
these problems through the use of efficient parallel computing
methods.

In this paper, we present a parallel real-time OLAP sys-
tem for multi-core processors. To our knowledge, this is the
first real-time OLAP system that has been parallelized and
optimized for contemporary multi-core processors, providing
the opportunity for real-time OLAP on large scale data
warehouses. Our system allows for multiple insert and multiple
query operations (transactions) to be executed in parallel and
in real-time. We evaluated our method for a multitude of
scenarios (different ratios of insert and query transactions,
query transactions with different sizes of results, different
system loads, etc.), using the TPC-DS “Decision Support”
benchmark data set. The tests demonstrate that our parallel
system achieves a significant speedup in transaction response
time and a significant increase in transaction throughput. Since
hardware performance improvements are currently achieved
not by faster processors but by increasing the number of
processor cores, our new parallel real-time OLAP method has
the potential to enable OLAP systems that are real-time and
efficient/feasible for large databases.

Keywords-Parallel Computing; Real-Time OLAP; Multi-
Core Processors;

I. INTRODUCTION

This paper reports on the results of an IBM funded

research project to investigate the use of multi-core pro-

cessors for high performance, real-time, On-line Analytical
Processing (OLAP). Such OLAP systems are at the heart of

many Business Analytics applications. The ever growing data

warehouses built by corporate and institutional users have

lead to significant performance bottlenecks, which motivated

this research project.

A. Background

Decision Support Systems (DSS) are designed to em-

power the user with the ability to make effective decisions

regarding both the current and future state of an organiza-

tion. To do so, the DSS must not only encapsulate static

information, but it must also allow for the extraction of

patterns and trends that would not be immediately obvious.

Users must be able to visualize the relationships between

such things as customers, vendors, products, inventory, ge-

ography, and sales. Moreover, they must understand these

relationships in a chronological context, since it is the time

element that ultimately gives meaning to the observations

that are formed. One of the most powerful and prominent

technologies for knowledge discovery in DSS environments

is On-line Analytical Processing (OLAP). OLAP is the foun-

dation for a wide range of essential business applications,

including sales and marketing analysis, planning, budgeting,

and performance measurement [1], [2]. The processing logic

associated with this form of analysis is encapsulated in

what is known as the OLAP server. By exploiting multi-

dimensional views of the underlying data warehouse, the

OLAP server allows users to “drill down” or “roll up” on

hierarchies, “slice and dice” particular attributes, or perform

various statistical operations such as ranking and forecasting.

Figure 1 illustrates the basic model where the OLAP server

represents the interface between the data warehouse proper

and the reporting and display applications available to end

users.

To support this functionality, OLAP relies heavily upon a

classical data model known as the data cube [3]. Conceptu-

ally, the data cube allows users to view organizational data

from different perspectives and at a variety of summarization

levels. It consists of the base cuboid, the finest granular-

ity view containing the full complement of d dimensions

(or attributes), surrounded by a collection of 2d − 1 sub-

cubes/cuboids that represent the aggregation of the base

cuboid along one or more dimensions. Figure 2 illustrates a

small four-dimensional data cube that might be associated

with the automotive industry. In addition to the base cuboid,

one can see a number of various planes and points that

represent aggregation at coarser granularity. Note that each

2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing

978-0-7695-4691-9/12 $26.00 © 2012 IEEE

DOI 10.1109/CCGrid.2012.19

588



Data MiningAnalysisQuery Reports

Olap ServerOlap Server

Meta Data Repository

Monitoring

Administration

Operational Databases

Data Warehouse

Data Marts

External Sources

Extract

Clean

Transform

Load

Refresh

Output

Front−End Tools

Olap Engines

Data Storage

Data Cleaning

and

Integration

Figure 1. Three-tiered OLAP model.

cell in the cube structure corresponds to an aggregate value

along one or more measure attributes (e.g. Total Sales).
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Figure 2. A three dimensional data cube for automobile sales data.

B. Contributions

Most of the traditional OLAP research, and most of the

commercial systems, follow the static data cube approach

proposed by Gray etal. [3] and materialize all or a subset

of the cuboids of the data cube in order to ensure adequate

query performance. Building the data cube can be a mas-

sive computational task, and significant research has been

published on sequential and parallel data cube construction

methods (e.g. [4], [5], [3], [6], [7], [8]).

However, the traditional static data cube approach has sev-

eral disadvantages. The OLAP system can only be updated

periodically and in batches, e.g. once every week. Hence,

latest information can not be included in the decision support

process. The static data cube also requires massive amounts

of memory space and leads to a duplicate data repository that

is separate from the on-line transaction processing (OLTP)

system of the organization. Several practitioners have there-

fore called for some time for an integrated OLAP/OLTP

approach with a real-time OLAP system that gets updated

instantaneously as new data arrives and always provides an

up-to-date data warehouse for the decision support process

(e.g. [9]). Some recent publications have tried to address

this problem by providing “quasi real-time” incremental

maintenance schemes and loading procedures for static data

cubes (e.g. [9], [10], [11], [12]). However, these approaches

are not fully real-time. One major problem are significant

performance issues with large scale data warehouses. The

aim of our research is to address these problems through

the use of efficient parallel computing methods.

In this paper, we present a parallel real-time OLAP sys-

tem for multi-core processors. To our knowledge, this is the

first real-time OLAP system that has been parallelized and

optimized for contemporary multi-core processors. Our sys-

tem allows for multiple insert and multiple query operations

(transactions) to be executed in parallel and in real-time. We

evaluated our method for a multitude of scenarios (different

ratios of insert and query transactions, query transactions

with different sizes of results, different system loads, etc.),

using the TPC-DS “Decision Support” benchmark data set.

The tests demonstrate that our parallel real-time OLAP

system achieves a significant speedup in transaction response

time and a significant increase in transaction throughput on

contemporary Sandy Bridge multi-core processors. Since, for

the foreseeable future, hardware performance improvements

are achieved not by faster processors but by increasing the

number of processor cores, our new parallel real-time OLAP

method has the potential to enable OLAP systems that are

real-time and efficient/feasible for large databases.

The remainder of this paper is organized as follows. In

Section II we present our new parallel algorithm for real-

time OLAP on multi-core processors, and in Section III

we analyze the performance of our method and show

the speedup and improved system throughput that can be

achieved through multi-core parallelization. Section IV con-

cludes our paper.

II. ALGORITHMS OVERVIEW: PARALLEL REAL-TIME

OLAP ON MULTI-CORE PROCESSORS

Building a parallel real-time OLAP data warehouse is

related but considerably more complex than concurrent

updates and searches in general databases which have been
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studied since the 90’s, e.g. in [13], [14], and more recently

in [15], [16]. Concurrent operations in spatial databases have

recently been studied e.g. in [17]. However, the general

DB index structures presented are not efficient for the large

number of dimensions typically required for OLAP. Another

important difference are the elaborate dimension hierarchies

which are typical for OLAP systems. To our knowledge,

the only published fully dynamic data structure for OLAP

queries on data cubes is the DC-tree introduced by Kriegel

etal. [18], which is a sequential tree based index structure

specifically designed for data warehouses with dimension

hierarchies. Even though it was published more than 10

years ago, and despite the fact that it does provide an algo-

rithmic solution for real-time OLAP systems, the DC-tree

data structure has not found its way into commercial OLAP

systems. A major problem is performance. For large data

warehouses, pre-computed cuboids still outperform real-time

data structures but of course with the major disadvantage of

not allowing real-time updates. The main contribution of

this paper is the design of a parallel DC-tree for multi-core

architectures. We demonstrate that the performance of our

parallel DC-tree method scales as the number of processor

cores increases. Therefore, our new parallel DC-tree method

has the potential to enable OLAP systems that are real-time
and efficient for large databases.

In the remainder of this section, we will outline our

parallel DC-tree method, based on the sequential DC-tree

[18] which extends the classical X-tree [19] and R-tree [20]

data structures for multi-dimensional data indexing. A data

cube consists of several functional attributes, grouped into

dimensions, and some dependent attributes, called measures.

For dimensions with more than one functional attribute,

these attributes are organized into hierarchy schemas. For ex-

ample, the dimension customer can have functional attributes

region, nation, customer ID. A DC-tree defines a partial

ordering and concept hierarchy for each dimension, where

the concept hierarchy is an additional tree structure storing

for a given dimension all values that occur in the DC-tree

at each given time. Using this partial ordering and concept

hierarchy for each dimension, the DC tree extends the usual

R-tree [20] based tree representation for multi-dimensional

data by replacing the standard minimum bounding rectangles
(MBR) assigned to directory nodes by minimum describing
rectangles (MDS). An MDS contains for each dimension a

set of values at different levels of the dimension hierarchy,

and describes a set of hyper-rectangles which together con-

tain the data stored in the respective subtree. The rationale

for these minimum bounding rectangles is that they enable

more efficient queries for the high dimensional data and

multiple levels of granularity that are typical for OLAP.

The DC-tree comes with two operations: Insert (Section 4.1

in [18]) and Range Query (Section 4.4 in [18]). When an

insert causes a node to exceed its capacity, this is handled

by operations Split and Hierrachy Split (Section 4.2 and 4.3

in [18], respectively).

Our parallel DC-tree method consists of two parts:

(1) An extension of the DC-tree data structure and (2)

new algorithms PARALLEL OLAP INSERT and PARAL-
LEL OLAP QUERY to replace the Insert and Range Query
operations in [18]. (We also updated the Split and Hierarchy

Split operations to ensure that they correctly maintain our

extended data structure.) The main challenge for our parallel
DC-tree method is the possible interference between parallel

insert and query operations, as well as between parallel

insert operations. A straightforward solution would e.g. lock

subtrees on which an insert is being performed. This would

however lead to significant wait times for other queries and

result in a method where the performance does not scale

with increasing number of processor cores. Our solution

consists of three parts: (1) A minimal locking scheme where

insert operations only lock the node they are currently

updating, instead of the entire subtree. This can however

result in concurrent other transactions working on invalid

or incomplete data. (2) A time stamp mechanism added

to the DC-tree data structure which allows for concurrent

transactions to detect when they are working on invalid or

incomplete data. (3) A set of horizontal sibling links added

to the DC-tree structure which allow transactions to recover

after they have detected that they were working on invalid

or incomplete data.

MDS TS M Child C1: ... Child Cn: Link
Link1 Linkn to
MDS1 MDSn Sib-
TS1 TSn ling

Figure 3. Extended structure of a directory node D for the Parallel DC-
Tree (MDS = minimum describing set, TS = time stamp, M = measure).
Bold/Color: Added fields “TS” and “Link to Sibling”.

Our solution is outlined in Algorithm 1 and Algorithm 2.

As illustrated in Figure 3, we add two fields to each directory

node of the DC-tree. A time stamp (TS) field indicates

the most recent time at which the node has been modified

(or created). A ”Link to Sibling” field is used to create

and maintain a linear chain between the children of each

directory node. Our parallel DC-tree operations PARAL-
LEL OLAP INSERT and PARALLEL OLAP QUERY use

these fileds to efficiently and correctly handle parallelism.

We will now discuss each operation in more detail.

Our PARALLEL OLAP INSERT method shown in Algo-

rithm 1 takes a new data item N and starts tracing down

the tree using the MDS information as guidance (Steps 2-

4). At each directory node, three cases may occur. If N
is contained in the MDS of exactly one child, then the

algorithm proceeds to that child (Step 2). If N is contained

in the MDS of more than one child, then the algorithm

proceeds to the child with the smallest subtree (Step 3).

If N is not contained in the MDS of any child, then N
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needs to be added to the child whose MDS update leads

to minimum overlap between children, in order to maintain

efficiency of search queries (Step 4). Algorithm 1 performs

this operation without locking by first creating a copy of

the directory node, performing all of the above operations

on the copy, and finally inserting the new directory node

with a single link update. Note, however, that search queries

passing through this node during the update may not become

aware of the update and may therefore miss the newly

inserted data item N . As discussed later, Algorithm 2 for

search queries will detect and correct this with the help of

the time stamp (TS) field added to the modified directory

node. After Steps 1 to 4 of Algorithm 1 are completed, a

leaf node has been found where the new data item N is

inserted. The remaining Steps 5 to 11 will trace the path

back to the root and update the MDS entries of all directory

nodes on the path. Note that, during the entire process, at

most two nodes are locked at any point in time (the current

node and its parent). This is necessary to correctly perform

the Split operation in Step 8 which is required when a

nodes capacity is exceeded by the new entry. The potential

interference between parallel transactions caused by these

locks should not result in significant wait times. The main

effect is that queries proceed upwards in parallel but in lock-

step. To which degree this impacts the scalability of our

method (i.e. the speedup obtained with increasing number

of cores), will be measured in our experimental evaluation

in Section III.

Algorithm 1: PARALLEL OLAP INSERT

Input: New data item N.
Local Variable: Directory node D.

(1) Set D=root.
REPEAT

(2) IF N is contained in the MDS of only one of the
children of D THEN set D equal to the directory node
for that child.

(3) IF N is contained in the MDS of more than one of the
entries of D THEN set D equal to the the root of the
child subtree with minimum number of data nodes.

(4) IF N is not contained in any MDS of a child of D
THEN
(4.1) Make a copy D’ of D.
(4.2) For each child entry of D’:

Add the new data item N and update its
MDS if necessary. Calculate the (possible)
MDS enlargement and the overlap caused
by the (possible) MDS enlargements.

(4.3) Set D = the child which causes minimal overlap.
UNTIL D is a leaf directory node.

(5) Acquire a LOCK for D.
REPEAT

(6) Insert data item N into D and update the measure,
MDS, and time stamp (TS) of D.

(7) Acquire a LOCK for the parent of D.

(8) IF capacity of D is exceeded THEN call Split(D) [18].
(9) Update the Measure and MDS fields for the parent of

D.
(10) Release the LOCK for D.
(11) Set D = parent of D.

UNTIL no further update required OR D=root.
— End of Algorithm —

Our PARALLEL OLAP QUERY method shown in Al-

gorithm 2 takes a query range R (hyper-rectangle on a

cuboid/aggregate) and reports all data items contained in

R and their aggregate measure value (e.g. total dollar value

of sales). The query process is guided by a stack S which

controls the tree traversal as well as the error recovery from a

detected parallel query interference (e.g. parallel insert). The

query process starts at the root and proceeds downwards. At

each directory node, all children are evaluated for possible

overlap with the query range R (Step 4.3). For those

dimensions where the child MDS and query are at different

levels of the dimension hierarchy, the one with lower level

needs to be converted to the higher level (Step 4.3.1). If a

child MDS fully contains R, then the entire subtree is part of

the result (Step 4.3.2). If a child MDS overlaps R, then that

child is pushed into the stack S for further examination (Step

4.3.3). This leads to a branching off into multiple subtrees

for those directory nodes where multiple children overlap

R. The stack mechanism ensures that these subtrees are

traversed in depth-first order. For parallel transactions, the

problem arising is that while one subtree of a directory node

is being searched, the directory node itself could be modified

by a parallel insert operation. This problem is addressed in

the IF statement at the beginning of Step 4 together with

Steps 4.1 & 4.2. Assume that the search branches off into

one subtree of node D and that during that time, node D
is modified by a parallel insert. When the search returns

to node D, its “old” version D′ is on top of the stack S
and a comparison of the time stamp of D′ and the current

time stamp of D detects a difference, indicating a parallel

update. In order for the search query to recover and report

the correct result, the list of siblings maintained by the “Link

to Sibling” pointers is traversed and added to the stack S,

thereby making sure that the subtrees are re-visited and the

newly inserted item is found.

Algorithm 2: PARALLEL OLAP QUERY

Input: R (MDS of the given query range).
Local Variables: Directory node D. Stack S.
Output: Result.

(1) Set D=root. Push D into stack S.
REPEAT

(2) Pop top item D’ from stack S.
(3) Set D to the tree node corresponding to D’.
(4) IF the time stamp (TS) of D’ is smaller (earlier) than

the time stamp (TS) of D
THEN /* interfering parallel update */
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(4.1) Using the ”Link to Sibling” field in directory
nodes, traverse the list of siblings of D. Push
all siblings with time stamp (TS) larger (later)
than the parent of D into stack S.

(4.2) Push D into stack S.
ELSE
(4.3) FOR each child C of D DO

(4.3.1) For each dimension of C where C and
R are at different level in the dimension
hierarchy, convert the lower level entry to
the higher level.

(4.3.2) IF MDS of C is contained in R THEN
add C to Result.

(4.3.3) IF MDS of C overlaps R but is not
contained in R THEN push C into stack
S.

UNTIL stack S is empty.
— End of Algorithm —

We note that our PARALLEL OLAP QUERY method cre-

ates no locks whatsoever and therefore creates no slowdown

between parallel transactions. However, it can create addi-

tional work which could potentially affect the scalability of

our method. To which degree this does actually happen will

be measured in our experimental evaluation in Section III.

III. EXPERIMENTAL EVALUATION

The main goal of our paper is the design of a parallel real-

time OLAP system for multi-core processors which scales

and provides increasing speedup as the number of processor

cores increases. Since, to the best of our knowledge, there

are no other published parallel real-time OLAP systems for

multi-core processors, we can not provide comparison data.

The focus of our experimental evaluation will be on how our

method scales as the number of available processor cores

increases.

An important question for the experimental study is the

choice of input data. For a real-time OLAP system, the input

consists of a stream of OLAP INSERT and OLAP QUERY
transactions. One possibility would be to use random insert

and random query operations. However, in our discussions

with the data cube team at IBM/COGNOS Canada it became

clear that such a test would not provide a realistic measure

for the performance of our system. The IBM/COGNOS team

recommended the TPC-DS “Decision Support” Benchmark
by the Transaction Processing Performance Council [21] as

a realistic test data set. This benchmark is available to TPC

members and we obtained access through IBM/COGNOS.

The TPC-DS benchmark provides transactions which model

the decision support system of a retail product supplier.

It includes OLAP queries and data insertions. (Decision

support systems are based on historic corporate data and

usually do not include data deletions.) As indicated on

the TPC-DS website, “although the underlying business

model of TPC-DS is a retail product supplier, the database

schema, data population, queries, data maintenance model

and implementation rules have been designed to be broadly

representative of modern decision support systems”.

The hardware platform for our experiments was a Sandy
Bridge multi-core processor (8 hardware cores, 16 cores with

hardware supported hyperthreading) with 16 GB memory.

Our system was implemented in C++ with OpenMP, and

compiled/executed on Linux kernel 2.6.38 using g++ 4.5.2.

Figures 4(a&b) show the average transaction re-

sponse time and throughput when 400,000 PARAL-
LEL OLAP INSERT operations (with TPC-DS data) are

executed on 1, 2, 4, 8, and 16 processor cores, respectively.

Figures 4(c&d) show the average transaction response time

and throughput for a subsequent set of 1,000 PARAL-
LEL OLAP INSERT operations into an OLAP database with

400,000 loaded items. The speedup for Figures 4(c&d) is

approx. 40% of the maximum theoretically possible linear

speedup. Considering that the cores of the Sandy Bridge

processor share resources (e.g. memory bus), this is a very

encouraging result for a fully running system on real-world

data. Figures 4(a&b) show a somewhat smaller speedup for

the first 400,000 transactions into an empty database. This is

expected because for smaller data sets, the tree data struc-

ture is smaller and the likelihood of interference between

transactions is therefore larger. In general, we observed that

the speedup with increasing number of processor cores is

better for larger data warehouses. Therefore, all remaining

experiments in this section are on a modest size initial

data warehouse with 400,000 pre-loaded data items. For

larger data warehouses, the speedup results would be further

improved.

The most important results of our experimental evalu-

ation are shown in Figures 5, 6 and 7. Here we show

the performance (transaction response time and transaction

throughput) for mixed sets of PARALLEL OLAP INSERT
and PARALLEL OLAP QUERY operations (using TPC-DS

benchmark data) executed on 1, 2, 4, 8, and 16 processor

cores, respectively. Please note that the single thread version

on one processor core is the sequential code only with

all parallelization code (and possibly resulting overhead)

removed. The different curves correspond to different ratios

between the number of insertions and queries (I OLAP

insertions and Q OLAP queries). Since the performance of

a (sequential or parallel) OLAP query is strongly influenced

by the size of the query result, we provide three different

graphs, Figure 5, Figure 6 and Figure 7 for queries that

report as output 1%, 5% and 25% of the entire database,

respectively. In each case, we show response time and

throughput for 1, 2, 4, 8, and 16 processor cores. In order

to better show the speedup achieved, we show each set of

curves in linear scale as well as in log-log scale. Our main

observation is that in all cases shown we achieve a close

to linear speedup, as demonstrated by the straight (linear)

curves in the log-log scale. Considering that the cores of the
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Sandy Bridge processor share resources (e.g. memory bus),

this is a very encouraging result for a fully running system

on real-world benchmark data. Since hardware performance

improvements are nowadays achieved by increasing the

number of processor cores, our new parallel DC-tree method

appears to have the potential to enable OLAP systems that

are real-time and efficient/feasible for large databases.

We also observe that query transactions are considerably

slower than insert transactions. This is typical (also for se-

quential transactions) since an insert corresponds to just one

path down and back up the tree whereas query transactions

need to search subtrees and may need to report large size

results. However, in the mix of parallel insert and query

transactions on the same database, the speedup observed was

best for the hardest case of “only queries”, which is where

speedup is most needed in practice.

Finally, Figure 8 shows that speedup is also maintained for

“low load” scenarios with only 16 parallel queries. Figures

8(a & b) show average response time and throughput for

a set of 16 insertions, and Figures 8(c & d) show average

response time and throughput for three sets of 16 queries

with results of size 1%, 4% and 25% of the database.

IV. CONCLUSIONS

In this paper, we have presented a parallel real-time

OLAP method for multi-core processors and demonstrated

on real-life TPC-DS “Decision Support” benchmark data

that our system scales and provides increasing speedup as

the number of processor cores increases. Since hardware

performance improvements are currently achieved not by

faster processors but by increasing the number of processor

cores, our new parallel real-time OLAP method has the

potential to enable OLAP systems that are real-time and

efficient/feasible for large databases.
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Figure 4. Parallel OLAP insertion performance as a function of the
number of parallel threads. (a) & (b) Average transaction response time
& throughput for 400,000 OLAP insertions to build an initial database. (c)
& (d) Average transaction response time & throughput for a subsequent
1,000 OLAP insertions into the built database.
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Figure 5. Parallel OLAP transaction performance as a function of the
number of parallel threads. Mixed input of I OLAP insertions and Q OLAP
queries. Queries return 1% of database. (a) Average response time, linear
scale. (b) Average response time, log-log scale. (c) Throughput, linear scale.
(d) Throughput, log-log scale.
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Figure 6. Parallel OLAP transaction performance as a function of the
number of parallel threads. Mixed input of I OLAP insertions and Q OLAP
queries. Queries return 5% of database. (a) Average response time, linear
scale. (b) Average response time, log-log scale. (c) Throughput, linear scale.
(d) Throughput, log-log scale.
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Figure 7. Parallel OLAP transaction performance as a function of the
number of parallel threads. Mixed input of I OLAP insertions and Q OLAP
queries. Queries return 25% of database. (a) Average response time, linear
scale. (b) Average response time, log-log scale. (c) Throughput, linear scale.
(d) Throughput, log-log scale.
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Figure 8. Parallel OLAP transaction performance for low load scenarios
of only 16 parallel queries. (a) & (b) Average response time & throughput
for OLAP insertions. (c) & (d) Average response time & throughput for
OLAP queries with different coverage (percentage of database returned by
query).
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