
A Distributed Tree Data Structure For
Real-Time OLAP On Cloud Architectures

F. Dehne1, Q. Kong2, A. Rau-Chaplin2, H. Zaboli1, R. Zhou1
1 School of Computer Science, Carleton University, Ottawa, Canada

2 Faculty of Computer Science, Dalhousie University, Halifax, Canada

E-mail: frank@dehne.net, qkong@cs.dal.ca, arc@cs.dal.ca

zaboli@graduate.org, xiaoyunzhou@cmail.carleton.ca

Abstract—In contrast to queries for on-line transaction pro-
cessing (OLTP) systems that typically access only a small portion
of a database, OLAP queries may need to aggregate large portions
of a database which often leads to performance issues. In this
paper we introduce CR-OLAP, a Cloud based Real-time OLAP
system based on a new distributed index structure for OLAP,
the distributed PDCR tree, that utilizes a cloud infrastructure
consisting of (m + 1) multi-core processors. With increasing
database size, CR-OLAP dynamically increases m to maintain
performance. Our distributed PDCR tree data structure supports
multiple dimension hierarchies and efficient query processing on
the elaborate dimension hierarchies which are so central to OLAP
systems. It is particularly efficient for complex OLAP queries
that need to aggregate large portions of the data warehouse,
such as “report the total sales in all stores located in California
and New York during the months February-May of all years”.
We evaluated CR-OLAP on the Amazon EC2 cloud, using the
TPC-DS benchmark data set. The tests demonstrate that CR-
OLAP scales well with increasing number of processors, even for
complex queries. For example, on an Amazon EC2 cloud instance
with eight processors, for a TPC-DS OLAP query stream on a
data warehouse with 80 million tuples where every OLAP query
aggregates more than 50% of the database, CR-OLAP achieved a
query latency of 0.3 seconds which can be considered a real time
response.

I. INTRODUCTION

On-line analytical processing (OLAP) systems are at the
heart of many business analytics applications. This paper
reports on the results of a research project (supported by the
IBM Centre For Advanced Studies Canada) to investigate the
use of cloud computing for high performance, real-time OLAP.
By exploiting multi-dimensional views of the underlying data
warehouse, OLAP queries allows users to “drill down” or
“roll up” on dimension hierarchies, “slice and dice” particular
attributes, or perform various statistical operations such as
ranking and forecasting. In contrast to queries for on-line
transaction processing (OLTP) systems which typically access
only a small portion of the database (e.g. update a customer
record), OLAP queries may need to aggregate large portions
of the database (e.g. calculate the total sales of a certain type
of items during a certain time period) which may lead to
performance issues. Therefore, most of the traditional OLAP
research, and most of the commercial systems, follow the
static data cube approach proposed by Gray et al. [1] and
materialize all or a subset of the cuboids of the data cube
in order to ensure adequate query performance. However, the
traditional static data cube approach has several disadvantages.
The OLAP system can only be updated periodically and
in batches, e.g. once every week. Hence, latest information

can not be included in the decision support process. The
static data cube also requires massive amounts of memory
space and leads to a duplicate data repository that is sepa-
rate from the on-line transaction processing (OLTP) system
of the organization. Practitioners have therefore called for
some time for an integrated OLAP/OLTP approach with a
real-time OLAP system that gets updated instantaneously as
new data arrives and always provides an up-to-date data
warehouse for the decision support process (e.g. [2]). Some
recent publications have begun to address this problem by
providing “quasi real-time” incremental maintenance schemes
and loading procedures for static data cubes (e.g. [2], [3],
[4], [5]). However, these approaches are not fully real-time.
A major obstacle are significant performance issues with large
scale data warehouses.

The aim of our research project is to help address the above
mentioned performance issues for real-time OLAP systems
through the use of efficient parallel computing methods. In a
recent paper [6] we presented the first parallel real-time OLAP
system designed to be executed on a multi-core processor. We
documented significant performance increases with increasing
number of processor cores. Our system won the 2012 IBM
Canada Research Impact Of The Year Award and an IBM
sponsored patent application has been submitted. In this paper,
we report on the next phase of our project: to scale up our real-
time OLAP system to utilize a collection of (m+1) multi-core
processors in a cloud environment. We introduce CR-OLAP,
a Cloud based Real-time OLAP system that utilizes a new
distributed index structure for OLAP, refered to as a distributed
PDCR tree. CR-OLAP is designed for a cloud infrastructure
consisting of m+1 multi-core processors where each processor
executes up to k parallel threads. With increasing database
size, CR-OLAP will increase m by dynamically allocating
additional processors within the cloud environment and re-
arranging the distributed PDCR tree. This will ensure that
both, the available memory and processing capability will scale
with the database size. In order to ensure high throughput and
low latency even for compute intensive OLAP queries that
may need to aggregate large portions of the entire database,
CR-OLAP utilizes several levels of parallelism: distributed
processing of multiple query and insert operations among
multiple processors, and parallel processing of multiple con-
current query and insert operations within each processor. For
correct query operation, CR-OLAP ensures that the result for
each OLAP query includes all data inserted prior but no data
inserted after the query was issued within the input stream.

We evaluated CR-OLAP on the Amazon EC2 cloud for

2013 IEEE International Conference on Big Data

978-1-4799-1293-3/13/$31.00 ©2013 IEEE 499



a multitude of scenarios (different ratios of insert and query
transactions, query transactions with different sizes of results,
different system loads, etc.), using the TPC-DS “Decision
Support” benchmark data set. The tests demonstrate that CR-
OLAP scales well with increasing number of workers. For
example, for fixed data warehouse size ( 10,000,000 data
items), when increasing the number of workers from 1 to
8, the average query throughput and latency improves by a
factor 7.5. A particular strength of CR-OLAP is to efficiently
answer queries with large query coverage, i.e. the portion of
the database that needs to be aggregated for an OLAP query.
For example, on an Amazon EC2 cloud instance with eight
workers and a stream of OLAP queries on a data warehouse
with 80 million tuples, where each query has more than 50%
coverage, CR-OLAP achieved a query latency of 0.3 seconds,
which can be considered a real time response.

CR-OLAP also handles well increasing dimensionality of
the data warehouse. For tree data structures this is a critical is-
sue as it is known e.g. for R-trees that, with increasing number
of dimensions, even simple range search (no dimension hierar-
chies, no aggregation) can degenerate to linear search (e.g. [7]).
In our experiments, we observed that increasing number of di-
mensions does not significantly impact the performance of CR-
OLAP. Another possible disadvantage of tree data structures
is that they are potentially less cache efficient than in-memory
linear search which can make optimum use of streaming
data between memory and processor caches. To establish a
comparison baseline for CR-OLAP, we implemented STREAM-
OLAP which partitions the database between multiple cloud
processors based on one chosen dimension and uses parallel
memory to cache streaming on the cloud processors to answer
OLAP queries. We observed that the performance of CR-OLAP
is similar to STREAM-OLAP for simple OLAP queries with
small query coverage but that CR-OLAP vastly outperforms
STREAM-OLAP for more complex queries that utilize different
dimension hierarchies and have a larger query coverage (e.g.
“report the total sales in all stores located in California and
New York during the months February-May of all years”).

The remainder of this paper is organized as follows. In
Section II we review related work. In Section III we introduce
the PDCR tree data structure and in Section IV we present our
CR-OLAP system for real-time OLAP on cloud architectures.
Section V shows the results of an experimental evaluation
of CR-OLAP on the Amazon EC2 cloud, and Section VI
concludes the paper.

II. RELATED WORK

In addition to the related work discussed in the introduc-
tion, there are many efforts to store and query large data sets in
cloud environments. Hadoop[8] and its file system, HDFS, are
popular examples of such systems which are typically built on
MapReduce [9]. Related projects most similar to our work are
Hive[10] and HadoopDB[11]. However, these systems are not
designed for real-time (OLTP style) operation. Instead, they
use batch processing similar to [2], [3], [4], [5]. The situation
is similar for BigTable[12], BigQuery[13], and Dremel[14]. In
fact, Dremel[14] uses a columnar data representation scheme
and is designed to provide data warehousing and querying
support for read-only data. To overcome the batch process-
ing in Hadoop based systems, Storm [15] introduced a dis-
tributed computing model that processes in-flight Twitter data.

However, Storm assumes small, compact Twitter style data
packets that can quickly migrate between different computing
resources. This is not possible for large data warehouses.
For peer-to-peer networks, related work includes distributed
methods for querying concept hierarchies such as [16], [17],
[18], [19]. However, none of these methods provides real-
time OLAP functionality. There are various publications on
distributed B-trees for cloud platforms such as [20]. However,
these method only supports 1-dimensional indices which are
insufficient for OLAP queries. There have been efforts to
build distributed multi-dimensional indices on Cloud platforms
based on R-trees or related multi-dimensional tree structures,
such as [21], [22], [23]. However, these method do not support
dimension hierarchies which are essential for OLAP queries.

III. PDCR TREES

Consider a data warehouse with the fact table F and a
set of d dimensions {D1, D2, ..., Dd} where each dimension
Di, 1 ≤ i ≤ d has a hierarchy Hi including hierarchical
attributes corresponding to the levels of the hierarchy. The
hierarchical attributes in the hierarchy of dimension i are
organized as an ordered set Hi of parent-child relationships in
the hierarchy levels Hi = {Hi1, Hi2, ..., Hil} where a parent
logically summarizes and includes its children.

The sequential DC tree introduced by Kriegel et al. [24]
exploits knowledge about the structure of individual dimen-
sion hierarchies both for compact data representation and
accelerated OLAP query processing. In our previous work
[6], we introduced the PDC tree, a parallel DC tree for a
single multi-core processor. We note that, our PDCR tree
data structure is not just another distributed R-tree, but rather
a multi-dimensional data structure designed specifically to
support efficient OLAP query processing on the elaborate
dimension hierarchies that are central to OLAP systems We
now outline a modified PDC tree, termed PDCR tree, which
will become the building block for our CR-OLAP system. For
a cloud architecture with multiple processors, each processor
will store one or more PDCR trees. Our CR-OLAP system
outlined in the following Section IV requires that a sub-tree
of a PDCR tree can be split off and transferred to another
processor. This required us to (a) devise an array based tree
implementation that can be packed into a message to be sent
between processors and (b) a careful encoding of data values,
using compact IDs related to the different dimension hierarchy
levels. Due to space limitations, we refer to the full version of
this paper [25] for more details.

IV. CR-OLAP: CLOUD BASED REAL-TIME OLAP

CR-OLAP utilizes a cloud infrastructure consisting of m+1
multi-core processors where each processor executes up to k
parallel threads. One of the m + 1 multi-core processors is
referred to as the master, and the remaining m processors
are called workers. The master receives from the users the
input stream of OLAP insert and query operations, and reports
the results back to the users (in the form of references to
memory locations where the workers have deposited the query
results). In order to ensure high throughput and low latency
even for compute intensive OLAP queries that may need to
aggregate large portions of the entire database, CR-OLAP
utilizes several levels of parallelism: distributed processing of
multiple query and insert operations among multiple workers,

500



and parallel processing of multiple concurrent query and
insert operations within each worker. With increasing database
size, CR-OLAP will increase m by dynamically allocating
additional processors within the cloud environment and re­
arranging the distributed PDCR tree. This will ensure that both,
the available memory and processing capability will scale with
the database size.

We start by outlining the structure of a distributed PDC
tree and PDCR tree on ni + 1 multi-core processors in a cloud
environment, Consider a single PDCR tree T storing the entire
database. For a tunable depth parameter h, we refer to the top
h levels of T as the hat and we refer to the remaining trees
rooted at the leaves of the hat as the subtrees 81, ... , 8 n . Level
h is referred to as the cut level. The hat will be stored at the
master and the subtrees 81, ... , s., will be stored at the rn
workers. We assume n. 2 m and that each worker stores one
or more subtrees.

CR-OLAP starts with an empty database and one master
processor (i.e. m == 0) storing an empty hat (PDCR tree).
Note that, DC trees [24] ~ PDC trees [6] and PDCR trees are
leaf oriented. All data is stored in leafs called data nodes.
Internal nodes are called directory nodes and contain arrays
with routing information and aggregate values. Directory nodes
have a high capacity and fan-out of typically 10 - 20. As insert
operations are sent to CR-OLAP~ the size and height of the hat
(PDCR tree) grows. When directory nodes of the hat reach
height h, their children become roots at subtrees stored at new
worker nodes that are allocated through the cloud environment.

For a typical database size, the hat will usually contain
only directory nodes and all data will be stored in the subtrees
81, ... , 8 n . After the initial set of data insertions, all leaf nodes
in the hat will usually be directory nodes of height h, and
the roots of subtrees in workers will typically be directory
nodes as well. Both insert and query operations are executed
concurrently.

Concurrent insert and query operations

Each query operation in the input stream is handed to the
master which traverses the hat. Note that at each directory
node the query can generate multiple parallel threads, depend­
ing on how many child nodes have a non empty intersection
with the query. Eventually, each query will access a subset of
the hat's leaves, and then the query will be transferred to the
workers storing the subtrees rooted at those leaves. Each of
those workers will then in parallel execute the query on the
respective subtrees, possibly generating more parallel threads
within each subtree.

For each insert operation in the input stream, the master
will search the hat, arriving at one of the leaf nodes, and then
forward the insert operation to the worker storing the subtree
rooted at that leaf. Figures 1 and 2 illustrate how ne~v workers
and nelV subtrees are added as more data items get inserted.
Figures 1 illustrates insertions creating an overflow at node ~4~

resulting in a horizontal split at ~4 into ~41 and ~42 plus a new
parent node C. Capacity overflow at C then triggers a vertical
split illustrated in 2. This creates two subtrees in two different
workers. As outlined in more details in the CR-OLAP "mi­
gration strategies" outlined below, new workers are requested
from the cloud environment when either new subtrees are
created or when subtree sizes exceed the memory of their host

501

workers. Workers usually store multiple subtrees. However,
CR-OLAP randomly shuffles subtrees among workers. This
ensures that que I}' operations accessing a contiguous range
of leaf nodes in the hat create a distributed workload among
workers.

Fig. 1. Insertions triggering creation of new workers and subtrees. Part 1.
(a) Current hat configuration. (b) Insertions create overflow at node .A and
horizontal split.

Fig. 2. Insertions triggering creation of neu' workers and subtrees. Part 2.
(a) Same as Figure 1b with critical subtrees highlighted. (b) Insertions create
overflow at node C and vertical split. triggering the creation of two subtrees
in two different workers.

For correct real time processing of an input stream of mixed
insert and query operations, CR-OLAP needs to ensure that the
result for each OLAP query includes all data inserted prior
but no data inserted after the query was issued within the
input stream. We will now discuss how this is achieved in
a distributed cloud based system where we have a collection
of subtrees in different workers, each of which is processing
multiple concurrent insert and query threads. In our previous
work [6] we presented a method to ensure correct query
processing for a single PDC tree on a mutli -core processor,
where multiple insert and query operations are processed
concurrently. The PDC tree maintains for each data or directory
item a time stamp indicating its most recent update, plus it
maintains for all nodes of the same height a left-to-right linked
list of all siblings. Furthermore, each query thread maintains a
stack of ancestors of the current node under consideration,
together with the time stamps of those items, We refer to
[6] for more details. The PDCR tree presented in this paper
inherits this mechanism for each of its subtrees. In fact the
above mentioned sibling links are shown as horizontal links
in Figures 1 and 2. With the PDCR tree being a collection
of subtrees, if we were to maintain sibling links between
subtrees to build linked list of siblings across all subtrees then



we would ensure correct query operation in the same way
as for the PDC tree [6]. However, since different subtrees of
a PDCR tree typically reside on different workers, a PDCR
tree only maintains sibling links inside subtrees but it does
not maintain sibling links between different subtrees. The full
proof that correct real time processing of mixed insert and
query operations is still maintained can be found in [25]
(omitted here due to space limitations).

Load balancing

CR-OLAP is executed on a cloud platform with (m + 1)
processors (m workers and one master). As discussed earlier,
CR-OLAP uses the cloud’s elasticity to increase m as the
number of data items increases. We now discuss in more
detail CR-OLAP’s mechanisms for worker allocation and load
balancing in the cloud. The insert operations discussed above
create independent subtrees for each height h leaf of the hat.
Since internal (directory) nodes have a high degree (typi-
cally 10 - 20), a relatively small height of the hat typically
leads to thousands of height h leaves and associated subtrees
s1, . . . , sn. The master processor keeps track of the subtree
locations and allocation of new workers, and it makes sure
that a relatively high n/m ratio is maintained.

As indicated above, CR-OLAP shuffles these n >> m
subtrees among the m workers. This ensures that threads
of query operations are evenly distributed over the workers.
Furthermore, CR-OLAP performs load balancing among the
workers to ensure both, balanced workload and memory uti-
lization. The master processor keeps track of the current sizes
and number of active threads for all subtrees. For each worker,
its memory utilization and workload are the total number
of threads of its subtrees and the total size if its subtrees,
respectively.

If a worker w has a memory utilization above a certain
threshold (e.g. 75% of its total memory), then the master
processor determines the worker w′ with the lowest memory
utilization and checks whether it is possible to store an addi-
tional subtree from w while staying well below it’s memory
threshold (e.g. 50% of its total memory). If that is not possible,
a new worker w′ is allocated within the cloud environment.
Then, a subtree from w is compressed and sent from w to
w′ via message passing. As discussed earlier, PDCR trees are
implemented in array format and using only array indices as
pointers. This enables fast compression and decompression
of subtrees and greatly facilitates subtree migration between
workers. Similarly, if a worker w has a workload utilization
that is a certain percentage above the average workload of the
m workers and is close to the maximum workload threshold for
a single worker, then the master processor determines a worker
w′ with the lowest workload and well below its maximum
workload threshold. If that is not possible, a new worker w′
is allocated within the cloud environment. Then, the master
processor initiates the migration of one or more subtrees from
w (and possibly other workers) to w′.

V. EXPERIMENTAL EVALUATION ON AMAZON EC2

Software

CR-OLAP was implemented in C++, using the g++ com-
piler, OpenMP for multi-threading, and ZeroMQ [26] for
message passing between processors. Instead of the usual MPI

message passing library we chose ZeroMQ because it better
supports cloud elasticity and the addition of new processors
during runtime. CR-OLAP has various tunable parameters. For
our experiments we set the depth h of the hat to h = 3, the
directory node capacity c to c = 10 for the hat and c = 15
for the subtrees, and the number k of threads per worker to
k = 16.

Hardware/OS

CR-OLAP was executed on the Amazon EC2 cloud. For
the master processor we used an Amazon EC2 m2.4xlarge
instance: “High-Memory Quadruple Extra Large” with 8 vir-
tual cores (64-bit architecture, 3.25 ECUs per core) rated at
26 compute units and with 68.4 GiB memory. For the worker
processors we used Amazon EC2 m3.2xlarge instances: “M3
Double Extra Large” with 8 virtual cores (64-bit architecture,
3.25 ECUs per core) rated at 26 compute units and with 30
GiB memory. The OS image used was the standard Amazon
CentOS (Linux) AMI.

Comparison baseline: STREAM-OLAP

As outlined in Section II, there is no comparison system for
CR-OLAP that provides cloud based OLAP with full real time
capability and support for dimension hierarchies. To establish
a comparison baseline for CR-OLAP, we therefore designed
and implemented a STREAM-OLAP method which partitions
the database between multiple cloud processors based on
one chosen dimension and uses parallel memory to cache
streaming on the cloud processors to answer OLAP queries.
More precisely, STREAM-OLAP builds a 1-dimensional index
on one ordered dimension dstream and partitions the data into
approx. 100 × m arrays. The arrays are randomly shuffled
between the m workers. The master processor maintains the
1-dimensional index. Each array represents a segment of the
dstream dimension and is accessed via the 1-dimensional in-
dex. The arrays themselves are unsorted, and insert operations
simply append the new item to the respective array. For query
operations, the master determines via the 1-dimensional index
which arrays are relevant. The workers then search those arrays
via linear search, using memory to cache streaming.

The comparison between CR-OLAP (using PDCR trees)
and STREAM-OLAP (using a 1-dimensional index and mem-
ory to cache streaming) is designed to examine the tradeoff
between a sophisticated data structure which needs fewer
data accesses but is less cache efficient and a brute force
method which accesses much more data but optimizes cache
performance.

Test data

For our experimental evaluation of CR-OLAP and
STREAM-OLAP we used the standard TPC-DS “Decision
Support” benchmark for OLAP systems [27]. We selected
“Store Sales”, the largest fact table available in TPC-DS. It
has eight dimensions: Store, Item, Address, and Promotion
are unordered dimensions, while dimensions Customer, Date,
Household and Time are ordered. TPC-DS provides a stream of
insert and query operations on “Store Sales” which was used
as input for CR-OLAP and STREAM-OLAP. For experiments
where we were interested in the impact of query coverage
(the portion of the database that needs to be aggregated for an

502



OLAP query), we selected sub-sequences of TPC-DS queries
with the chosen coverages.

Test results: impact of the number of workers (m) for fixed
database size (N )

We tested how the time of insert and query operations
for CR-OLAP and STREAM-OLAP changes for fixed database
size (N ) as we increase the number of workers (m). Using a
variable number of workers 1 ≤ m ≤ 8, we first inserted
40 million items (with d=8 dimensions) from the TPC-DS
benchmark into CR-OLAP and STREAM-OLAP, and then we
executed 1,000 (insert or query) operations on CR-OLAP
and STREAM-OLAP. Since workers are virtual processors in
the Amazon EC2 cloud, there is always some performance
fluctuation because of the virtualization. We found that the total
(or average) of 1,000 insert or query operations is a sufficiently
stable measure. The results of our experiments are shown in
Figures 3, 4, and 5.

Figure 3 shows the time for 1,000 insertions in CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) as a func-
tion of the number of workers (m). As expected, insertion
times in STREAM-OLAP are lower than in CR-OLAP because
STREAM-OLAP simply appends the new item in the respective
array while CR-OLAP has to perform tree insertions with
possible directory node splits and other overheads. However,
STREAM-OLAP shows no speedup with increasing number of
workers (because only one worker performs the array append
operation) whereas CR-OLAP shows a significant speedup
(because the distributed PDCR tree makes use of the multiple
workers). It is important to note that insertion times are not
visible to the users because they do not create any user
response. What is important to the user are the response times
for OLAP queries. Figure 4 shows the time for 1,000 OLAP
queries in CR-OLAP and STREAM-OLAP as a function of
the number of workers (m). Figure 5 shows the speedup
measured for the same data. We selected OLAP queries with
10%, 60% and 95% query coverage, which refers to the
percentage of the entire range of values for each dimension
that is covered by a given OLAP query. The selected OLAP
queries therefore aggregate a small, medium and large portion
of the database, resulting in very different workloads. We
observe in Figure 4 that CR-OLAP significantly outperforms
STREAM-OLAP with respect to query time. The difference in
performance is particularly pronounced for queries with small
or large coverages. For the former, the tree data structure shows
close to logarithmic performance and for the latter, the tree can
compose the result by adding the aggregate values stored at a
few roots of large subtrees. The worst case scenario for CR-
OLAP are queries with medium coverage around 60% where
the tree performance is proportional to N1− 1

d . However, even
in this worst case scenario, CR-OLAP outperforms STREAM-
OLAP. Figure 5 indicates that both systems show a close to
linear speedup with increasing number of workers, however
for CR-OLAP that speedup occurs for much smaller absolute
query times.

Test results: impact of growing system size (N & m combined)

In an elastic cloud environment, CR-OLAP and STREAM-
OLAP increase the number of workers (m) as the database size
(N ) increases. The impact on the performance of insert and
query operations is shown in Figures 6 and 7, respectively.

With growing system size, the time for insert operations in
CR-OLAP (PDCR-tree) approaches the time for STREAM-
OLAP (1D-index). More importantly however, the time for
query operations in CR-OLAP again outperforms the time
for STREAM-OLAP by a significant margin, as shown in
Figure 7. Also, it is very interesting that the for both sys-
tems, the query performance remains essentially unchanged
with increasing database size and number of workers. This
is obvious for STREAM-OLAP where the size of arrays to
be searched simply remains constant but it is an important
observation for CR-OLAP. Figure 7 indicates that the overhead
incurred by CR-OLAP’s load balancing mechanism (which
grows with increasing m) is balanced out by the performance
gained through more parallelism. CR-OLAP appears to scale
up without affecting the performance of individual queries.

Test results: impact of the number of dimensions

It is well known that tree based search methods can become
problematic when the number of dimensions in the database
increases. In Figures 8 and 9 we show the impact of increasing
d on the performance of insert and query operations in CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) for fixed
database size N = 40 million and m = 8 workers. Figure 8
shows some increase in insert time for CR-OLAP because the
PDCR tree insertion inherits from the PDC tree a directory
node split operation with an optimization phase that is highly
sensitive to the number of dimensions. However, the result of
the tree optimization is improved query performance in higher
dimensions. As shown in Figure 9, the more important time
for OLAP query operations grows only slowly as the number
of dimensions increases. This is obvious for the array search
in STREAM-OLAP but for the tree search in CR-OLAP this is
an important observation.

Test results: impact of query coverages

Figures 10, 11, 12, and 13 show the impact of query
coverage on query performance in CR-OLAP (PDCR-tree)
and STREAM-OLAP (1D-index). For fixed database size N =
40Mil, number of workers m = 8, and number of dimensions
d = 8, we vary the query coverage and observe the query
times. In addition we observe the impact of a “*” in one of the
query dimensions. Figures 10 and 11 show that the “*” values
do not have a significant impact for CR-OLAP. As discussed
earlier, CR-OLAP is most efficient for small and very large
query coverage, with maximum query time somewhere in the
mid range. (In this case, the maximum point is shifted away
from the typical 60% because of the “*” values.) Figures 12,
and 13 show the performance of STREAM-OLAP as compared
to CR-OLAP (ratio of query times). It shows that CR-OLAP
consistently outperforms STREAM-OLAP by a factor between
5 and 20.

Test results: query time comparison for selected query patterns
at different hierarchy levels

Figure 14 shows a query time comparison between CR-
OLAP (PDCR-tree) and STREAM-OLAP (1D-index) for se-
lected query patterns. For fixed database size N = 40Mil,
number of workers m = 8 and d = 8 dimensions, we test for
dimension Date the impact of value “*” for different hierarchy
levels. CR-OLAP is designed for OLAP queries such as “total
sales in the stores located in California and New York during

503



February-May of all years’ which act at different levels of
multiple dimension hierarchies. For this test, we created 7
combinations of “*” and set values for hierarchy levels Year,
Month, and Day: *-*-*, year-*-*, year-month-*, year-month-
day, *-month-*, *-month-day, and *-*-day. We then selected
for each combination queries with coverages 10%, 60%, and
95%. The test results are summarized in Figure 14. The
main observation is that CR-OLAP consistently outperforms
STREAM-OLAP even for complex and very broad queries
that one would expect could be easier solved through data
streaming than through tree search.

VI. CONCLUSION

We introduced CR-OLAP, a Cloud based Real-time OLAP
system based on a distributed PDCR tree, a new parallel and
distributed index structure for OLAP, and evaluated CR-OLAP
on the Amazon EC2 cloud for a multitude of scenarios. The
tests demonstrate that CR-OLAP scales well with increasing
database size and increasing number of cloud processors. CR-
OLAP has the potential to enable OLAP systems with real-time
OLAP query processing for large databases.

ACKNOWLEDGMENT

The authors would like to acknowledge financial support
from the IBM Centre for Advanced Studies Canada and the
Natural Science and Engineering Research Council of Canada.
We thank the research staff at the IBM Centre for Advanced
Studies Canada, and in particular Stephan Jou, for their support
and helpful discussions.

REFERENCES

[1] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venka-
trao, F. Pellow, and H. Pirahesh, “Data Cube: A Relational Aggregation
Operator Generalizing Group-By, Cross-Tab, and Sub-Totals,” Data
Min. Know. Disc., vol. 1, pp. 29–53, 1997.

[2] R. Bruckner, B. List, and J. Schiefer, “Striving towards
near real-time data integration for data warehouses,” DaWaK,
vol. LNCS 2454, pp. 173–182, 2002. [Online]. Available:
http://www.springerlink.com/index/G5T567NVR9AA96XQ.pdf

[3] D. Jin, T. Tsuji, and K. Higuchi, “An Incremental Maintenance
Scheme of Data Cubes and Its Evaluation,” DASFAA,
vol. LNCS 4947, pp. 36–48, 2008. [Online]. Available:
http://joi.jlc.jst.go.jp/JST.JSTAGE/ipsjtrans/2.36?from=CrossRef

[4] R. Santos and J. Bernardino, “Real-time data warehouse loading
methodology,” IDEAS, pp. 49–58, 2008. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1451949

[5] R. J. Santos and J. Bernardino, “Optimizing data
warehouse loading procedures for enabling useful-time data
warehousing,” IDEAS, pp. 292–299, 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?doid=1620432.1620464

[6] F. Dehne and H. Zaboli, “Parallel real-time olap on multi-core pro-
cessors,” in Proceedings of the 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), 2012,
pp. 588–594.

[7] M. Ester, J. Kohlhammer, and H.-P. Kriegel, “The DC-
tree: a fully dynamic index structure for data ware-
houses,” 16th International Conference on Data Engi-
neering (ICDE), pp. 379–388, 2000. [Online]. Available:
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=839438

[8] Hadoop. [Online]. Available: http://hadoop.apache.org/

[9] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[10] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu,
P. Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-
reduce framework,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1626–1629,
Aug. 2009.

[11] A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silberschatz, and
A. Rasin, “Hadoopdb: an architectural hybrid of mapreduce and dbms
technologies for analytical workloads,” Proc. VLDB Endow., vol. 2,
no. 1, pp. 922–933, Aug. 2009.

[12] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A
distributed storage system for structured data,” ACM Trans. Comput.
Syst., vol. 26, no. 2, pp. 4:1–4:26, Jun. 2008.

[13] Bigquery. [Online]. Available: http://developers.google.com/bigquery/

[14] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton,
and T. Vassilakis, “Dremel: interactive analysis of web-scale datasets,”
Proc. VLDB Endow., vol. 3, no. 1-2, pp. 330–339, Sep. 2010.

[15] Twitter storm. [Online]. Available: http://storm-project.net/

[16] K. Doka, D. Tsoumakos, and N. Koziris, “Online querying of d-
dimensional hierarchies,” J. Parallel Distrib. Comput., vol. 71, no. 3,
pp. 424–437, Mar. 2011.

[17] A. Asiki, D. Tsoumakos, and N. Koziris, “Distributing and searching
concept hierarchies: an adaptive dht-based system,” Cluster Computing,
vol. 13, no. 3, pp. 257–276, Sep. 2010.

[18] K. Doka, D. Tsoumakos, and N. Koziris, “Brown dwarf: A fully-
distributed, fault-tolerant data warehousing system,” J. Parallel Distrib.
Comput., vol. 71, no. 11, pp. 1434–1446, Nov. 2011.

[19] Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Kotidis,
“Dwarf: shrinking the petacube,” in Proceedings of the 2002 ACM
SIGMOD international conference on Management of data, 2002, pp.
464–475.

[20] S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient b-tree based
indexing for cloud data processing,” Proc. VLDB Endow., vol. 3, no.
1-2, pp. 1207–1218, Sep. 2010.

[21] J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing multi-
dimensional data in a cloud system,” in Proceedings of the 2010 ACM
SIGMOD International Conference on Management of data, 2010, pp.
591–602.

[22] X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An efficient multi-
dimensional index for cloud data management,” in Proceedings of the
first international workshop on Cloud data management, 2009, pp. 17–
24.

[23] M. C. Kurt and G. Agrawal, “A fault-tolerant environment for large-
scale query processing,” in High Performance Computing (HiPC), 2012
19th International Conference on, 2012, pp. 1–10.

[24] M. Ester, J. Kohlhammer, and H.-P. Kriegel, “The dc-tree: A fully
dynamic index structure for data warehouses,” in In Proceedings of
the 16th International Conference on Data Engineering (ICDE, 2000,
pp. 379–388.

[25] F. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli, and R. Zhou. (2013) A
distributed tree data structure for real-time olap on cloud architectures
- FULL VERSION. [Online]. Available: www.dehne.net

[26] Zeromq socket library as a concurrency framework. [Online]. Available:
http://www.zeromq.org/

[27] Transaction processing performance council, tpc-ds (decision support)
benchmark. [Online]. Available: http://www.tpc.org

504



Fig. 3. Time for 1000 insertions as a function
of the number of workers. (N = 40Mil, d = 8,
1 ≤ m ≤ 8)

Fig. 4. Time for 1000 queries as a function of
the number of workers. (N = 40Mil, d = 8, 1 ≤
m ≤ 8)

Fig. 5. Speedup for 1000 queries as a function
of the number of workers. (N = 40Mil, d = 8,
1 ≤ m ≤ 8)

Fig. 6. Time for 1000 insertions as a function of
system size: N & m combined. (10Mil ≤ N ≤
80Mil, d = 8, 1 ≤ m ≤ 8)

Fig. 7. Time for 1000 queries as a function of
system size: N & m combined. (10Mil ≤ N ≤
80Mil, d = 8, 1 ≤ m ≤ 8)

Fig. 8. Time for 1000 insertions as a function of the
number of dimensions. (N = 40Mil, 4 ≤ d ≤ 8,
m = 8)

Fig. 9. Time for for 1000 queries as a function
of the number of dimensions. The values for “1D-
index 95% coverage” are 828.6, 1166.4, 1238.5,
1419.7 and 1457.8, respectively. (N = 40Mil,
4 ≤ d ≤ 8, m = 8)

Fig. 10. Time for 1000 queries (PDCR tree) as a
function of query coverages: 10%−90%. Impact of
value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

Fig. 11. Time for 1000 queries (PDCR tree) as a
function of query coverages: 91%−99%. Impact of
value “*” for different dimensions. (N = 40Mil,
m = 8, d = 8)

Fig. 12. Time comparison for 1000 queries (Ratio:
1D-index / PDCR tree) for query coverages 10%−
90%. Impact of value “*” for different dimensions.
(N = 40Mil, m = 8, d = 8)

Fig. 13. Time comparison for 1000 queries (Ratio:
1D-index / PDCR tree) for query coverages 91%−
99%. Impact of value “*” for different dimensions.
(N = 40Mil, m = 8, d = 8)

Fig. 14. Query time comparison for selected query
patterns for dimension Date. Impact of value “*” for
different hierarchy levels of dimension Date. (N =
40Mil, m = 8, d = 8).

505



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


