
Engineering Inhibitory Proteins with InSiPS:
The In-Silico Protein Synthesizer ∗

Andrew Schoenrock
School of Computer Science

Carleton University
Ottawa, Canada

aschoenr@scs.carleton.ca

Daniel Burnside
Department of Biology

Carleton University
Ottawa, Canada

daniel.burnside@carleton.ca

Houman Moteshareie
Department of Biology

Carleton University
Ottawa, Canada

houman.moteshareie@carleton.ca

Alex Wong
Department of Biology

Carleton University
Ottawa, Canada

alex.wong@carleton.ca

Ashkan Golshani
Department of Biology

Carleton University
Ottawa, Canada

ashkan.golshani@carleton.ca

Frank Dehne
School of Computer Science

Carleton University
Ottawa, Canada
frank@dehne.net

ABSTRACT
Engineered proteins are synthetic novel proteins (not found
in nature) that are designed to fulfill a predetermined bi-
ological function. Such proteins can be used as molecular
markers, inhibitory agents, or drugs. For example, a syn-
thetic protein could bind to a critical protein of a pathogen,
thereby inhibiting the function of the target protein and
potentially reducing the impact of the pathogen. In this pa-
per we present the In-Silico Protein Synthesizer (InSiPS),
a massively parallel computational tool for the IBM Blue
Gene/Q that is aimed at designing inhibitory proteins. More
precisely, InSiPS designs proteins that are predicted to in-
teract with a given target protein (and may inhibit the tar-
get’s cellular functions) while leaving non-target proteins
unaffected (to minimize side-effects). As proof-of-concepts,
two InSiPS designed proteins have been synthesized in the
lab and their inhibitory properties have been experimentally
verified through wet-lab experimentation.

Keywords
Applications, Bioinformatics and Computational Biology,
Computational Medicine and Bioengineering, Synthetic Bi-
ology, Protein Design

1. INTRODUCTION
Protein engineering refers to an expansive field of research

that strives to design functionally optimized proteins. The
discipline can be divided into two primary approaches: the
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modification of existing proteins to improve or amend en-
dogenous function [4], and de novo protein design, which
generates novel proteins optimized for specific function(s)
[17]. Protein engineering can be considered the reverse prob-
lem of protein function prediction. In function prediction,
one is given a protein sequence and tasked with determining
the protein function, for example by approximating its three
dimensional structure (protein folding) and determining the
protein’s interactions with other proteins (protein docking).
In protein engineering, we are given a desired function of a
yet unknown protein, and the task is to generate a sequence
for a protein with such properties.

The function of a protein A is mediated by its interactions
with other proteins, i.e. set of target proteins with which A
interacts and the set of non-target proteins with which A
does not interact [14]. Designed proteins with a given set
of target and non-target proteins can be used as regulatory
proteins that enhance or inhibit the function of their target
protein(s). Designing proteins that can bind a target pro-
tein in a regulatory capacity can also accomplish the goal
of modifying the structure of the target protein. Of partic-
ular interest is the design of inhibitory proteins which bind
to a single target protein with high specificity (i.e. avoiding
non-target proteins), thereby preventing the target from per-
forming its normal biological function [1, 5]. For example,
a designed inhibitory protein could attach itself to a criti-
cal protein of a pathogen, thereby inhibiting the function of
that target protein and potentially reducing the impact of
the pathogen. Such inhibitory proteins can form the basis
for the development of various therapeutics (e.g. [15]).

A variety of approaches have contributed to the field of
protein design over the past decades; e.g. [7, 10, 9, 16]. Re-
cent computational methods have experienced mixed success
in experimental validation, with most methods redesigning
naturally occurring protein folds rather than designing novel
structures ab initio [2]. Three-dimensional structure deter-
mination often plays a central role in protein design. The
function of a protein is highly dependent on its 3D struc-
ture since most protein functions, in particular interactions
with substrates and with other proteins, are mediated by
physical contacts in 3D space. However, a major downfall
of such approaches is a lack of known 3D structures for the
majority of naturally-occurring proteins. This restricts re-



searchers to a limited number of highly studied proteins [8].
Protein structure prediction remains a difficult problem to
solve, particularly when structures of similar proteins are
not available. This motivates the creation of a protein de-
sign method that does not rely on protein 3D structures.

In this paper we present the In-Silico Protein Synthesizer
(InSiPS), a massively parallel computational tool for the
IBM Blue Gene/Q that is aimed at designing inhibitory pro-
teins. InSiPS designs proteins that are predicted to inter-
act with a given target protein while leaving a given set of
non-target proteins unaffected. A typical use of InSiPS for
designing an inhibitory protein for a given target protein
(e.g. a critical protein of a pathogen) would be to define
the set of non-target proteins as “all other” proteins to avoid
side-effects.

InSiPS requires as input only the sequences of the target
and non-target proteins and a database of known protein-
protein interactions. Unlike other approaches to protein de-
sign, InSiPS is purely sequence-based and does not require
knowledge of 3D protein structures. The InSiPS algorithm
is a combination of a genetic algorithm with a protein in-
teraction prediction method that is based on mining large
databases of known protein-protein interactions. Tens of
thousands of experimentally-validated, high confidence bi-
nary protein-protein interactions have been reported, and
have been curated in a variety of databases [3, 12, 13]. These
databases form the basis for our InSiPS method and allow
InSiPS to be applied to a broad range of protein design prob-
lems. The computational requirements for InSiPS are very
large. InSiPS is a highly scalable parallel method and has
been implemented for massively parallel IBM Blue Gene/Q
platforms.

Computational methods that predict biological interac-
tions can only be deemed credible when supported by tar-
geted in vivo or in vitro experiments. In a living cell,
proteins perform a dynamic array of functions but do so
while interacting with other proteins and cellular compo-
nents. As proof-of-concept, we performed wet-lab exper-
iments for two InSiPS designed proteins “anti-YBL051C”
and“anti-YAL017W”targeting yeast proteins YBL051C and
YAL017W, respectively. For both experiments, the set of
non-target proteins was the set of all other yeast proteins
in the same cellular component. Baker’s yeast Saccha-
romyces cerevisiae is a well-studied and often used eukary-
otic model organism. We synthesized our two novel proteins,
anti-YBL051C and anti-YAL017W, and then exposed living
yeast cells to these proteins. Our wet-lab experiments show
that in living yeast cells, our InSiPS designed synthetic pro-
teins anti-YBL051C and anti-YAL017W do indeed have an
inhibitory effect on YBL051C and YAL017W, respectively.

2. IN-SILICO PROTEIN SYNTHESIZER
(INSIPS)

2.1 Algorithm Overview
The In-Silico Protein Synthesizer (InSiPS) is a mas-

sively parallel computational tool designed to produce pro-
teins with specific protein-protein interaction profiles. More
specifically, given a target protein and a set of non-target
proteins, InSiPS aims to design a novel protein sequence
which is predicted to interact with the target protein and
predicted not to interact with the non-target proteins. For

a given target protein, the non-targets typically include the
other proteins which are present in the same cellular com-
ponent as the target (to which binding is not desired).

InSiPS uses a genetic algorithm to produce a protein se-
quence which optimizes a fitness function. For a given
candidate protein sequence, this fitness function uses a
protein-protein interaction prediction algorithm to deter-
mine whether the candidate is likely to interact with the
target and non-targets. The predicted interaction scores are
combined to give the candidate sequence an overall fitness.
Our InSiPS fitness function is fully detailed in Section 2.2.
It assigns each sequence a score between 0 and 1, with a
higher fitness representing a better solution (i.e. more likely
to interact/not interact with the target/non-targets than se-
quences with a lower fitness score). InSiPS begins by gener-
ating a predetermined number of random protein sequences.
This set of random sequences represents its initial popula-
tion of candidate solutions. Any set of protein sequences
can be used as a starting population; however, to remove
any forms of bias, a randomly generated set of sequences is
recommended. The algorithm then repeatedly executes the
following two steps; see Figure 1 for an illustration.

(1) Evaluation of candidate solutions (fitness function).
For each sequence in the current generation, a prediction is
made whether the sequence interacts with the target and
non-target proteins. These prediction scores are then con-
verted into a fitness function. Details are described in Sec-
tion 2.2.

(2) Construction of the next generation. To build the next
generation of protein sequences, sequences are randomly se-
lected with a probability proportional to their fitness rela-
tive to the rest of the population. Three standard operations
copy, mutate and crossover are applied to these sequences
with probability p copy, p mutate and p crossover, respec-
tively. Copy: The chosen sequence is simply copied into the
next generation. Mutate: Each amino acid in the chosen
sequence is randomly mutated with a predetermined proba-
bility (p mutate aa). Typically this probability is relatively
low as to preserve most of the current state of the protein.
Note that, while each amino acid has the same initial muta-
tion probability, the final mutation probabilities are different
due to fitness selection. Even though all spot mutations are
equally likely, favourable mutations will be readily accepted
and unfavourable mutations will be rejected by the fitness
function, meaning these unfavourable mutations have a slim
chance in participating in future generations. Crossover:
For two chosen sequences A and B, a cut-point in the pro-
tein sequences is randomly chosen, ensuring it is not too
close to either end. The first portion of sequence A is then
joined with the second portion of sequence B, and the first
portion of sequence B is joined to the second portion of
protein A to create two new hybrid sequences for the next
generation.

The main contribution of this research lies in the fitness
evaluation function discussed in the following Section 2.2
and the parallel implementation for Blue Gene/Q outlined
is Section 2.3. To the authors’ knowledge, InSiPS is the first
successfully demonstrated sequence-based protein engineer-
ing method.

2.2 InSiPS Fitness Function
Let target denote the target protein sequence and let nt1,

. . ., ntk denote the non-target protein sequences. Consider
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Figure 1: Graphical overview of the core InSiPS ge-
netic algorithm.

a protein sequence seq produced by InSiPS. To determine
the fitness value fitness(seq) of seq, we calculate scores re-
flecting the likelihood that seq interacts with target and the
likelihoods that seq interacts with nt1, . . . , ntk. These scores
are calculated via our previously published PIPE algorithm
[11]. Note that the PIPE scores are not actual probability
values but represent relative likelihoods in the sense that
if PIPE(A, B) < PIPE(A, B′) the predicted probability of
protein A to interact with protein B is smaller than the
predicted probability of protein A to interact with protein
B′. PIPE is uniquely suitable for this task because it is
purely sequence-based (ie. it only needs the query protein
sequences to predict whether they interact or not) and has
an extremely low false positive rate (0.05%).

PIPE relies on a database of known and experimentally
verified protein interactions. The database is represented as
an interaction graph G where every protein corresponds to
a vertex in G and every interaction between two proteins
X and Y corresponds to an edge between X and Y in G.
The following outlines how, for a given pair (A,B) of query
proteins, our PIPE method calculates a score PIPE(A,B)
∈ [0, 1]. In the first step of the PIPE algorithm, protein A is
split into overlapping fragments of size w. For each fragment
ai of A, where 0 ≤ i ≤ |A| −w + 1, we search for fragments
”similar” to ai in every protein in graph G. A sliding window

of size w is used on each protein in G, and each of the result-
ing protein fragments is compared to ai. For each protein
that contains a fragment similar to ai, all of that protein’s
neighbours in G are added to a list R. To determine whether
two protein fragments are similar, a score is generated with
the use of a PAM120 substitution matrix representing bio-
chemical similarity [6]. (An alternative could have been to
use BLOSUM matrices. They are inferred from conserved
regions of proteins from distantly related organisms, and
the observed substitutions are likely a conservatively biased
subset of possible mutations. The PAM120 matrix is more
inclusive.) If the similarity score is above a tuneable thresh-
old then these fragments are said to be similar. In the next
step of the PIPE algorithm, protein B is split into over-
lapping fragments bj of size w (0 ≤ i ≤ |B| − w + 1) and
these fragment are compared to all (size w) fragments of all
proteins in the list R produced in the previous step. We
then create a result matrix of size n × m, where n = |A|
and m = |B|, and initialize it to contain zeros. For a given
fragment ai of A, every time a protein fragment bj of B is
similar to a fragment of a protein Y in R, the value at po-
sition (i, j) in the result matrix is incremented. The result
matrix indicates how many times a pair (ai, bj) of fragments
co-occurs in protein pairs that are known to interact. Based
on the result matrix, the score PIPE(A,B) is calculated. For
more details, see [11].

The InSiPS fitness function fitness(seq) combines
the values PIPE(seq,target), PIPE(seq,nt1), . . . ,
PIPE(seq,ntk). Let MAX(PIPE(seq,non-targets)) de-
note the maximum of PIPE(seq,nt1), . . . , PIPE(seq,ntk),
then we define

fitness(seq) = (1 - MAX(PIPE(seq,non-targets))) ×
PIPE (seq, target)

A heat map representation of the InSiPS fitness func-
tion fitness(seq) is shown in Figure 2. We observe that
fitness (seq) increases when PIPE(seq,target) increases or
MAX (PIPE(seq,non-targets)) decreases. The concentric
iso-curves (points of same color) in Figure 2 indicate a
smooth convergence towards the lower right corner where
the fitness peaks at a value of 1 (yellow color).
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Figure 2: Heat map representation of the InSiPS
fitness function.



2.3 InSiPS Implementation on Blue Gene/Q
In this section, we give an overview of the InSiPS imple-

mentation on the Blue Gene/Q. It consists of a two-level
master-worker/all-workers parallel algorithm. The mas-
ter/worker portion is implemented using MPI and the all-
workers parallelization internal to the MPI processes is im-
plemented in OpenMP. The InSiPS master process is respon-
sible for all of the main genetic algorithm tasks, including
the generation of the initial pool of synthetic candidate se-
quences, the calculation of the individual fitnesses for each
synthetic sequence, the application of the GA operations to
construct a new generation and the decision to terminate.
The worker processes are responsible for providing the PIPE
scores for candidate sequences against the target and non-
targets. The candidate sequences are issued by the master
process in an on-demand fashion, ensuring a balanced load
across all of the worker processes. The InSiPS master pro-
cess is multi-threaded, parallelizing the generation of the
initial population, the application of the various GA oper-
ations, the calculation of sequence fitness, etc. The InSiPS
worker processes implement an all-workers model. The indi-
vidual PIPE predictions for the provided candidate protein
sequence against the target/non-targets is embarrassingly
parallel. However, it is crucial for the parallel threads within
each worker to share as much data as possible; in particular
the database of known interactions used by PIPE. Much care
was taken to minimize the memory footprint per thread be-
cause otherwise the available memory restricts the number
of possible parallel threads per worker.

An outline of the InSiPS master process is given in Al-
gorithm 1. The InSiPS master process loads all relevant
data (known protein-protein interaction graph, PIPE simi-
larity database and index, sequences of all known proteins
in yeast, and the current target and non-targets) and then
broadcasts it to the worker processes. The initial population
is created, in parallel, whereby each thread creates random
synthetic protein sequences and adds them to the population
until the desired number of candidate sequences is reached.
Then, the main genetic algorithm loop is entered. To eval-
uate the current population, the master process waits for
work requests from the worker processes. When a requests
is received (including the result of previous work assigned
to that worker), the master sends a candidate synthetic se-
quence from the current population to the respective worker.
It is the worker process’ responsibility to produce PIPE pre-
dictions scores for the received synthetic sequence against
the target and non-targets. Once all of the synthetic se-
quences have been processed, their fitness is calculated in
parallel. Each computational thread takes a synthetic se-
quence and, using the PIPE scores generated by the worker
processes, it calculates that sequence’s fitness as described in
Section 2.2. Once all of the synthetic sequences have been
assigned a fitness, the next generation can be created. In
parallel, each thread randomly decides which genetic algo-
rithm operation it will perform based on the user defined
probabilities. After choosing one of these operations (copy,
mutate or crossover), the thread then randomly selects one
or two proteins (depending on which operation was chosen)
from the current generation. The probability that a given
synthetic sequence is chosen is based on its fitness relative
to the rest of the population. The computational thread
then applies the chosen operation to the selected synthetic
sequence(s) and adds the new sequence to the next gener-

ation. Once the next generation is complete, it is set as
the current generation and the main genetic algorithm loop
starts again until a termination criterion is met. Once the
termination criterion is met, the master process informs the
worker processes and the program exits.

Algorithm 1: InSiPS master process.

load all required data from disk
broadcast all loaded data to worker processes

current generation← ∅
foreach computational thread in parallel do

while current population is not full do
add random protein sequence to
current generation

while termination criteria is not met do
while unanalyzed sequences remain in
current generation do

receive work request from worker x
receive previous results from worker x
send sequence from current generation to
worker x for analysis

foreach computational thread in parallel do
while members of current generation don’t
have assigned fitness do

choose a sequence without an assigned fitness
use results obtained from worker processes to
compute fitness score

next generation← ∅
foreach computational thread in parallel do

while next generation is not full do
randomly choose a GA operation
select sequence(s) from current generation
apply GA operation & add new sequence(s)
to next generation

current generation← next generation

foreach worker process do
receive work request from worker x
send END signal to process x

An outline of the InSiPS worker processes is given in Algo-
rithm 2. The worker processes do not load any data needed
to produce the PIPE predictions from disk. Instead, all
data is sent over the network from the master process, re-
lieving considerable stress form the shared disks (which are a
performance bottleneck in the Blue Gene/Q). Each InSiPS
worker process is solely responsible for making PIPE pre-
dictions between the generated sequences and the current
target and non-targets. To do this, it first sends a work re-
quest to the master process (including the result of previous
work assigned by the master process). It then receives a
candidate synthetic sequence from the master process. To
be able to run PIPE on this sequence and the target/non-
targets it needs to pre-process the synthetic sequence, build-
ing a cached data structure to optimize the performance of
similarity searches. The preprocessing is completed offline,
beforehand, for the known natural proteins and stored in a
database which is among the data loaded and broadcast by



Algorithm 2: InSiPS worker process.

receive all necessary data from master process
current results← ∅
while true do

send master process work request
if message received is END signal then

break

send master process current results
receive sequence from master process
sequence similarity ← ∅
foreach computational thread in parallel do

build specified portion of sequence similarity

work ← target + non–targets
current results← ∅
foreach computational thread in parallel do

while work 6= ∅ do
remove a protein from work
run PIPE algorithm on this protein and
sequence
add result to current results

the master process. The remaining preprocessing consists of
comparing the given synthetic sequence to all of the known
natural proteins to find real proteins which contain similar
subsequences to the generated sequence. PIPE makes use of
these similarity data to predict interactions. This similarity
data is stored in a data structure called sequence similarity
and is created, in parallel, with the use of the known natu-
ral protein sequences initially sent from the master process
and stored in memory for use by all of the computational
threads. Once this is completed, while there are still pro-
teins within the target and non-targets that have not been
processed, each computational thread takes one of these pro-
teins and runs the PIPE algorithm with this chosen protein
and the current synthetic sequence. PIPE uses the newly
generated sequence similarity data structure and the stan-
dard PIPE database sent by the master. Both of these data
structures are read-only and therefore can be accessed by
all of the threads simultaneously. Once all of the proteins
have been analyzed, the worker process notifies the master
process by sending a new work request. This loop continues
until the master process notifies the worker processes that
there is no more work to do.

3. PERFORMANCE EVALUATION
To benchmark the performance of InSiPS, we investigated

how well the code scales as more threads are used within
the master and worker processes as well as the impact of
using different numbers of worker processes on the overall
run time. These benchmarks were broken down into two
separate tests and both tests were run on the SciNet Blue-
Gene/Q cluster in Toronto, Canada (BGQ). Each node on
this cluster consists of 16 1.6 GHz PowerPC based CPUs
(capable of supporting 4 computational threads each) and
16GB of RAM. First we will evaluate how the code scales as
more threads were used by the worker processes followed by
an evaluation of how the number of worker processes used
influences the run time.
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3.1 Performance Test 1: Number of compute
threads used per worker process

The focus here was on the worker processes since nearly all
of the computation time is spent performing protein-protein
interaction predictions. The test measures the entire time
it takes the worker process to receive the sequence from the
master, build the necessary similarity data structure and
carry out protein-protein interaction predictions between
this sequence and all 6707 yeast proteins on a single BGQ.
In this test, five different protein sequences with a range of
computational difficulty were evaluated. The computational
difficulty of a given sequence depends largely on how many
proteins within the PIPE database contain matching subse-
quences. The more matching proteins a given sequence has,
the more known protein-protein interactions PIPE has to in-
vestigate. On the other hand, a protein which matches very
few proteins in the PIPE database leaves little work for the
PIPE algorithm to do. The sequences tested here (listed
easiest to hardest) are: YPL108W, YPL158C, YJR151C,
YCL019W and YHR214C-B. As can be seen in the run time
results (Figure 3) and the speedup results (Figure 4), we see
a dramatic decrease in run time when the number of threads
on a single BGQ node is increased. We see perfectly linear
speedup when using 16 threads and close to linear speedup
when using up to 32 threads. After this point we still see an
improvement in performance when using up to 64 threads,
which happens to be the imposed thread limit on the BGQ
cluster nodes.

Overall, we see an extremely solid performance improve-
ment (linear speedup) when using the same number of
threads as physical cores available (16). From here we
still see an improvement in performance (although not as
dramatic) when using up to the number of hardware sup-
ported threads. The reason why we hit a reduction in per-
formance improvement when using more threads than the
number of threads as physical cores available is due to the
fact that InSiPS is memory-IO bound. Since the algorithm
does not contain any floating-point arithmetic, the threads
spend most of their time doing memory look-ups. When
each thread is assigned its own physical compute core with
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its own access to main memory then they will not interfere
with each other and we will see good performance. However,
when the physical cores are overloaded with computational
threads and need to share the communication channels with
main memory, we see a reduction in overall speedup.

3.2 Performance Test 2: Number of worker
processes used

The second benchmarking test was done to see how well
the code scales when more cluster nodes/worker processes
are used. These tests measured the entire time it took
for a generation to be computed, including the master pro-
cesses disseminating the sequences to the worker processes,
the worker processes internally processing the sequences to
prepare the similarity data and then run the PIPE protein-
protein interaction prediction method against the targets
and non-targets, the worker processes sending the results
back to the master process, the master process then calcu-
lating the fitness of each sequence and finally the master pro-
cesses generating the sequences for the next generation. The
test problem in question was generated by choosing a total of
250 random target and non-targets and the sequence popula-
tion consisted of 1500 sequences. It should be noted that the
time it takes for a given sequence to be processed is largely
based on its complexity (how similar it is to real proteins,
how many proteins it is predicted to interact with, etc.).
For this reason, this test was performed on three different
sequence populations. The first population was a randomly
generated set of sequences which represents a typical start
point for this method. The second and third populations
were taken after running InSiPS after 100 and 250 genera-
tions, respectively. The first data set is used to characterize
the performance of InSiPS during the first few generations
when most synthetic sequences are unsuitable, whereas the
latter two data sets characterize the performance of InSiPS
later in the process, once the generations of synthetic se-
quences begin to converge towards useful solutions.

These tests were performed on the BGQ cluster where the
minimum number of nodes to use for a job are 64, so this was
used as a baseline (1 master process, 63 worker processes).
Multiples of 64 nodes were then added to see how well the
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code scales.
The results for this test on the BGQ cluster are shown

in Figures 5 and 6. InSiPS maintains a near-linear speedup
when using a moderate number of compute nodes. When
InSiPS uses an extreme number of nodes (1024), we see a
slight drop-off from linear speedup (12x as opposed to 16x,
which would be perfect). This most likely results from two
factors. First, it is possible that when there are many worker
processes, the master process becomes slightly overwhelmed
by work requests, such that some worker processes might
have to wait for their requests to be granted. This results
in the process idling for a short period of time thus con-
tributing to the lack of perfect scaling. Secondly, a portion
of the computation is done by only the master process every
generation (the fitness calculation as well as generating the
sequences for the next generation). This part of the com-
putation can not benefit from the addition of more cluster
nodes (Amdahl’s law), although it is computed in parallel



within the master node. Fortunately, this portion only rep-
resents a very small percentage of the overall computation
and therefore does not have a significant impact. These
things considered, InSiPS preforms very well even on an ex-
tremely large number of nodes. It is also interesting to note
that as the sequence pool becomes more complex (ie. con-
tains protein sequences more likely to be predicted to inter-
act with the target protein and not with the non-targets),
InSiPS performs better. This is due to the fact that the
individual sequences are becoming more difficult to process
giving the worker processes more work to do, leading to a
reduction in idle time.

Our performance results are for a one rack BGQ because
that was the architecture available for our experiments. To
scale to multiple racks, we would set one master process
per rack and sync between masters after each round of the
genetic algorithm. Since each master’s state information
is small and the number of racks would also be relatively
small (less than 100), the synchronization overhead would
be small. This would also allow the initial loading of data
to be done in parallel, where the one master per rack would
load the needed data upon start-up and broadcast it to all
other nodes within the same rack.

4. EXPERIMENTAL VALIDATION
To evaluate the effectiveness of InSiPS on real world,

testable scenarios, a set of candidate problems was created.
These candidate problems were then experimentally vali-
dated in the model organism S. cerevisiae. To make these
scenarios more amenable to wet-lab experiments using live
cells, the set of problems used target proteins with the fol-
lowing properties:

1. Cytoplasmic (proteins only ever shown to localize in
the cytoplasm).

2. Relatively small in size (less than 1,500 amino acids in
length).

3. Moderate level of abundance (3,000-10,000 transcripts
per cell).

4. Absence of the protein resulted in increased sensitivity
of the cell to a well-defined external stimuli/stressor.

The task for InSiPS was to design a protein which binds to
one of these cytoplasmic proteins of interest (targets) with-
out interacting with with any of the other 1,701 cytoplasmic
proteins (non-targets). 18 such target proteins were identi-
fied.

4.1 InSiPS Parameter Tuning
As previously mentioned, the probability that a given evo-

lutionary operation is used during the creation of a new se-
quence by InSiPS’s genetic algorithm is predefined by the
user. The key input parameters p copy, p mutate and p
crossover, shape the way InSiPS builds new sequences in
search of a sequence which maximizes the performance cri-
teria for a given problem. The only restriction on these pa-
rameters is that they must sum to 1.0, otherwise any com-
bination of positive real number values will work. Given
that these are real number parameters, the parameter space
is massive in practice. Therefore, the runtime of an ex-
haustive parameter optimization (even using smart heuristic
searches) would be prohibitive. This is compounded by the

variability in InSiPS performance for a given set of param-
eters due to the stochastic nature of the genetic algorithm
itself. It is very possible, and indeed likely, for two separate
runs of InSiPS on the same problem with the same param-
eter settings to produce solutions of vastly different quality.
For example, one run could benefit from its randomly gen-
erated starting pool containing a few very good sequences.
This could act as a huge head start over another run, which
may take several generations to produce sequences of a sim-
ilar quality to those that the first run started with. Fur-
thermore, it is very probable that a given set of parameters
works better for one problem than it does for another. As
previously stated, to do a thorough investigation of these pa-
rameters (keeping in mind the effects that the random seed
or problem in question can have on InSiPS’s performance)
is time prohibitive. However, it is important to at least try
a number of different settings to see how these three aspects
interact with respect to the final sequence quality.

To investigate this, three of the 18 target proteins dis-
cussed above were randomly chosen. These targets were
YAL054C, YBR274W and YOL054W and the non-targets
were the remaining cytoplasmic yeast proteins. To test how
using different parameter sets affected the overall perfor-
mance, five different parameter settings were used. In these
settings, p copy was kept consistent at 0.10 (since this op-
eration doesn’t add anything new to the next population).
Also, in each of these settings, when the mutate operation
was chosen, each amino acid in the selected protein sequence
would be randomly switched to another amino acid with a
probability of 0.05, as this seemed a reasonable mutation
rate. The settings of the other parameters were:

• Set 1: p crossover = 0.45, p mutation = 0.45

• Set 2: p crossover = 0.30, p mutation = 0.60

• Set 3: p crossover = 0.60, p mutation = 0.30

• Set 4: p crossover = 0.75, p mutation = 0.15

• Set 5: p crossover = 0.15, p mutation = 0.75

These parameter settings give a good sampling of different
scenarios one might want to use from the balanced approach
(parameter set 1) to a set heavily biased in favour of one op-
eration (parameter set 4 or 5). To try to account for the
sheer amount of randomness involved in the running of In-
SiPS, each problem was run with each parameter setting
using three different random seeds. When a random num-
ber generator is seeded with a given number, it will always
produce the same set of random numbers. This way we can
assure, for instance, that two different runs of InSiPS have
the same initial population. Typically InSiPS is not seeded
with a specific seed as different sets of random numbers are
generally desirable. That said, we have three problems, each
using five different parameter sets, each being run with three
different random seeds for a total of 45 runs. The goal here is
to see if one parameter setting produces significantly better
sequences consistently across different problems and differ-
ent random seeds. The results of InSiPS runs on targets
YAL054C, YBR274W and YOL054W can be seen in Tables
1, 2 and 3, respectively. Here, the fitness of an experiment is
the fitness of the highest scoring synthetic sequence observed
after 50 generations of the genetic algorithm.

When examining these results we see that the fitness
achieved varies similarly between random seeds as it does



Parameters Seed 1 Seed 2 Seed 3 Avg.

Set 1 0.3564 0.3584 0.3259 0.3469
Set 2 0.2852 0.3549 0.2898 0.3100
Set 3 0.3307 0.3100 0.3422 0.3276
Set 4 0.3381 0.3168 0.3301 0.3283
Set 5 0.3293 0.2926 0.3171 0.3130
Avg. 0.3280 0.3265 0.3210

Table 1: InSiPS parameter testing results for target
YAL054C. The fitness of each run is presented. Bold
indicates the best average fitness across the differ-
ent parameter settings as well as across the different
random seeds used.

Parameters Seed 1 Seed 2 Seed 3 Avg.

Set 1 0.4438 0.3479 0.3713 0.3877
Set 2 0.2962 0.3266 0.3120 0.3116
Set 3 0.3608 0.3680 0.3732 0.3673
Set 4 0.4220 0.3327 0.4299 0.3949
Set 5 0.2874 0.3559 0.3432 0.3289
Avg. 0.3621 0.3462 0.3659

Table 2: Same as Table 1, but using target
YBR274W.

Parameters Seed 1 Seed 2 Seed 3 Avg.

Set 1 0.3613 0.4148 0.4109 0.3956
Set 2 0.3542 0.3531 0.3908 0.3660
Set 3 0.3927 0.4047 0.3429 0.3801
Set 4 0.4078 0.3903 0.4162 0.4048
Set 5 0.3586 0.3630 0.3159 0.3458
Avg. 0.3749 0.3852 0.3753

Table 3: Same as Table 1, but using target
YOL054W.

between using different parameter settings. For example,
for problem YBR274W, parameter set 4 achieves nearly the
best fitness from two different random seeds (fitnesses 0.4220
and 0.4299). However, using the third random seed pro-
duces one of the lowest fitness values among all combination
of parameters and random seeds for that problem (fitness
0.332688). InSiPS seems to perform best with a relatively
balanced parameter set. We also note that the overall per-
formance doesn’t change drastically between different pa-
rameter sets when the different problems and random seeds
are considered. The inherent stochastic nature of InSiPS’
genetic algorithm seems to provide a level of robustness, al-
lowing any “bad” parameter set to be overcome. Overall,
this stability over a variety of input parameters frees the
user from having to perform lengthy parameter tuning ex-
periments, due to the fact that InSiPS’ performance doesn’t
vary significantly when these parameters are changed.

4.2 Wet-Lab Experimental Validation
InSiPS was run on all of the 18 experimental candidates.

A population size of 1,000 sequences was used with the fol-
lowing paramters: p crossover = 0.5, p mutation = 0.4,
p copy = 0.1, p aa mutation = 0.05. InSiPS was run for
a minimum of 250 generations. Once this was achieved, it
continued running until a new best sequence wasn’t found
for 50 generations. The three experimental candidates with
the fittest generated solution were identified (S. cerevisiae
target proteins: YDL001W, YAL017W and YBL051C) and
were each rerun another 3 times (each run using a different
random seed). The best results for these runs were pre-
pared for experimental validation. InSiPS created protein
sequences whose predicted interaction score is much higher
for the target than even the highest-scoring non-target pro-
tein. When instead considering the average non-target pre-
dicted interaction score for each generated protein sequence,
the separation was even more pronounced. The respective
“learning curves” for these InSiPS runs can be seen in Fig-
ure 7. This figure shows how the fittest individuals’ PIPE
predicted interaction score (against the target, highest scor-
ing non-target and average non-target score) changes as the
generations progress in a given run of InSiPS.

For each target protein, the coding DNA for the gener-
ated anti-target protein designed by InSiPS was commer-
cially synthesized and cloned into an expression vector under
the transcriptional control of a promoter. In this way the
anti-target proteins could be expressed in yeast cells and
their ability to bind to the respective targets and disrupt
their function could be evaluated. To validate the efficacy
of the generated inhibitory proteins, conditional sensitivity
tests were conducted. As previously stated, one criterion
for selecting the original experimental candidates was that
their deactivation/absence resulted in sensitivity to certain
stressors. In this way if the gene which codes for the candi-
date target protein was knocked-out (deleted), the cell would
exhibit increased sensitivity to specific environmental stress
(such as the presence of a chemical compound or damag-
ing radiation). If the designed anti-target binds and inhibits
the activity of the target protein specifically, it should ex-
hibit a similar conditional sensitivity to the environmental
challenge as the gene deletion stain would. This is due to
unnatural binding of the target protein to the designed anti-
target protein causing alteration in its activity. This is sim-
ilar to the deactivation of an antigen by antibodies. These
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Figure 7: Progression of the best-performing InSiPS
runs on the three experimental candidates. In each
generation, the three lines of a given colour plot
the PIPE predicted interaction score of the fittest
sequences against the target (solid line), highest-
scoring non-target (dashed line) and the average
non-target score (dotted line). The production of
the synthetic anti-YAL017W, anti-YBL051C and
anti-YDL001W are plotted in red, green and blue,
respectively. The black line represents the PIPE ac-
ceptance threshold; any protein pair with a score
above this threshold is predicted to interact (with a
false positive rate <0.5%).

experiments are carried out as follows. First, four different
S. cerevisiae strains are used. These are the wild-type con-
trol strain (WT ), a second control strain which contains an
empty plasmid (the vector for transporting and housing the
gene which codes for the InSiPS protein) (WT+), a strain
containing a plasmid inducing the production of the gen-
erated anti-target protein (WT + InSiPS) and a strain in
which the gene for the target protein is deleted. In these
tests, the first two strains are used as negative controls that
reveal the activity of the target protein and the last strain in
which the target gene is deleted is used as a positive control
to represent the characteristics of the cells with the function
of the target protein absent. The strain producing the anti-
target protein will resemble the gene deletion strain when
challenged by our experimental condition if our protein per-
forms its predicted function. The desired result is to observe
a relative decrease in the number of viable cells (increased
sensitivity) in our experimental strains compared to the neg-
ative control strains when challenged by a specific condition.

These validation experiments were carried out on two of
the above three candidates. The wet-lab experiments are
rather time consuming and took approximately six months.

4.2.1 Target: YBL051C
Using YBL051C as a target, InSiPS created a synthetic

protein sequence with a fitness of 0.379912. It’s predicted in-
teraction score with YBL051C was 0.6309 with a maximum
off-target score of 0.3978. The average off-target predicted
interaction score was 0.0797. This solution gives a very pro-
nounced separation between target and non-target scores,
making it a good candidate for validation.

Run WT WT+ WT + InSiPS ∆PIN4

1 86% 88% 52% 24%
2 87% 96% 53% 31%
3 90% 95% 58% 29%
4 97% 91% 59% 23%
5 91% 87% 55% 28%

Avg. 90% 91% 56% 27%

Table 4: Colony counts for each of the four S. cere-
visiae strains (WT : wild-type; WT+: wild-type cells
containing an empty plasmid; WT + InSiPS: wild-
type strain containing a plasmid that produces anti-
YBL051C proteins; ∆PIN4: a knockout strain for
YBL051C) after exposure to 65ng/mL of cyclohex-
imide. Colony counts after exposure are normalized
to the average colony counts observed under normal
conditions.

When the gene which codes for YBL051C (PIN4) is
deleted, it is known that S. cerevisiae becomes more sen-
sitive to cycloheximide, an inhibitor of protein biosynthesis.
Without this protein the cell cannot generate new proteins
as easily once challenged with low concentrations of cyclo-
heximide. In this test, all four of the S. cerevisiae stains
(WT , WT+, WT + InSiPS, ∆PIN4) were exposed to
65ng/mL cycloheximide and then the number of living cells
for each strain were counted on the basis of the colonies that
were formed. The summary of the colony counts are given
in Table 4. The averages seen in these five experiments are
also shown in Figure 8. As can be seen in these figures, the
two control strains (WT and WT+) show similar sensitivity
to cycloheximide. On the other hand, we see a much larger
reduction in the number of cells for both the WT + InSiPS
and the positive control ∆PIN4 strains. The reduction in
viable colony counts for the WT + InSiPS strain, although
not as dramatic as in the positive control strain ∆PIN4,
suggests that the InSiPS designed anti-YBL051C protein is
successfully inhibiting YBL051C, increasing the sensitivity
of the cells to cycloheximide.

4.2.2 Target: YAL017W
Using YAL017W as a target, InSiPS created a protein

sequence with a fitness of 0.4652. Its predicted interaction
score with YAL017W was 0.7183 with a maximum off-target
score of 0.3524. The average off-target predicted interaction
score was 0.0721. As in the previous example, we see a
significant separation between target and non-target scores,
where we would expect very few if any non-targets to inter-
act with the designed protein.

When the gene which codes for YAL017W (PSK1) is
deleted, it is known that S. cerevisiae becomes more sen-
sitive to ultraviolet light. Without this protein the cell’s
ability to repair the DNA damage caused by exposure to UV
light is significantly diminished. In this test, all four of the
S. cerevisiae stains (WT , WT+, WT + InSiPS, ∆PSK1)
were exposed to UV light for 30 seconds. The living cells
were then allowed to grow to form colonies. As above, colony



 0

 20

 40

 60

 80

 100

WT WT+ WT+InSiPS ∆PIN4

C
o
lo

n
y
 C

o
u
n
ts

 (
a
s
 %

 o
f 
u
n
e
x
p
o
s
e
d
)

Figure 8: Average colony counts for each of the
four S. cerevisiae strains (WT : wild-type; WT+:
wild-type cells containing an empty plasmid; WT +
InSiPS: wild-type strain containing a plasmid that
produces anti-YBL051C proteins; ∆PIN4: a knock-
out strain for YBL051C) after exposure to 65 ng/mL
of cyclohexamide. Average colony counts after ex-
posure are normalized to the average colony counts
observed under normal conditions. Error bars rep-
resent standard deviation.

counts were used to measure cell survival and hence cell sen-
sitivity. The summary of the living colony counts are given
in Table 5. The averages seen in these five experiments are
also shown in Figure 9.

Spot test analysis was also carried out for these experi-
ments and the results are illustrated in Figure 10. As can
be seen in this table and figure, the two control strains (WT
and WT+) show similar sensitivity to UV exposure. On the
other hand, we see a large reduction in the number of viable
colonies for both the WT + InSiPS and ∆PSK1 strains
(which was expected in the positive control strain ∆PSK1).
The increased UV sensitivity in the WT + InSiPS strain
suggests that the InSiPS designed anti-YAL017W protein is
successfully inhibiting YAL017W activity, lowering its resis-
tance to UV light.

5. CONCLUSION
In this paper we have presented InSiPS: The In-Silico Pro-

tein Synthesizer, a new massively parallel algorithm for de-
signing novel inhibitory proteins. Unlike other approaches
which rely on 3D protein structure data, InSiPS is purely
sequence-based, allowing it to be applied to a much wider
range of problems. Given only the sequences of a target and
set of non-target proteins and a list of known protein-protein
interactions, InSiPS can produce a novel protein which is
predicted to interact specifically with the target while not
interfering with the non-targets. InSiPS was benchmarked
on the IBM Blue Gene/Q cluster and was shown to effi-
ciently use all computational threads on each compute node
while also scaling near-linearly up to 1024 nodes. Experi-
ments revealed that InSiPS’ performance is relatively sta-
ble across a large set of parameters, allowing users to forgo
lengthy parameter tuning exercises before applying the algo-

Run WT WT+ WT + InSiPS ∆PSK1

1 54% 51% 20% 13%
2 56% 55% 5% 4%
3 53% 56% 8% 5%
4 55% 55% 16% 11%
5 57% 56% 17% 14%

Avg. 55% 54% 14% 10%

Table 5: Cell colony counts for each of the four S.
cerevisiae strains (WT : wild-type; WT+: wild-type
cells containing an empty plasmid; WT + InSiPS:
wild-type strain containing a plasmid that produces
anti-YAL017W proteins; ∆PSK1: a knockout strain
for YAL017W) after exposure to 30 seconds of ultra-
violet light. Colony counts after exposure are nor-
malized to the average colony counts observed under
normal conditions.
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Figure 9: Average colony counts for each of the
four S. cerevisiae strains (WT : wild-type; WT+:
wild-type cells containing an empty plasmid; WT +
InSiPS: wild-type strain containing a plasmid that
produces anti-YAL017W proteins; ∆PSK1: a knock-
out strain for YAL017W) after exposure to 30 sec-
onds of ultraviolet light. Average colony counts af-
ter exposure are normalized to the average colony
counts observed under normal conditions. Error
bars represent standard deviation.
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Figure 10: Spot test for the four S. cerevisiae strains
(WT : wild-type; WT+: wild-type cells containing
an empty plasmid; WT + InSiPS: wild-type strain
containing a plasmid that produces anti-YAL017W
proteins; ∆PSK1: a knockout strain for YAL017W)
grown for 48 hours after 30 seconds of exposure to
ultraviolet light. Each column contains an equal
number of cells diluted 10X down each row. De-
creased growth in columns 3 and 4 indicates that
the expression of anti-YAL017W sensitizes cells to
UV in a similar manner as the absence of YAL017W.

rithm to real problems. Finally, InSiPS was used to design
inhibitors for proteins with known function in S. cerevisiae.
These designed proteins were shown through experimental
validation to successfully inhibit their intended targets, leav-
ing the cell in a state similar to one where the target protein
is not present at all.

Future research directions for InSiPS include designing
inhibitory proteins to be used as molecular markers for
pathogenic strains of E. coli and designing inhibitory pro-
teins to obstruct the spread of certain viruses (e.g. HIV).
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