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ABSTRACT
Fast aggregation of data with many dimensions is a key compo-
nent of many applications. The R-tree is the traditional data struc-
ture for indexing multi-dimensional data, but even the best R-tree
variants suffer from performance degradation as the number of di-
mensions increases. The DC-tree addressed this issue by replacing
Minimum Bounding Rectangle (MBR) keys with Minimum Describ-
ing Subsets (MDSs), which are less susceptible to overlap. This
technique dramatically improves query performance with many di-
mensions, but at the cost of reduced insertion performance. Like
most R-tree variants, this insertion overhead comes from expensive
geometric comparisons while selecting the best child for insertion,
or splitting over-full nodes. DC-trees, including the parallel PDC-
tree, suffer even more from this overhead since MDSs are typically
much more expensive to compare and manipulate than MBRs. This
paper introduces the Hilbert PDC-tree, a parallel index structure
for many-dimensional data that supports high-velocity data inges-
tion. This is achieved by avoiding geometric comparisons during
insertion by instead inserting records based on the Hilbert index of
their keys. This approach is similar to that of the Hilbert R-tree, but
with special considerations for efficiently supporting many hierar-
chical dimensions. Additionally, a new node splitting algorithm
significantly reduces overlap and improves query performance. Ex-
periments show that the Hilbert PDC-tree scales well to a high
number of dimensions, while supporting a much higher rate of in-
gestion and better query performance than the PDC-tree.

1. INTRODUCTION
Many applications, from traditional OLAP systems to emerging

frameworks designed for more ad-hoc data, rely on the ability to
quickly aggregate “slices” of multi-dimensional data sets with di-
mension hierarchies. Recent times have seen increased interest in
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the ability to do so in real-time, to facilitate live analysis of high-
velocity data streams.

Dynamic systems with a need to index multi-dimensional data
sets typically use some variant of the classical R-tree. R-trees are
an effective solution for indexing a small number of dimensions,
but their query performance rapidly degrades when the number of
dimensions becomes large. This effect is primarily due to over-
lap between the bounding boxes for tree nodes, which MBRs are
particularly susceptible to with many dimensions.

The DC-tree [6] addressed this limitation of R-trees by replacing
MBRs with MDSs, and achieves much better query performance
as the number of dimensions gets very large. However, this ability
comes at the cost of increased overhead, particularly during data
ingestion since the cost of insertion is much greater than that of
an R-tree. The PDC-tree [5] extended the DC-tree with support for
multi-threading, providing speedup on multi-core architectures, but
with the same underlying costly insertion algorithm.

This paper introduces the Hilbert PDC-tree, which is designed to
preserve the benefits of the PDC-tree while supporting much higher
velocity data ingestion. The use of the Hilbert curve, rather than
geometric comparisons, allows the insert position for a new ele-
ment to be found much more quickly. MDS keys in conjunction
with the locality-preserving Hilbert mapping provide good query
performance with many dimensions. Additionally, a new split al-
gorithm minimizes overlap within the constraints imposed by the
Hilbert ordering, to facilitate efficient query execution.

The Hilbert PDC-tree supports the use of hierarchical dimen-
sions, as in OLAP systems, or other data sets with hierarchical on-
tologies. The implementation described in this paper was designed
to support indexing hierarchical point data, that is, keys with a sin-
gle value in each dimension. However, the fundamental ideas are
more general, and can easily be adapted for other scenarios, such
as non-hierarchical dimensions, or indexing elements whose keys
have volume (i.e. are not points).

The relevant related work and necessary background concepts
are described in Section 2. The novel aspects of the Hilbert PDC-
tree are described in Section 3. Experiments in Section 4 demon-
strate performance in detail, and confirm that the Hilbert PDC-tree
ingests data at a much higher rate than its closest ancestor, the PDC-
tree. Several strategies for mapping keys to Hilbert indices are in-
vestigated. Using the fastest Hilbert mapping for ingestion, the
Hilbert PDC-tree sustains well over 350 thousand inserts per sec-
ond, over 17 times faster than the PDC-tree. It also provides good
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performance for large aggregate queries. On 50 million elements
from the TPC-DS data set, using the fastest Hilbert mapping for
querying, the Hilbert PDC-tree executes queries that aggregate over
66% of the data more than 4 times faster than the PDC-tree. As the
number of dimensions increases, the Hilbert PDC-tree matches the
good scalability of the PDC-tree for querying, and shows signifi-
cantly better scalability for data ingestion. In particular, the Hilbert
PDC-tree scales well to many more dimensions than R-tree variants
can efficiently support.

2. BACKGROUND

2.1 Related Work
The R-tree [7] is the classical data structure for indexing multi-

dimensional data sets. Over the years, numerous data structures
based on the R-tree have been introduced which improve on some
aspect of performance, often at the cost of another.

Many such structures are refinements to the insertion algorithm
which improve query performance at the cost of insertion perfor-
mance. Among the most well-known of these is the R*-tree [1][2],
which occasionally re-inserts records to maintain a better structure
for querying.

Others change the tree representation itself. The CR-tree [10]
uses a compressed MBR representation to pack more information
in a single tree node, for more efficient use of memory. An appro-
priate R-tree-like structure is an effective choice for indexing data
sets with few dimensions, but all suffer from performance degra-
dation when the number of dimensions gets large. The X-tree [3]
improves this situation somewhat by using an overlap-minimizing
split algorithm, and introducing supernodes with a higher fanout
than usual if a good split can not be found. However, the perfor-
mance problems of R-trees with many dimensions are inherent to
the use of MBRs in a tree structure. As the number of dimensions
increases, overlap becomes more problematic, forcing aggregate
queries to search a larger portion of the tree.

To overcome this problem, the DC-tree [6] introduced the use of
MDSs, which can describe many non-overlapping regions in a sin-
gle key. Since the values in a dimension in an MDS are not neces-
sarily contiguous, the DC-tree is much less prone to overlap as the
number of dimensions increases. Query performance thus scales
much better as the number of dimensions increases compared to
MBR-based trees. The PDC-tree [5] improves overall performance
in a multi-core environment, allowing correct use of the tree by
many threads at once. For good speedup, a minimal locking scheme
ensures threads are only blocked for a short period of time. Aside
from performance, DC-trees target a slightly different problem do-
main than R-trees: they support hierarchical dimensions, and fast
aggregation of large fractions of the data stored in the tree.

The downside of the DC and PDC trees is that working with
MDSs is more expensive than MBRs. As with R-trees, many region
calculations must be performed when modifying the tree, and these
calculations are a bottleneck on insertion. The Hilbert R-tree [9]
avoids these calculations by instead inserting records according to
the Hilbert index of their keys. Since this is a linear ordering, the
insertion algorithm itself is significantly faster, much like that of a
B+-tree [4].

2.2 Dimension Hierarchies
DC-trees are designed to support hierarchical dimensions with

discrete values, like those shown in Figure 1. Dimensions are not
necessarily ordered, and a query can be at any level in each dimen-
sion. Queries specify, for each dimension, a set of values from the
respective dimension hierarchy, or a wildcard indicating that the

entire range of the dimension should be included. For example, a
query might aggregate all sales of items with a particular brand on
a particular day, in any store location, at any time of day.

All

Item Store Date Time

Category Country Year Hour

Class State Month Minute

Brand City Day Second

Figure 1: Some hierarchical dimensions for sales from the TPC-DS
data set.

2.3 Minimum Describing Subsets
R-trees use MBRs. An MBR is simply a multi-dimensional rect-

angle that encloses a set of points. MBRs are limited to describing a
contiguous range in each dimension, which can result in boxes that
describe a much larger area than is required to enclose the relevant
points.

An MDS can reduce this problem by describing a set of values
in a given dimension. Figure 2 illustrates the difference between an
MBR and MDS that enclose the same points. The region described
by a minimal MDS is always smaller than the region described by a
minimal MBR that encloses the same points, though the description
of the MDS itself may be larger since it lists individual values rather
than ranges.

The ability to describe several ranges in a dimension with an
MDS is what makes DC-trees less susceptible to overlap as the
number of dimensions increases. For example, consider the regions
shown in Figure 2 as keys for directory nodes in the tree. If a value
with A = 1000 were inserted into this subtree, the MBR’s volume
would increase dramatically to cover the entire range from A =
8 . . .1000. However, the MDS would only add a thin slice for A =
1000.

2.4 DC-tree
The DC-tree is a data structure that supports aggregate queries

on data with dimension hierarchies, with many more dimensions
than can be efficiently supported by R-trees. It achieves this by
replacing the use of MBRs with MDSs, and using MDS-specific
insertion and split algorithms designed to minimize overlap.

Values in a dimension hierarchy are stored in MDSs as integer
IDs, which provides a partial ordering for IDs in the same dimen-
sion. The DC-tree uses 32-bit IDs where the level is stored in
the most significant bits, and the remaining space is used as an
ID within that level of the dimension, as shown in Figure 3. The
dimension of an ID is known implicitly by storing each dimension
in an MDS separately. Dictionaries store the parent of each value
in the dimension hierarchy, allowing IDs to be converted to higher
levels at the cost of looking up values in auxiliary data structures.

Level ID within level

Figure 3: IDs in the DC-tree.

Though the details differ, at a high level the DC-tree operates
much like an R-tree. Insertion locations and the distribution of
children during node splits are determined by geometric compar-
isons, such as volume, expansion, and overlap. Aggregate queries
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Figure 2: Minimum Bounding Rectangle (MBR) and Minimum Describing Subset (MDS) for the same 7 data points in 2 dimensions.

descend from the root, visiting any children that intersect the query
region. To support fast aggregation of large fractions of the data,
internal tree nodes contain a cached aggregate of all values in the
subtree rooted at that node. Thus, if the node’s key is completely
contained by the query region, there is no need for the query to
descend to any children of that node.

The PDC-tree is a parallel evolution of the DC-tree which uses
a minimal locking scheme to allow several threads to manipulate
and query the tree at once. The fundamental algorithms are similar
to those of the DC-tree, but allow for speedup to be achieved in a
multi-core environment.

3. HILBERT PDC-TREE
The Hilbert PDC-tree uses the same query algorithm as the PDC-

tree, which is conceptually similar to the classical R-tree query al-
gorithm, but with multi-threading, cached aggregates, and MDSs
instead of MBRs.

The insertion algorithm, however, is fundamentally different. Like
the Hilbert R-tree [9], the Hilbert index of keys is used to quickly
determine an insert position. Each directory node in the tree stores
the maximum Hilbert index of its child nodes, recursively. First,
the Hilbert index of a point to be inserted is calculated. Then, start-
ing at the root, this value is used to find the child with the largest
Hilbert index not less than the new point’s. This process continues
until the bottom level of the tree is reached, where the new point is
inserted. This is essentially the same insertion algorithm used by
linearly ordered trees such as the B+-tree. Since this linear search
process is much less expensive than R-tree-like geometric compar-
isons, insertion speed is significantly improved. Despite this much
less costly insertion algorithm, the good query performance of the
PDC-tree with a high number of dimension is preserved, as con-
firmed by the experiments shown in Section 4.

However, the Hilbert PDC-tree is not merely a straightforward
application of this idea to the PDC-tree. Techniques specific to
the hierarchical nature of DC-trees are employed, a new overlap-
minimizing split algorithm improves query performance, and a more
efficient ID and MDS representation significantly reduces overhead
in general.

3.1 ID and MDS Representation
Unlike the DC-tree, the Hilbert PDC-tree does not store the level

of IDs in the most significant bits. Instead, the dimension number

is stored, followed by the index for the ID at each level, as shown
in Figure 4. This allows IDs to be compared directly at any level
by simply masking bits, without the need to consult dimension hi-
erarchies stored elsewhere.

Dimension Level 1 ID Level 2 ID Level 3 ID Level 4 ID

Figure 4: IDs in the Hilbert PDC-tree.

The MDS structure exploits the partial ordering provided by this
representation. All IDs in an MDS are stored in sorted order. This
allows two MDSs to be scanned in tandem while comparing to de-
termine if a query encloses, partially intersects, or does not touch,
the MDS of a tree node. The comparison algorithm is similar to the
classical linear algorithm for finding the intersection of two sorted
arrays of integers, but only reports the above-mentioned cases rather
than constructing a result set. However, special consideration must
be made for the fact that dimensions must be compared indepen-
dently, since the intersection of interest is geometric.

In order to compare two MDSs, their respective levels must be
considered. IDs in a given dimension can only be compared at the
same level in that dimension hierarchy. This is an issue because a
query MDS may be at different levels than node MDSs encountered
during the search. To address this, the DC-tree’s query algorithm
first adapts each MDS to comparable levels. However, looking up
parent IDs and constructing new MDSs in this way is very expen-
sive. Instead, the Hilbert DC-tree exploits its self-contained ID rep-
resentation to simply “view” IDs in-place at the appropriate level.
While scanning to compare MDSs, any unwanted lower levels of
IDs are masked off before comparison.

3.2 Mapping Points to a Hilbert Index
Applying a Hilbert ordering to MDS keys introduces issues not

present for MBRs. In particular, MDSs in the tree are expressed
at various levels, where nodes higher in the tree are likely to have
keys at higher levels in the dimension hierarchy. This means that
MDSs are often compared at levels different than the leaf levels for
which the Hilbert indices stored in the tree were calculated. Since
the breadth of various levels may vary considerably across dimen-
sions, the Hilbert order for leaves may not provide good locality for
keys higher in the tree which are expressed at higher levels in the
dimension hierarchy.



These issues become more important when memory consump-
tion is taken into consideration. The high insertion rate of the
Hilbert PDC-tree comes at the cost of having to store a Hilbert in-
dex for every node in the tree. With a naïve implementation, this
index would take up the same amount of space as the key for a point
stored in a leaf node (d integers the same size as IDs, where d is
the number of dimensions). Since dimensions can have different
breadths, IDs in a dimensions may not require all the available bits
(e.g. 32 or 64). Using compact Hilbert indices [8] would save space
by using only the minimum number of bits required, but could im-
pact locality when MDSs are viewed at different levels.

There are several different ways to map a hierarchical point to a
Hilbert index. The simplest, as shown in Table 1, map the ID di-
rectly or simply mask off the most significant bits which represent
the dimension. Note that the Hilbert mapping algorithm implicitly
knows the dimensions of its input values, so this value is unneces-
sary.

Dim Level 1 Level 2 Level 3 Level 4

ID 01 1 11 111 1111

10 11 1 1 11

Direct 01 01 0011 0111 1111

10 11 0001 0001 0011

Dimensionless 00 01 0011 0111 1111

00 11 0001 0001 0011

Table 1: A hierarchical ID, and the simple “dimensionless” map-
ping which zeroes the dimension bits but preserves all level bits.
Unused bits in the original ID are shown blank, but are represented
by zeroes in practice.

These simple mappings have the issue that levels in different di-
mensions may not have the same breadth, and thus not map to a
comparable range in the Hilbert ordering. The more sophisticated
mappings shown in Table 2 spread or expand values in a given
level to match the range of that level in any dimension. The spread
mapping simply left-pads levels with zeroes to occupy the num-
ber of bits required for that level in any dimension. The expanded
mapping uses the same number of bits, but shifts values left and
right-pads with zeroes if necessary, ensuring values in any dimen-
sion have a similar range.

For example, in the example shown here, dimension 1 uses four
bits at level 4, but dimension 2 uses only two. To compensate, val-
ues in dimension 2 at level 4 are shifted left by two bits, causing
values to span roughly the same numerical range as those in dimen-
sion 1. This transformation is only performed on a copy of the key
used to calculate the corresponding Hilbert index. The keys in the
tree used for comparison during querying are unmodified.

Pad Level 1 Level 2 Level 3 Level 4

Spread 00000 01 11 111 1111

00000 11 01 001 0011

Expanded 00000 10 11 111 1111

00000 11 10 100 1100

Table 2: Mappings with an equal number of bits per level across
dimensions.

These mappings attempt to preserve the hierarchical nature of
IDs while reducing space. An alternative approach, as shown in
Table 3, is to simply eliminate all unused bits and compress IDs as
much as possible to minimize space, ignoring any cross-dimension
hierarchical considerations.

Pad Levels

Compressed 000000 1111111111

000000 0011111111

Table 3: Compressed mapping which does not preserve level sizes
across dimensions.

The number of bits used by each mapping on a TPC-DS dimen-
sion hierarchy at scale 10 is shown in Figure 5.

0 32 64 96 128 160 192 224 256
Number of Bits

Direct

Dimensionless

Expanded

Spread

Compressed

Figure 5: Number of bits used for various Hilbert mappings.

3.3 Splitting Directory Nodes
The Hilbert R-tree simply splits nodes in half like a B-tree. This

achieves good balance, but at the cost of increased overlap, since
choosing to split in the middle may result in significantly higher
overlap than choosing to split at some other index. For a disk-based
structure with few dimensions, prioritizing balance improves space
utilization, so for some applications this is a reasonable choice.
However, for an in-memory structure with many dimensions, high
overlap degrades performance significantly more than node bal-
ance, particularly for applications that perform large aggregations.

Since nodes in the tree have a linear ordering imposed by the
Hilbert mapping, the overlap that would result from splitting at a
given index i is simple to calculate: if Li is the union of all boxes
to the left of i, and Ri is the union of all boxes to the right of i,
then the overlap that would result from splitting at index i is simply
overlap(Li,Ri).

An analysis of the tree structure resulting from loading various
data sets makes it clear why always splitting nodes in half can be
a poor strategy for applications where overlap is critically impor-
tant. Though occasionally the half-way point is a good split, as
in Figure 6a, many nodes are more difficult to split well, such as
that shown in Figure 6b. Here, an equal split has high overlap,
but nearby indices 12 and 20 have less overlap with little cost in
balance. Depending on how much balance one is willing to sac-
rifice for overlap, splitting at index 24 or even further may be a
better choice. It is common for significantly better (often including
overlap-free) splits to be possible at indices close to, but not exactly
at, the fully balanced split.

By introducing a parameter for the minimum split size, the split
algorithm can instead examine the overlap at each valid position
and choose the one with the least overlap. Ties are broken by choos-
ing the index with the best balance, or smallest resulting key repre-
sentations, in that order. The result of using such a split algorithm
with a fixed fanout of 32 are shown in Figure 7. An equal split (i.e.
a split at index 16) is the most common single choice, but other
indices prove better in the majority of cases. The total overlap that
results from splits taken at each index are shown in Figure 7b. It is
clear that the algorithm has been forced to make some poor splits.
Nodes with a flat “overlap surface” contribute to the peak at the
evenly balanced index, since in this case, the index with the best
balance wins.
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Figure 6: Overlap at each split point in observed directory nodes.

The use of supernodes, which have higher than usual fanout,
can improve this situation. Though the split algorithm used in the
Hilbert PDC-tree is significantly different, the same principle orig-
inating with the X-tree can be applied: if a split with suitably low
overlap can not be found, then avoid splitting and increase the node
size beyond the normal fanout to create a supernode.

The X-tree and its direct descendants do not limit the maximum
size of supernodes, since a linear scan of even a very large su-
pernode is less expensive than descending to several overlapping
child nodes. However, in a parallel context, extremely large nodes
harm performance since the increased locking and copying over-
head limits speedup. Accordingly, the Hilbert PDC-tree adds a
maximum fanout parameter which limits the size of a supernode.
If a node reaches this size, it is split regardless of the quality of
the best possible split. Though this introduces overlap, the addition
of supernodes significantly decreases overlap even with the maxi-
mum fanout set to a small multiple of the normal fanout. Figure 8
shows the split frequencies and corresponding total overlap for a
tree with maximum fanout of 128 (4 times the normal fanout of
32). Comparing with Figure 7, the distribution of split positions is
very similar, with a peak at the balanced split point of 16. However,
supernode splits well beyond the normal fanout range can be seen.
Despite the relatively low number of supernode splits, the result-
ing overlap shown in Figure 8b is considerably lower than without
supernodes as shown in Figure 7b.

The best split position can be found in linear time by scanning
each potential split index in order. The fitness of two split positions
can be compared based on overlap, balance, and key size. To com-
pute the overlap and key size, the left and right MDSs that would
result from a split at that index are required. Let B be the set of n
MDSs corresponding to the child nodes. First, an array R of the
right side MDSs is computed, where R[i] = ∪(B[i . . .n−1]). This
is done in Θ(n) steps by starting with R[n− 1] = B[n− 1] and
working left, setting R[i] = ∪(B[i],R[i+1]).

The algorithm proceeds left to right, similarly computing the
left-hand MDS l as it proceeds. For each split index i, l and R[i+1]
can be used to compute the overlap and key size that would result
from a split at i. The balance is trivially computed from i and the
tree fanout. Each potential split is evaluated according to these cri-
teria, and if a better split is found, the best split index is updated.
However, a split index is only considered “best” if it is a local min-

imum with respect to overlap, or has zero overlap. This restriction
avoids the degenerate case of always choosing the first or last index
within the minimum split size in situations like the one shown in
Figure 6a. In cases where no local minima are found, it is likely
that a better split would be found outside the current range being
considered, so avoiding a split and making a supernode will likely
result in a better split in the future.

4. EXPERIMENTS
To evaluate the performance of the Hilbert PDC-tree, experi-

ments were performed using the TPC-DS [11] data set with scale
factor 50 on an Intel Core i7-3770 (4 cores, 8 threads) with 32 GiB
of RAM. These experiments use 8 hierarchical dimensions: item,
store, sold_date, sold_time, addr, cdemo, hdemo, and cus-

tomer.
Six tree variants are tested: the five Hilbert mappings described

in Section 3.2, and the PDC-tree. This PDC-tree uses the same
underlying implementation as the Hilbert PDC-tree, including the
exact same query code, so the comparison is fair in terms of imple-
mentation efficiency. Each tree is evaluated on streams consisting
of only inserts, only aggregate queries, and a 50% mix of inserts
and aggregate queries. The latencies shown are the average for
many operations, where each individual test at a given size is run
until at least 20 queries are executed and at least 4 seconds have
passed.

Query coverage is the fraction of the data included in the query
result. For example, a query with 50% coverage aggregates half
of the items stored in the tree. Test queries are randomly generated
before benchmarking, and placed into bins according to their cover-
age. The generated queries include several possibly non-contiguous
values at different levels in all dimensions. Queries range from very
low coverage to aggregations of nearly the entire data set.

Fanout is configured to 32, with a maximum fanout of 128 for
supernodes. Except where explicitly shown, the values shown are
for 8 threads, which showed the best overall performance on the
hardware used.

4.1 Data Ingestion
Performance for a stream that contains only insertions is shown

in Figure 9. It is clear that the Hilbert PDC-tree achieves a much
higher rate of ingestion than the PDC-tree. The various Hilbert
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Figure 7: Split index frequency and overlap with fixed maximum fanout.
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Figure 8: Split index frequency and overlap with supernodes.

mappings range in throughput by about 100 thousand inserts per
second, but even the slowest (expanded) at approximately 275 thou-
sand inserts per second is over 13 times faster than the PDC-tree at
approximately 20 thousand inserts per second. The fastest Hilbert
mapping for ingestion (direct) sustains well over 350 thousand in-
serts per second, over 17 times faster than the PDC-tree. This per-
formance edge is maintained as data size increases, with all trees
showing a relatively flat trend.

The performance discrepancy between the various Hilbert map-
pings is mainly due to the expense of manipulating the keys before
applying the Hilbert mapping. The direct mapping is the fastest,
since no copying or manipulation is required at all. The expanded
and compressed mappings are slower since more bit shifting is re-
quired, as well as dictionary lookups to find the appropriate range
of bits for a level. Further optimization of the Hilbert mapping
could reduce this gap and improve overall ingestion performance,
but the cost of Hilbert mapping is very low compared to the geo-
metric comparisons performed by the PDC-tree.

4.2 Querying
Performance for a stream that contains only aggregate queries is

shown in Figure 10. The difference in performance between the
various Hilbert mappings is apparent, with the expanded mapping
performing better than all other configurations. The expanded map-
ping performs best because it spreads each level of each dimension
evenly throughout the Hilbert space, regardless of the range ac-
tually covered by the data. This results in a tree structure that is
more resilient to the order in which elements are inserted. How-
ever, this mapping is also the slowest during ingestion, so there is
a slight trade-off between insert and query performance where the
best choice may differ depending on application.

It is particularly apparent that the compressed mapping, which
uses a minimal amount of space for Hilbert indices, performs poorly.
This is because the compressed mapping does not preserve the hi-
erarchical nature of IDS at all, so locality is not well-preserved with
higher level keys which is particularly significant for large aggre-
gations.
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Figure 9: Performance with a stream of inserts.

Compared to the PDC-tree, all Hilbert PDC-tree variants except
the compressed mapping perform considerably better, though the
improvement is not as dramatic compared to insertion. This is in
line with the design goals of the Hilbert PDC-tree: increase the rate
of data ingestion, while preserving the good query performance of
the PDC-tree.

Performance for a mixed stream of 50% inserts and 50% queries
is shown in Figure 11. These timings are very similar to the query-
only timings shown in Figure 10, since the overall time is domi-
nated by queries which take much more time to execute than inser-
tions in general. Performance is slightly better than the query-only
workload, which confirms that the minimal-locking scheme inher-
ited from the PDC-tree keeps thread contention low, preventing
concurrent inserts from significantly harming query performance.

A breakdown of the best Hilbert PDC-tree variant (expanded)
and the PDC-tree performance with respect to query coverage is
shown in Figure 12. These figures are for a stream of only queries,
chosen from 3 bins (one for each coverage range) uniformly at
random. For this dataset, the Hilbert PDC-tree out-performs the
PDC-tree for all query coverages. The best improvement is seen
for queries with medium to high coverage, since a good tree struc-
ture allows high coverage queries to better utilize cached aggregate
values and avoid traversing many large subtrees.

4.3 Speedup and Hilbert Mappings
The throughput speedup for a mixed stream of 50% inserts and

50% aggregate queries is shown in Figure 13. The best speedup
occurs when using 8 threads, which corresponds to the number of
hardware-supported threads on this processor. Speedup for the best
mapping, expanded, peaks at just under 4, the number of physi-
cal cores present. Increase in speedup roughly corresponds to the
query performance seen by each tree variant. This is expected,
since query time dominates, and a more efficient tree structure re-
sults in each thread visiting fewer nodes, which reduces potential
thread contention that would limit speedup.

The benefits of the various Hilbert mappings depend on several
factors, including data distribution and application requirements.
However, in general, the expanded mapping is typically best where
query performance is the primary concern. In applications where
ingestion throughput has top priority, the spread mapping is the best
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Figure 13: Speedup for a mixed stream of inserts and aggregate
queries.

choice, supporting a significantly higher rate of ingestion with only
a modest penalty in query performance.

4.4 Dimensionality
To evaluate how the Hilbert PDC-tree scales as the number of

dimensions increases, experiments were run using synthetic Zipf-
distributed data with moderate skew (0.5). For comparison, two
R-tree variants were included: one using the classic insertion algo-
rithm (R-tree), and the other using Hilbert ordering (Hilbert R-tree).
All trees are based on the same underlying parallel tree implemen-
tation and benefit from the same optimizations.

The various trees are compared by executing the same queries.
Since the generated test queries are MDSs that may include non-
contiguous values, it is not possible to directly convert queries to a
single MBR for testing R-tree variants. Instead, each query MDS
is converted into several MBRs, and the total time to execute all the
resulting MBR queries is measured. This compares the trees fairly
by performing an equivalent task, that is, the results obtained from
each tree are identical.
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Figure 10: Performance for a stream of queries.
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Figure 11: Performance for a mixed stream of 50% inserts and 50% queries.

With few dimensions, the R-tree variants perform better since
MBRs are less expensive to work with. However, as the number
of dimensions increases, the benefits of the MDS-using PDC-trees
become clear. Past 8 dimensions, the query performance of the R-
tree variants degrades dramatically. Queries beyond 20 dimensions
take an unreasonably long time to complete for the R-tree variants,
so these experiments were stopped at this point.

The Hilbert PDC-tree preserves the PDC-tree’s ability to grace-
fully scale to a large number of dimensions, though the query per-
formance advantage seen in the (8 dimension) TPC-DS results nar-
rows as the number of dimensions increases. However, the im-
provement in insert performance is not only preserved, but becomes
greater with more dimensions. This is because the the PDC-tree
must perform more expensive geometric comparisons as the num-
ber of dimensions increases, but the insertion algorithm for the
Hilbert PDC-tree is based on a linear ordering. As the number
of dimensions increases, the cost of mapping keys to Hilbert in-
dices and the cost of comparing Hilbert indices increases slightly,
but this overhead is very small compared to the additional work the

PDC-tree must perform. Consequently, the Hilbert PDC-tree shows
almost no increase in insert latency as the number of dimensions in-
creases, but inserting into the PDC-tree becomes significantly more
expensive.

5. CONCLUSION
The Hilbert PDC-tree is a parallel index for many-dimensional

data that supports a high rate of data ingestion. This is achieved
by avoiding geometric comparisons during insertion by instead in-
serting items based on the Hilbert index of their keys. A new
overlap-minimizing node split algorithm maintains a structure that
efficiently supports aggregate queries.

Experiments confirm that the Hilbert PDC-tree ingests data at a
much higher rate than its closest ancestor, the PDC-tree, while pro-
viding good performance for queries that aggregate large fractions
of the data stored in the tree. In particular, the Hilbert PDC-tree
scales well to many more dimensions than R-tree variants can effi-
ciently support.
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Figure 12: Aggregation query latency for various coverages.
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Figure 14: Latency as number of dimensions is increased.
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