VOLAP: A Scalable Distributed System for Real-Time OLAP with High Velocity
Data

Frank Dehne*i, David Robillard*} Andrew Rau—ChaplinTi, Neil Burke'f
*School of Computer Science, Carleton University, Ottawa, Canada
TFaculty of Computer Science, Dalhousie University, Halifax, Canada
tE-mail: frank@dehne.net, d@drobilla.net, arc@cs.dal.ca, neil.burke@dal.ca

Abstract—This paper presents VelocityOLAP (VOLAP), a
distributed real-time OLAP system for high velocity data.
VOLAP makes use of dimension hierarchies, is highly scalable,
and exploits both multi-core and multi-processor parallelism.
In contrast to other high performance OLAP systems such
as SAP HANA or IBM Netezza that rely on vertical scaling
or special purpose hardware, VOLAP supports cost-efficient
horizontal scaling on commodity hardware or modest cloud
instances. Experiments on 20 Amazon EC2 nodes with TPC-
DS data show that VOLAP is capable of bulk ingesting data
at over 400 thousand items per second, and processing streams
of interspersed insertions and aggregate queries at a rate
of approximately 50 thousand insertions and 20 thousand
aggregate queries per second with a database of 1 billion items.
VOLAP is designed to support applications that perform large
aggregate queries, and provides similar high performance for
aggregations ranging from a few items to nearly the entire
database.

I. INTRODUCTION

On-Line Analytical Processing (OLAP) is a powerful tech-
nology for knowledge discovery in large database systems.
Many essential business applications rely on OLAP for struc-
tured data analysis [1]. OLAP queries often aggregate large
portions of the database, which can lead to performance issues
with very large databases. Accordingly, many traditional
OLAP systems take the static data cube approach [2] and
materialize multi-dimensional views to ensure high query
performance. However, such systems can only be updated
periodically in batches, e.g. once every week, which prevents
queries from including the most recent data. More modern
systems avoid materialization, but still often incur a delay
between new data being ingested and that data being available
for analysis. The well-known “5 V’s of Big Data” (volume,
velocity, variety, veracity, value) highlight the importance of
processing large data sets that have a high rate of change,
or velocity. As data velocity increases, stale results become
increasingly problematic. Applications that monitor high
velocity data streams require the ability to analyze new data
as it arrives, in real-time.

This paper introduces VelocityOLAP (VOLAP), a scalable
real-time OLAP system that supports up-to-date querying
of high velocity data in an elastic cloud environment. As
is increasingly typical for high performance OLAP systems,

VOLAP is an in-memory system that supports ingestion of
new data, but not deletion. Unlike some other distributed
OLAP systems, such as Druid [3], VOLAP does not use
a special partitioning dimension that needs to be manually
configured. All dimensions are treated equally, and VOLAP
scales well to a high number of dimensions thanks to
the properties of its underlying data structure. VOLAP
is designed to support horizontal scaling on commodity
hardware, which is more cost efficient than systems like
SAP HANA [4], which rely on vertical scaling (the use of a
small number of very powerful compute nodes), or special
purpose hardware such as an IBM Netezza data warehouse
appliance [5]. Compute nodes can be added or removed as
necessary to adapt to the current workload, and no single
node acts as a performance bottleneck or point of failure for
the entire system.

VOLAP is a fully distributed system that partitions data
into shards stored on worker nodes of the cloud environment.
Shards are stored using the novel Hilbert PDC tree, which
supports multi-threaded insert and aggregate query operations
on many dimensions. Dimension hierarchies are exploited at
a low level to allow aggregating large portions of the database
quickly without the need to materialize multi-dimensional
views. Compared to its predecessors, the Hilbert PDC tree
can sustain a much higher rate of data ingestion.

Clients interact with VOLAP via server nodes, which
handle incoming streams of insertions and aggregate queries,
and route them to the appropriate workers. Zookeeper [6]
is used for managing global state information. A manager
background process monitors the status of the system and

All Dims

[Store] [Customer] [Item] Date Address [Household] [Promotion] [Time]
1 1

: : . Incgme
[Country] [Bvear] [Catego"v] [Year] [Country] [Band] m m
(e o) (e) (o) (] "™)
: l l : : Ordered
[City] [BDBY] [Brand] [Day] [City]
(o]

Ordered

Figure 1. Dimension Hierarchies for TPC-DS Data.

coordinates global real-time load balancing operations as
necessary. Automatic load balancing allows VOLAP to adapt
to changes in the data distribution or network topology,
such as the addition of new worker nodes to accommodate
additional load.

VOLAP has been tested on data from the TPC-DS [7]
test suite which uses the dimension hierarchies shown in
Figure 1. Using 20 c3.4xlarge worker instances on
Amazon EC2 with a database of 1 billion items, VOLAP is
able to ingest new data at a rate of over 400 thousand items
per second, and process streams of interspersed insertions and
aggregate queries at approximately 50 thousand insertions and
20 thousand aggregate queries per second. These experiments
include a wide range of queries ranging from small queries,
to average size queries that need to aggregate several hundred
million data items, up to queries that need to aggregate nearly
the entire database.

Each user session is attached to one of the server nodes.
To maximize throughput, VOLAP processes all requests
in parallel, but aims to minimize the time required for an
insert to be included in later queries. Analysis of VOLAP in
terms of Probabilistically Bounded Staleness (PBS) [8] shows
that the probability of an inconsistency between an insert
operation issued at time ¢; on one server and a subsequent
query issued at time ¢5 on a different server drops to close
to zero after elapsed time to — t1 = 0.25 seconds. In our
experiments, over hundreds of billions of tests, consistency
between insert and query operations executed on different
servers was always observed in under 3 seconds.

Compared to previous work, VOLAP introduces novel
index and worker data structures, a fully decentralized
elastic design with support for multiple servers, a new
synchronization scheme with configurable freshness, and
improved load-balancing algorithms for a fully decentralized
environment. The new Hilbert PDC tree supports a high
rate of data ingestion while providing good performance for
queries that aggregate both a large or small portion of the
database with many dimensions.

The remainder of this paper is organized as follows:
Section II discusses recent related work. Section III describes
VOLAP’s design, including network architecture, synchro-
nization, data representation, and load balancing. Section IV
shows experimental results that demonstrate the performance
of the prototype implementation, and Section V presents the
conclusion.

II. RELATED WORK

Many published systems store and query large data sets
in distributed environments. Hadoop [9] and its file system
HDFS are popular examples, with applications typically built
on MapReduce [10]. However, these systems are not designed
for real-time operation. Instead, they are based on batch
processing or “quasi real-time” operations [11], [12], [13],
[14]. The situation is similar for Hive [15], HadoopDB [16],

BigTable [17], BigQuery [18], and Dremel [19]. To overcome
the batch processing in Hadoop based systems, Storm [20]
introduced a distributed computing model that processes in-
flight Twitter data. However, Storm assumes small, compact
Twitter style data packets that can quickly migrate between
different computing resources. This is not the case for large
data warehouses. Several more recent cloud-based OLAP
systems [21], [22], [23], [24] are also based on MapReduce
and do not support full real-time operation. For peer-to-
peer networks, related work includes distributed methods for
querying concept hierarchies [25], [26], [27], [28]. However,
none of these methods provide real-time OLAP functionality.

Various publications on distributed B-trees for cloud plat-
forms exist [29], however these only support 1-dimensional
indices which are insufficient for OLAP. There have been
efforts to build distributed multi-dimensional indices based
on R-trees or related multi-dimensional tree structures [30],
[31], [32]. However, these methods do not support dimension
hierarchies which are essential for aggregate queries, and do
not scale well to a large number of dimensions.

The systems closest to VOLAP are Druid [3], SAP
HANA [4], IBM Netezza data warehouse appliance [5],
HyPer [33], and CR-OLAP [34]. The remainder of this
section will discuss these in more detail.

Druid [3] is an open-source, distributed, scalable, OLAP
store designed for real-time exploratory queries on large
quantities of transactional events. Druid is specialized to
operate on data items that have timestamps, such as network
event logs. In particular it partitions data based on these
timestamps and queries are expected to apply to a particular
range of time. This is not applicable to general OLAP, where
all dimensions have equal importance.

SAP HANA [4] is a real-time in-memory database system
that also supports aggregate queries. SAP HANA relies
mainly on vertical scaling. A basic HANA installation uses a
single, special purpose, very large multi-core compute node.
A limited scale-out version for multiple compute nodes is
available, using a distributed file system that provides a
single shared data view to all compute nodes. Horizontal
scalability is restricted, however, because the system has a
single master node for maintaining the shared data view, and
this single master node becomes a bottleneck as the system
size increases.

The IBM Netezza data warehouse appliance [5] relies
on special purpose FPGA boards that provide a hardware
implementation of OLAP functionality.

HyPer [33] is an in-memory database system that supports
fast transactions alongside a facility for creating lightweight
snapshots for OLAP sessions. HyPer makes use of the
operating system’s virtual memory facilities to quickly
create snapshots for analysis without copying all the data
unnecessarily. The HyPer model conceptually provides a low
overhead on-demand data warehouse, which supports read-
only OLAP access to a consistent snapshot of the database at

a particular point in time. This is ideal for some applications,
but less well-suited to those that process a high velocity
stream of mixed insertions and aggregate queries. HyPer is a
single-server system, though the snapshot technique it uses
may be applicable to distributed systems.

VOLAP’s predecessor, CR-OLAP [34], is similar to HANA
in that it is also a centralized system with a single master
server node. As in HANA, this becomes a bottleneck in
larger systems and restricts horizontal scalability. CR-OLAP
uses the PDC tree [35] as a building block, but as one large
tree, where the top few levels are stored on the master node
and subtrees are stored in memory on worker nodes. This
design scales well to a point, but has high insertion overhead
and does not allow for a distributed index.

III. VOLAP ARCHITECTURE
A. Architecture Overview

The VOLAP architecture, shown in Figure 2, consists of:

e m servers Si. ., for handling client requests.

o p workers Wy, for storing data.

o A Zookeeper [36] cluster for global system state.

o A manager background process for analyzing global
state and initiating load balancing operations.

Wi [T
- / /o

N

Manager

Figure 2. System architecture. Arrows illustrate the path of an insert or
query operation through the system.

Workers and servers are multi-core machines which
execute up to k parallel threads and store all data in main
memory. VOLAP is elastic in that more workers and servers
can be added if necessary. With increasing database size
and/or changing network topology, data is reorganized to
make the best use of the currently available resources.

Workers are used for storing data and processing OLAP
operations. The global data set is partitioned into data shards
D1, ..., D,. Each shard D; has a bounding box B; which
is a spatial region containing D;, represented by either a
Minimum Bounding Rectangle (MBR, one box) or Minimum

Describing Subset (MDS, multiple boxes) [37]. Bounding
boxes may overlap, though an individual data item is stored in
only one shard. Each worker typically stores several shards.

Servers receive OLAP operations from clients, determine
the shards relevant to each operation, and forward the
operations to the worker(s) responsible for those shards.
Once the workers respond, the server reports the result to
the originating client.

Servers, workers, and the manager communicate using
ZeroMQ [38], a high-performance asynchronous messaging
library designed for scalable distributed applications. ZeroMQ
is used both for inter-process and inter-thread communication.
Each thread has local sockets for sending and receiving
messages without locking, and incoming network requests
are load-balanced between threads based on their availability.

B. System Image

The system image represents the global system state, and
is stored in Zookeeper [36], a fault tolerant distributed coor-
dination service. The image contains the global information
required by servers and the manager, including lists of the
current workers and servers, configuration parameters, and
for each shard its size, bounding box, and the address of the
worker where it is located.

Each server maintains a local image which is used to
perform insertions and queries. The local image serves as
an in-memory cache to prevent Zookeeper from becoming a
bottleneck. Given an insertion or query, the server uses the
local image to find the relevant shards as well as the address
of their corresponding worker(s).

If the local image is changed by an insertion, the server
updates the global image in Zookeeper at a configurable rate.
In the experiments presented here, servers update Zookeeper
every 3 seconds as necessary. Since changes take time to
reach other servers, the local image of each server may
become outdated. Servers make use of Zookeeper’s watch
facility to be notified of changes without wasteful polling.
Workers update shard statistics in Zookeeper periodically as
well, to allow the manager to plan load balancing operations.

C. Index Data Structure

The server’s local image is responsible for finding the
shards relevant to each insertion or query. A fast index
structure for each local image is therefore crucial for
high performance. Two key aspects of the index affect
performance: the speed of searching for shards, and the
structure that results from choosing a given shard for an insert.
In particular, overlapping shards increase the likelihood that
queries must be sent to many workers; hence, minimizing
shard overlap is critically important.

We use a modified PDC tree [35] to serve this purpose.
The basic structure of the tree is conventional: nodes have a
bounding box which encompasses those of all its children.
The leaves of the tree correspond to shards, i.e. there are

exactly n leaves in the index tree. The search performed
for a query is straightforward: starting from the root, search
every child whose bounding box touches the query box. If a
leaf is reached, that shard must be queried. Insertions differ
from a conventional tree, since the leaves are fixed. When a
leaf is reached, its bounding box is expanded but children
are not added. Consequently, an insertion never results in a
node split. There are many algorithms for choosing the best
subtree for insertions in an R-tree-like structure, with various
trade-offs. The VOLAP index chooses the child which results
in the least overlap, since the high global cost of overlap
dominates the cost of performing overlap calculations in the
index.

Though insertions do not modify the structure of the tree,
synchronization with the global image in Zookeeper requires
operations that do. Adding a new shard to the system inserts
a new leaf, expanding and possibly splitting internal nodes
in the process. When a bounding box in Zookeeper expands,
the corresponding leaf must be expanded. This operation

is unique, since the expansion is a bottom-up operation.

Searching for a leaf via its bounding box is expensive since
there may be overlap higher in the tree, forcing the search to
visit several subtrees of a single node. Instead, VOLAP keeps

a separate index of pointers to leaf nodes, keyed by shard ID.

When a bounding box expands, the leaf is found immediately
using this index, the leaf’s bounding box is expanded, and
the expansion is propagated up the tree towards the root
as necessary. This operation temporarily violates the tree
invariant that a node’s bounding box encompasses all of its
children. However, this is not problematic since it is only
used for synchronization, and will never cause queries to
miss data they would have otherwise included prior to the
start of the synchronization.

Being based on the PDC tree, the index data structure is
multi-threaded and uses minimal locking: operations hold
only one or two node locks at a given time, and never lock
entire subtrees. Thus, many operations can be performed in
parallel. Servers use many threads, all using the same index
in parallel, to be able to maintain a high throughput to fully
utilize workers.

D. Shard Data Structure: Hilbert PDC Tree

Each shard is stored in an in-memory data structure
designed for a multi-core compute node. The shard data
structures handle a stream of insert and aggregate query
operations. VOLAP currently includes five data structures
for shards: a simple array for benchmarking purposes, two
variants of the PDC tree [35], and two variants of the novel
Hilbert PDC tree. All variants share the same multi-threaded
underlying tree implementation, but use either Minimum
Describing Subsets (MDS) or Minimum Bounding Rectangles
(MBR) as keys.

Most applications are best served by the Hilbert PDC tree,
which is designed to suit the needs of a high velocity OLAP

system like VOLAP. The Hilbert PDC tree is, like the PDC
tree and R-tree before it, a multi-dimensional index where
each node has a bounding box which encompasses that of all
its children. It supports a much higher rate of data ingestion
than the PDC tree by using the maximum Hilbert number
of nodes to quickly determine an insert position.

This approach is similar to that of the Hilbert R-Tree [39],
but applying a Hilbert ordering to the MDS keys used in a
PDC tree introduces new issues. In particular, MDSs in the
tree are expressed at various levels, where nodes higher in the
tree are likely to have keys at higher levels in the dimension
hierarchy. This means that MDSs are often compared at
levels different than the leaf levels for which the Hilbert
indices stored in the tree were calculated. Since the breadth
of various levels may vary considerably across dimensions,
the Hilbert order for leaves may not provide good locality
for keys higher in the tree which are expressed at higher
levels in the dimension hierarchy.

To resolve this issue, IDs are first expanded such that a
given level in any dimension spans the same numeric range.
This is achieved by shifting the associated bits left to match
the maximum possible value of an ID in that level for any
dimension. As a result, the Hilbert index for leaf level keys
will still have a good distribution at higher levels in the tree.
The dimension number at the start of each ID is removed
entirely, since otherwise IDs in each dimension would occupy
disjoint numerical ranges.

Figure 3 shows a simple example for an ID with two
dimensions. At level 4, dimension 2 uses only two bits, but
dimension 1 uses four bits. To compensate, IDs in level 4
in dimension 2 are shifted left two places, causing values to
span roughly the same numerical range as those in dimension
1. This transformation is only performed on a copy of the key
used to calculate the corresponding Hilbert number, the keys
in the tree used for comparison during queries are unmodified.
A downside to the Hilbert approach is the additional space
required to store a Hilbert index for each tree node. To
minimize this overhead, compact Hilbert indices [40] are
stored, which use the minimum number of bits required to
represent values given the range of each dimension.

Dim | L1 L2 L3 L4
D 01 xx11 | xx11 | x111 | 1111
10 1111 | xxx1 | xxx1 | xx11
Expansion XX 11xx | 11xx | 111x | 1111
XX 1111 | Ixxx | Ixxx | 11xx
Figure 3. Transforming hierarchical IDs for Hilbert mapping.

Given the Hilbert index for the item to be inserted, the
tree inserts in a similar fashion to linearly ordered trees such
as a B+ tree. Since no geometric calculations are performed
during insertion, data ingestion is significantly faster than
with a PDC tree. The node splitting algorithm also differs
from the PDC tree, since the fixed ordering of children

precludes the use of R-tree-like split algorithms. Instead, the
overlap that would result from splitting a node at each index
is calculated in linear time, and the node is split at the index
that causes the least overlap between the resulting children.

E. Load Balancing

Effective load balancing is crucial for scalable distributed
systems. When the workload of the system is unevenly parti-
tioned among its resources, some portion goes underutilized
while the remainder struggles to pick up the slack. This
has a negative impact on throughput, response time, and
stability which tends to get further compounded as the system
scales up in size. However, the load balancing operations
themselves can also incur significant costs due to the overhead
of moving potentially large amounts of data over the network.
High performance requires a load balancing scheme which
offers a good trade-off between load balancing overhead and
effectiveness. Dynamic load balancing permits VOLAP to
add, remove, or replace servers and workers dynamically
in order to maintain performance in the face of changing
system load.

In VOLAP, a separate background process called the
manager initiates load balancing operations. The manager
periodically analyzes the system state stored in Zookeeper
and decides on suitable load balancing operations. It then
initiates these operations, coordinating the necessary actions
between workers and servers. For example, the manager may
identify a worker that is overloaded and about to run out of
memory, then send messages to workers instructing them to
perform the appropriate splits and/or migrations. The manager
is not a bottleneck for insertion or query performance, and
can reside anywhere in the system. The split and migration
processes are designed to allow shards to split and move
transparently between workers while the system continues
to service both insert and aggregate query requests.

In order to support load-balancing, the shard data structures
provide the following operations:

o SplitQuery(D;, B;) which returns a hyperplane h that

partitions D; into D} and D? with bounding boxes
B} and B2, respectively, such that D} and D? are of
approximately equal size.

e Split(D;, B;, h) which returns (D}, B}, D? B2) where
D; is partitioned into D} and D? with bounding boxes
B} and B2, respectively, such that D} and D? are
spatially separated by hyperplane h.

o SerializeShard() which returns a flat binary blob b
containing the data in D, (suitable for network trans-
mission), and the corresponding DeserializeShard(b)
which builds the data structure from such a blob.

A shard D; stored on W (the source worker) can be
migrated to another worker W, (the destination worker)
if, for example, W is running out of memory or Wy is a
new worker allocated for spreading the load. A shard can
also be split if the load balancer requires smaller shards for

migration. Each worker W}, stores a mapping table M; to
handle operations while a split is in progress. If a shard
D; is split into D} and D?, then M; stores an entry with
key D; and value pointing to the two data structures for D}
and D2. To support insertion during splits and migrations,
an insertion queue is created for the relevant shard. During
the operation, new items for the shard are inserted into the
queue to prevent the shard from growing continuously while
it is being serialized. The insertion queue uses the same data
structure as shards, and is queried along with the shard itself
for any incoming queries that touch the shard. Thus, query
processing is not interrupted while a split is in progress.
When the operation is finished, the insertion queue is drained
into the shard and destroyed.

IV. EXPERIMENTAL EVALUATION

We evaluated the performance of VOLAP with respect to
the system size, workload mix (percentage of inserts in the
operation stream; e.g. workload mix 25% is 25% inserts and
75% aggregate queries), and query coverage (percentage of
the database that needs to be aggregated for a query). We used
the TPC-DS decision support data set from the Transaction
Processing Council, with d = 8 hierarchical dimensions
as shown in Figure 1. Experiments were performed on
Amazon EC2, using c3.8xlarge instances for servers,
c3.4xlarge instances for workers, and c3.2xlarge
instances for clients and the manager. At the time of writing,
these instances are based on Intel Xeon E5-2680 (Ivy Bridge)
processors. All instances are running Amazon Linux with
Linux 3.14.35, ZeroMQ 4.0.5 and Zookeeper 3.4.6.

Queries are randomly generated to span a wide range
of coverages, and specify values at various levels in all
dimensions. Generated queries are tested against the database
and binned according to their true coverage. During bench-
marking, queries are chosen uniformly at random from the
appropriate bin.

A. Data Structure Performance

Figure 4 shows the performance of the Hilbert PDC tree
compared to the PDC tree [35] for queries with different
coverage, using the TPC-DS data set with a single tree on
one worker instance.

Both trees perform relatively well with high coverage,
since these queries tend to completely cover high-level tree
nodes. This allows the cached aggregate values in the tree
to be used, avoiding the need to traverse more deeply.

The performance gain of the Hilbert PDC tree for low
and medium coverage queries highlights the improved tree
structure obtained by using Hilbert ordering. For both low
(below 33%) and medium (33% to 66%) coverage queries,
the Hilbert PDC tree performs significantly better than the
PDC tree. The fractal nature of Hilbert ordering combined
with careful mapping of MDSs (as described in Section III-D)
produces less overlap at lower levels in the tree than the

2.5

e—e Hilbert low coverage ; : ']
e----¢ Hilbert medium coverage o
o| *~-* Hilbert high coverage ’
=—=a PDC low coverage
e----# PDC medium coverage | ="~
15" PDC high coverage ’
P
=
E o1l
]
05} 7 e e o-
e enentBEE
I 2 3 4 5 6 7 8 9 10
Size (Millions)

Figure 4. Query performance of Hilbert PDC tree vs. PDC tree for various
query coverages.

R-tree-like PDC tree algorithm. This increases the likelihood
that cached aggregate values are used for lower coverage
queries.

The benefits of the PDC tree are most apparent with a high
number of dimensions. In particular, PDC trees handle many
dimensions much more efficient than R trees. The Hilbert
PDC tree preserves this scalability in query performance, and
significantly improves it for insertion. Figure 5 compares the
insert and query performance of both conventional and Hilbert
R trees and PDC trees. With over 16 dimensions, the query
performance of the R tree variants degrades dramatically,
but both PDC trees retain their speed. Since insertion in the
Hilbert PDC tree is based on a simple linear ordering rather
than geometric calculations as in the PDC tree, the cost
of additional dimensions is significantly lower. As a result,
insert latency is nearly flat compared to the PDC tree where
insertion gets significantly more expensive as the number of
dimensions increases.

For the TPC-DS data set, preliminary experiments showed
that the Hilbert PDC tree out-performs the PDC tree in all
cases. Hence, all subsequent experiments in this section use
the Hilbert PDC tree as the underlying data structure.

B. Real-Time Load Balancing

The real-time load balancer coordinates the elasticity of the
system. As workers are added, the load balancer automatically

moves data items to the new workers to balance the workload.

Figure 6 shows the impact of real-time load balancing during
a horizontal scale-up experiment. In this experiment, load
phases are interleaved with insert and query benchmarking
phases. At the start of each load phase, two additional workers
are added to account for the increase in database size. The
red region shows the minimum and maximum number of
data elements stored on a worker. When new workers are
introduced they are empty, causing the minimum to go to

zero. The effects of the load balancer are clearly visible as the
gap between minimum and maximum worker size is reduced
by moving data to the newly introduced workers. The number
of migration operations for this process are shown as a dotted
purple line associated with the right y-axis. Once balance
is achieved, loading proceeds, increasing the minimum and
maximum size per worker as new elements are inserted. Note
that this experiment uses discrete phases to ensure a stable
benchmarking environment, but in general, load balancing is
performed concurrently with insertions and aggregate queries
whenever the manager decides an adjustment is necessary.

60 = worker| | Splits 600

Subset =-=+ Migrations

W
(=]

500

AN

N
[=}

Elements (Millions)
(%]
S
(8]
S
S
Load Balancing Operations

(=]
~.

0 5 10 15 20 25 30 35
Elapsed Time (s) (Thousands)

Figure 6. Load balancing data size per worker as database size N and
number of workers p increases. N = p- 500 million; p =4...20; m = 2.

C. Horizontal Scale-Up Performance

Figure 7 shows the insert and aggregate query performance
for various workloads as the system size increases. This data
is from the same experiment as shown in Figure 6, where two
new empty workers are added at each scale-up step. For each
system size with p workers and N =~ p x 50 million data
elements, benchmarks are performed for insertions as well
as queries with low (below 33%), medium (between 33%
and 66%), and high (above 66%) coverage. The throughput
and corresponding latency are shown in Figure 7.

Figure 7 shows that VOLAP scales well in an elastic
environment. As the database size increases and workers
are added to compensate, VOLAP maintains its performance
over the entire range of database sizes. The insertion curve
is nearly flat at approximately 50 thousand inserts per
second. Query performance is unsurprisingly more affected
by increasing database size, but the gentle slope averaging
approximately 20 thousand per second shows that VOLAP
can sustain high throughput and sub-second aggregate queries
for very large databases.

VOLAP also supports bulk ingestion which allows data
to be loaded at a much higher rate than point insertion.
When many records are available to be bulk inserted at once,
experiments on the same system have shown VOLAP to be

Insert Latency (s)

0.005

e—e Hilbert PDC-Tree
=—a Hilbert R-Tree
v—v PDC-Tree

0.004| R-Trce

0.003+

0.002+

0.001+

4 8 12716 20 24 28 32 36 40 44 48 52 56 60 64
Dimensions

(a) Insert latency

Figure 5.
80 ‘
e—e [nserts
-/8\ 70t B--a Lowlcoverage
g v---v Medium coverage
§ 60} +---+ High coverage
&
£ 50}
2
g 40}
) ~<
m \\\\
: 30 ttf.___.:.\\\
5 20+ § ':""'TT-':"L'-’-:;'E’*‘--,.
= T g
2 RRETEFry
210} 2
o

200 300 400 500 600 700 800 900 1000
Size (Millions)

(a) Throughput

Figure 7.

12
o—e Hilbert PDC-Tree
T =—a Hilbert R-Tree
10} | v—~v PDC-Tree
/ +~—-=+R-Tree
z gl | |
> I
Q I
: ;
< 6 I 1
— I
B |
S 4 s]
o I
1!
|
2+ lll 1
// !
_x d N R
e
4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
Dimensions

(b) Query latency

Performance of tree variants as the number of dimensions is increased.

0.4

e—a [nserts

=--8 [ow coverage
v---v Medium coverage
+---+ High coverage P

0.35

0.3

Latency (s

200 300 400 500 600 700 800 900 1000
Size (Millions)

(b) Latency

Query and insert performance with increasing system size. Database size N and number of workers p = N/50 million (4 < p < 20) both

increasing. Low coverage: below 33%; medium coverage: between 33% and 66%; high coverage: above 66%.

capable of ingesting data at over 400 thousand items per
second.

D. Insert and Query Performance
Figure 8 shows the throughput and latency for insertions
and queries at a fixed database size of 1 billion. Performance
is measured for various workload mixes (percentage of insert
operations) and query coverages (percentage of the database
aggregated by a query). Workload mix has a significant
impact on throughput because the time spent for insertions
and queries may vary considerably, and insertions may
manipulate data structures that are concurrently being used
to answer queries.
Figure 8 shows that the “coverage resilience” of the
Hilbert PDC tree carries through to VOLAP as a whole:

query performance is nearly identical regardless of coverage.

As discussed in Sections III-D and IV-A, the Hilbert PDC

tree stores aggregate values at all levels in the tree which
speeds up aggregate queries significantly by preventing large
aggregations from needing to scan the entire database.

In these experiments, insertion was approximately three
times faster than querying, with a predictable linear relation-
ship between workload mix and overall performance. This
also demonstrates that insertions do not significantly impact

concurrent query performance.

E. Coverage Impact

A more detailed analysis of the impact of query coverage
on performance is shown in Figure 9. Both the impact on
individual query time and the number of shards searched are
shown as a heat map.

As shown in Figure 9(a), the majority of queries are
executed very quickly, with a few outliers at low coverage.
This reflects the behaviour of the Hilbert PDC tree: with

x©
(=}

e—e] ow coverage
=--@ Medium coverage
v---v High coverage

(=)

S e SN |
o O

N W
==

Operations / Second (Thousands)
N
=

—_
=]

0% 25% 50% 75%
Workload Mix (Insert Percentage)

100%

(a) Query Throughput

Figure 8.
coverage: between 33% and 66%; high coverage: above 66%.
10*
2.0t
3
~ 1.5} 10
Py
£ i
= 10
> 1.0
2
o
0.5} 10!
|| i CEC. ; 0
0-0 20% 40% 60% 80% 10
Coverage

(a) Query time vs. coverage.

Figure 9.

high coverage it is likely that aggregates will be found at
higher levels in the tree, making deeper traversal unnecessary.
However, with low coverage, it is more likely that higher
level directory nodes do not precisely cover the query region.
Thus, it may be necessary to descend to deep levels of the
tree to find directory nodes that cover a small enough region,
or even descend all the way to the leaf level to find individual
values.

As shown in Figure 9(b), the relationship between coverage
and number of shards searched is approximately linear, where
increasing coverage requires an increasing number of shards
to be searched. There are some outlier points at around 50%
coverage where many more shards must be searched, however.
This is due to queries that intersect many boundaries of the
shard partitions, requiring a larger number of shards to be
queried.

0.4 .
e—e | ow coverage
0.35} =--a Medium coverage
v---¥ High coverage

031
2> 0.25¢

Latency (s
o
\S]

0% 25% 50% 75%
Workload Mix (Insert Percentage)

100%

(b) Query Latency

Performance for various workload mixes and query coverages. TPC-DS; N = 1 billion; p = 20; m = 2; low coverage: below 33%; medium

250F - — 10*
200/ = 103
§ 150}
2 - 102
=
S 100}
3
w2
| 10!
50}
0 100

20% 40% 60% 80%
Coverage

(b) Searched shards vs. coverage.

Effect of coverage on query performance; N = 1 billion; p = 20.

F. Query Freshness

Each user session is attached to one of the server nodes.
User sessions attached to the same server will observe a very
low time between an insert being issued and its effect being
visible in subsequent queries, since no global synchronization
is required. To synchronize sessions across servers, VOLAP
periodically initiates a synchronization of the servers through
Zookeeper at a configurable rate. These experiments use the
default rate of 3 seconds. The time between an aggregate
query issued on one server and a prior insert operation
issued on a different server is referred to as the elapsed
time. In order to estimate the number of possibly missed
inserts in an aggregate query result relative to elapsed time, a
simulation was performed using TPC-DS data and the query
and insert latency distributions observed for VOLAP in these
experiments.

[}
(=]

—e 25% coverage
=--8 50% coverage
v--=v 75% coverage
+-=+ 100% coverage

-
o O

(=)

(=}

Number of Missed Inserts
NOWwW A L
S =)

(=}

0 0.5 1 1.5 2 2.5 3
Elapsed Time (s)

(a) Avg. number of missed inserts rel. to elapsed time.

After 2 seconds

0.4

«—= 25% coverage
=---2 50% coverage
03 v--7 75% coverage
=== 100% coverage

After 1 second

0.4

0.2

0.3

0.1

After 0.25 seconds

0.4,

0.2k

0.1}

Probability

Number of missed inserts

(b) Probability of missed inserts after 0.25, 1 and 2 seconds elapsed
time.

Figure 10. Serialization between user sessions attached to different servers.

Figure 10(a) shows the average number of missed inserts
relative to elapsed time. The number of missed inserts drops
to close to zero after 0.25 seconds. Figure 10(b) examines in
more detail the probability of 1 to 4 missed inserts after an
elapsed time of 0.25, 1, and 2 seconds. The same behaviour
is observed for any database size n > 500, 000, including
the experiments shown in Figure 7 and Figure 8, because
only the most recent three seconds of inserted data contain
items that are ever missed. For example, for a database with
n = 1 billion data items, a large query with 50% coverage
(500 million reported data items) and 1 second elapsed time,
there is approximately a 1% probability of missing 2 data
items (0.0000004% of the result). In the many experiments
performed with VOLAP, consistency between insert and
query operations executed on different servers was always
observed in under 3 seconds.

V. CONCLUSION

VelocityOLAP (VOLAP) is a scalable OLAP system which
allows high velocity data to be queried in real-time. A novel
underlying data structure, the Hilbert PDC tree, exploits
dimension hierarchies to allow aggregating large portions
of the database quickly without materializing views, and
supports a very high rate of data ingestion. VOLAP uses
a fully decentralized architecture which supports horizontal
scaling, allowing the system to scale up to very large sizes
and maintain performance using only commodity hardware
or modest cloud instances. Experiments confirm that VOLAP
performs well for queries ranging from aggregations of a
few elements to aggregations of nearly the entire database.

VI. ACKNOWLEDGEMENTS

Research partially supported by the IBM Center for
Advanced Studies Canada and the Natural Sciences and
Engineering Research Council of Canada.

REFERENCES

[1] J. Han and M. Kamber, Data Mining: Concepts and Tech-
niques. Morgan Kaufmann, 2000.

[2] J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart,
M. Venkatrao, F. Pellow, and H. Pirahesh, “Data Cube:
A Relational Aggregation Operator Generalizing Group-By,
Cross-Tab, and Sub-Totals,” Data Min. Know. Disc., vol. 1,
pp- 29-53, 1997.

[3] F. Yang, E. Tschetter, X. Leaute, N. Ray, G. Merlino, and
D. Ganguli, “Druid: A real-time analytical data store,” in Proc.

ACM SIGMOD, 2014.

[4

—_

F. Firber, N. May, W. Lehner, P. Grole, 1. Miiller, H. Rauhe,
and J. Dees, “The SAP HANA database — an architecture
overview.” IEEE Data Eng. Bull., vol. 35, no. 1, pp. 28-33,
2012.

[5] P. Francisco et al., “The Netezza data appliance architecture: A
platform for high performance data warehousing and analytics,”
IBM Redbooks, vol. 3, 2011.

[6] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems,” in Proc.
USENIX, 2010.

[71 M. Poess, B. Smith, L. Kollar, and P. Larson, “TPC-DS,
Taking decision support benchmarking to the next level,” in
Proc. ACM SIGMOD. ACM, 2002, pp. 582-587.

[8] P. Bailis, S. Venkataraman, M. J. Franklin, J. M. Hellerstein,
and I. Stoica, “Quantifying eventual consistency with pbs,”
The VLDB Journal, vol. 23, no. 2, pp. 279-302, 2014.

[9] “Hadoop,” http://hadoop.apache.org/.
[10] J. Dean and S. Ghemawat, “MapReduce: Simplified data

processing on large clusters,” Commun. ACM, vol. 51, no. 1,
pp. 107-113, 2008.

(11]

[12]

(13]

[14]

[15]

(16]

[17]

(18]

(19]

(20]

(21]

[22]

(23]

[24]

[25]

R. Bruckner, B. List, and J. Schiefer, “Striving towards near
real-time data integration for data warehouses,” Proc. DaWaK,
pp. 173-182, 2002.

D. Jin, T. Tsuji, and K. Higuchi, “An Incremental Maintenance
Scheme of Data Cubes and Its Evaluation,” Proc. DASFAA,
pp- 3648, 2008.

R. J. Santos and J. Bernardino, ‘“Real-time data warehouse
loading methodology,” Proc. IDEAS, pp. 49-58, 2008.

——, “Optimizing data warehouse loading procedures for
enabling useful-time data warehousing,” Proc. IDEAS, pp.
292-299, 2009.

A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka,
S. Anthony, H. Liu, P. Wyckoff, and R. Murthy, “Hive: A
warehousing solution over a map-reduce framework,” Proc.
VLDB, pp. 1626-1629, 2009.

A. Abouzeid, K. Bajda-Pawlikowski, D. Abadi, A. Silber-
schatz, and A. Rasin, “HadoopDB: An architectural hybrid of
MapReduce and DBMS technologies for analytical workloads,”
Proc. VLDB, vol. 2, no. 1, pp. 922-933, 2009.

F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber,
“BigTable: A distributed storage system for structured data,”
ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1-4:26, 2008.

“BigQuery,” http://developers.google.com/bigquery/.

S. Melnik, A. Gubareyv, J. J. Long, G. Romer, S. Shivakumar,
M. Tolton, and T. Vassilakis, “Dremel: Interactive analysis of
web-scale datasets,” Proc. VLDB, pp. 330-339, 2010.

“Twitter storm,” http://storm-project.net/.

Y. Cao, C. Chen, F. Guo, D. Jiang, Y. Lin, B. C. Ooi, H. T.
Vo, S. Wu, and Q. Xu, “ES2: A cloud data storage system for
supporting both OLTP and OLAP,” in Proc. ICDE, 2011, pp.
291-302.

C. Chen, G. Chen, D. Jiang, B. C. Ooi, H. T. Vo, S. Wu, and
Q. Xu, “Providing scalable database services on the cloud,”
in Proc. WISE, 2010, pp. 1-19.

H. Han, Y. C. Lee, S. Choi, H. Y. Yeom, and A. Y. Zomaya,
“Cloud-aware processing of MapReduce-based OLAP applica-
tions,” in Proc. Australasian Sym. on Par. Distr. Comp., 2013,
pp. 31-38.

J. Li, F. Z. Wang, L. Meng, W. Zhang, and Y. Cai, “A map-
reduce-enabled SOLAP cube for large-scale remotely sensed
data aggregation,” Computers & Geosciences, 2014.

K. Doka, D. Tsoumakos, and N. Koziris, “Online querying
of d-dimensional hierarchies,” J. Par. Distr. Comp., vol. 71,
no. 3, pp. 424-437, 2011.

[26]

(27]

(28]

[29]

(30]

(31]

(32]

[33]

[34]

(35]

(36]

[37]

(38]

(39]

[40]

A. Asiki, D. Tsoumakos, and N. Koziris, “Distributing and
searching concept hierarchies,” Cluster Computing, vol. 13,
pp- 257-276, 2010.

K. Doka, D. Tsoumakos, and N. Koziris, “Brown Dwarf: A
fully-distributed, fault-tolerant data warehousing system,” J.
Par. Distr. Comp., vol. 71, no. 11, pp. 1434-1446, 2011.

Y. Sismanis, A. Deligiannakis, N. Roussopoulos, and Y. Ko-
tidis, “Dwarf: Shrinking the PetaCube,” in Proc. ACM SIG-
MOD, 2002, pp. 464-475.

S. Wu, D. Jiang, B. C. Ooi, and K.-L. Wu, “Efficient B-tree
based indexing for cloud data processing,” in Proc. VLDB,
2010, pp. 1207-1218.

J. Wang, S. Wu, H. Gao, J. Li, and B. C. Ooi, “Indexing
multi-dimensional data in a cloud system,” in Proc. ACM
SIGMOD, 2010, pp. 591-602.

X. Zhang, J. Ai, Z. Wang, J. Lu, and X. Meng, “An efficient
multi-dimensional index for cloud data management,” in Proc.
Int. W. Cloud Data Management, 2009, pp. 17-24.

M. C. Kurt and G. Agrawal, “A fault-tolerant environment for
large-scale query processing,” in Proc. HiPC, 2012, pp. 1-10.

A. Kemper and T. Neumann, “HyPer: A hybrid OLTP&OLAP
main memory database system based on virtual memory
snapshots,” in 2011 IEEE 27th International Conference on
Data Engineering. 1EEE, apr 2011, pp. 195-206.

F. Dehne, Q. Kong, A. Rau-Chaplin, H. Zaboli, and R. Zhou,
“A distributed tree data structure for real-time OLAP on cloud
architecture,” in Proc. IEEE Big Data, 2013.

F. Dehne and H. Zaboli, “Parallel real-time OLAP on multi-
core processors,” in Proc. CCGRID, 2012, pp. 588-594.

P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper:
Wait-free coordination for internet-scale systems,” in USENIX,
vol. 8, 2010, pp. 11-11.

M. Ester, J. Kohlhammer, and H.-P. Kriegel, “The DC-tree: a
fully dynamic index structure for data warehouses,” in Proc.
ICDE, 2000, pp. 379-388.

P. Hintjens, ZeroMQ: Messaging for Many Applications.
O’Reilly Media, 2013.

I. Kamel and C. Faloutsos, “Hilbert R-tree: An improved
R-tree using fractals,” in Proc. VLDB, 1994, pp. 500-509.

C. H. Hamilton and A. Rau-Chaplin, “Compact hilbert indices:
Space-filling curves for domains with unequal side lengths,”
Information Processing Letters, vol. 105, no. 5, pp. 155-163,
Feb 2008.

