
Automatic, on-line tuning of YARN
container memory and CPU parameters

Mikhail Genkin∗, Frank Dehne, Maria Pospelova, Yabing Chen and Pablo Navarro
School of Computer Science, Carleton Unviersity, Ottawa, Canada

∗ Contact Author. E-mail: michael.genkin@carleton.ca

Abstract—Big data analytic technologies such as Hadoop and
Spark run on compute clusters that are managed by resource
managers such as YARN. YARN manages resources available
to individual applications, thereby affecting job performance.
Manual tuning of YARN tuning parameters can result in sub-
optimal and brittle performance. Parameters that are optimal
for one job may not be well suited to another. In this paper
we present KERMIT, the first on-line automatic tuning system
for YARN. KERMIT optimizes in real-time YARN memory and
CPU allocations to individual YARN containers by analyzing
container response-time performance. Unlike previous automatic
tuning methods for specific systems such as Spark or Hadoop,
this is the first study that focuses on the more general case
of on-line, real-time tuning of YARN container density and
how this affects performance of applications running on YARN.
KERMIT employs the same tuning code to automatically tune
any system that uses YARN, including both Spark and Hadoop.
The effectiveness of our technique was evaluated for Hadoop and
Spark jobs using the Terasort, TPCx-HS, and SMB benchmarks.
KERMIT was able to achieve an efficiency of more than 92%
of the best possible tuning configuration (exhaustive search of
the parameter space) and up to 30% faster than basic manual
tuning.

Keywords: Automatic tuning, on-line tuning, YARN,
Hadoop, Spark.

I. INTRODUCTION

Big data analytics has emerged as one of the most important
computing trends in high performance computing. Key big
data technologies such as Hadoop map-reduce jobs, Spark
applications, Hive, Hbase and others run on clusters that are
managed by resource managers. The most commonly used
resource manager in the big data analytics space is YARN.
It manages resources available to individual applications,
thereby affecting job performance. Manual tuning of big data
applications, such as Hadoop map-reduce or Spark, involves
changing many YARN tuning parameters. It often results in
sub-optimal and brittle performance because parameters that
are optimal for one job (input data set) may not be well suited
to another.

There have been a number of attempts to automatically
tune big data applications [1], [2], [3], [4], but they focused
specifically on tuning Hadoop map-reduce only. This is the
first study that focuses on the more general case of on-
line, real-time tuning of YARN container density and how
this affects performance of applications running on YARN.
The parameter ”container density” refers to the number of
containers started by YARN at a given point in time to run
in parallel on the cluster. Running too few containers may

leave the cluster under-utilized, resulting in sub-optimal job
performance. Running too many containers at the same time
can create contention for key resources such as CPU and
memory, again leading to poor application performance.

As part of our study we developed an on-line automatic
tuning Java library, called KERMIT, designed specifically for
on-line automatic tuning. Although in this study KERMIT
was integrated with YARN, it exposes an integration interface
that makes it easy for any application or resource manager to
integrate with it.

In this paper we demonstrate that KERMIT can optimize
performance of both Hadoop map-reduce jobs and Spark
applications using the same integration code and search algo-
rithm. KERMIT optimizes the number of concurrently running
containers on-line, in real-time, in response to actual observed
container performance, and can achieve a performance of
more than 92% of the best possible tuning configuration
(exhausive search of parameter space). Our results demonstrate
that on-line automatic tuning can achieve tuning configurations
that are up to 30% faster than the basic manual tuning
typically applied by big data practitioners. Our technique does
not require extensive, time-consuming training runs. It also
has a very small code footprint and performance overhead.
It does not require any application-specific tuning rules to
be developed by application administrators. KERMIT allows
application frameworks such as Hadoop map-reduce and Spark
to dispense with many manual configuration settings, thereby
reducing coding effort for application framework developers
and improving end-user experience for administrators.

The remainder of this paper is organized as follows. Sec-
tion II reviews previous work on automatic tuning of big
data workloads and discusses key differences between previous
work and our approach. Section III first discusses the YARN
architecture and how YARN parameters can impact perfor-
mance of Hadoop map-reduce, Spark and other applications.
Section III then describes our KERMIT architecture and how
it integrates with YARN. Section IV explains the experimantal
evaluation methodology, including criteria used to quantify
performance improvements and automatic tuning efficiency.
Section V presents our experimental results. Section VI sum-
marizes our key findings and discusses directions for future
research.



II. PREVIOUS WORK

There have been many attempts to automatically tune
performance of big data workloads. Most of them focused
on automatically tuning Hadoop map-reduce. None of the
previous papers studied the more general case of auto-tuning
a general purpose resource manager such as YARN. In this
section we discuss relevant related work.

Performance of Hadoop jobs is sensitive to underlying hard-
ware, network infrastructure, JVM configuration and Hadoop
parameter settings. These challenges had been addressed by
multiple research groups, revealing the importance of each of
the levels [5], [3], [2], [6]. While issues related to underlying
hardware and network infrastructure could be addressed via
intelligent infrastructure design, impacts related to JVM and
Hadoop configuration must be attended each time a new
map-reduce job is executed. Apache Hadoop exposes over
200 tunable parameters. About 10% of these have signifi-
cant impact on performance [7], [1], [6]. Manually tuning
performance of Hadoop map-reduce jobs involves trying to
experimentally establish the ideal mix of settings for each new
job. This is a time-consuming and labor-intensive process. A
number of companies specializing on Hadoop deployments
have proposed Rule of Thumb (RoT) tuning guides [8], [9],
[10]. The difference in job duration (response-time) between
commonly used RoT settings and optimal configuration can
be up to 100 fold [4], [6].

Automatic tuning of Hadoop was explored by multiple
research groups. Schaefer and colleagues [5] developed an
automatic tuning language for Map Reduce, Atune-IL, that
allows a user to explore a selected set of tunable variables,
such as the number of threads or numbers of map and reduce
jobs, within defined user limits. Atune-IL also allows a user
to explore the possible performance impact of alternative
code block implementations. This approach automates manual
tuning to some extent, reduces search space, and translates the
solution search space to a simpler tool. However, it requires
a user to have Hadoop tuning expertise in order to select
important tunables, and to set up limits and the size of the
step for each tunable. The main drawback to Atune-IL is that
it requires a developer to learn a new syntax, specific to the
language.

HAT, a history-based automatic tuning framework for map-
reduce, was introduced by Chen and colleagues in 2013 [11].
HAT tunes the weight of each stage of a map and a reduce task
according to values of the tasks in the history. It orchestrates
Hadoop back up task execution according to current and
historical weights of the tasks. The authors claimed 37% job
execution time improvement.

Starfish is a cost-based Hadoop automatic tuning framework
developed at Duke University by Babu and colleagues [1],
[2]. The authors succeeded in applying a cost-based approach,
popular in relational databases, to optimizing map-reduce
performance. Starfish takes into account different stages of a
map-reduce program. It adjusts the tuning at various decision
points, which include provisioning, optimization, scheduling,

and data layout. The heart of Starfish is the What-If Engine.
It employs a combination of simulation and model-based
estimation to come up with ideal settings for Hadoop map-
reduce tunables.

In 2013, Liao and colleagues analyzed model-based ap-
proaches for Hadoop map-reduce optimization and identified a
number of major limitations [6]. The research group proposed
and implemented Gunther - a search-based automatic tuner
for Hadoop map-reduce. The authors evaluated several global
search algorithms, and selected a genetic algorithm (GA) for
their search implementation. Their modified GA was evalu-
ated on two clusters. Experimental results demonstrated that
Gunther achieved near-optimal performance in a small number
of trials (<30), and yielded better performance improvements
than rule-of-thumb tuning and cost-based automatic tuning
approaches.

A machine learning approach was explored by Yigitbashi
and colleagues [7], who analyzed various machine learning-
based performance models. Their analysis was conducted on
two common Hadoop applications - Terasort and word count
- with data sets of various sizes. These authors came to the
conclusion that support vector regression exhibits the best
performance among machine learning methods. The support
vector regression-based automatic tuner was shown to outper-
form Starfish.

Another search-based evolutionary computation approach
was studied by Filho and colleagues in 2014 [12]. They
proposed an adaptive tuning mechanism that enabled the
setting of specific resources to each job within a query plan. A
data structure mapping a job to tuning solutions was created
based on an analysis of the source code and log files.

All previous work discussed so far are examples of off-line
tuning approaches, where changes to configuration settings
are made before or after job execution. An on-line automatic
tuning approach was explored by Li et al. in MRONLINE
[13]. MRONLINE automatically tunes map-reduce job per-
formance as the job runs. This approach has a number of
advantages. Each map-reduce job, depending on the type of
computation it performs, can respond differently to changes in
tuning parameters. Therefore relying on historical information
accumulated from previous jobs as in [11] can yield sub-
optimal results. Approaches that rely on modeling [1], [2],
or large numbers of training runs [6], are labor-intensive
and expensive. MRONLINE focuses on automatically tuning
several important parameters of a map-reduce job as it runs. In
this respect MRONLINE is the most closely related previous
work to our study. MRONLINE focuses on changing map-
reduce configuration settings for individual job tasks and
correlating these changes with individual task completion
times. It worked at the Hadoop map-reduce framework level.
MRONLINE introduced a specialized search algorithm, called
gray-box hill climbing. The algorithm was designed to reduce
the number of search iterations needed to find a good-enough
solution by allowing the end-user to configure a set of rules
that effectively restricted the search space to speed up solution
convergence.



MRONLINE included a monitor, an on-line tuner, and
a dynamic configurator. Rather than reading configuration
parameters from the mapred-site.xml file, map and reduce
tasks received their CPU and memory parameters from the
dynamic configurator. Different tasks could receive different
CPU and memory settings, and could thus display different
completion times. The monitor would keep track of task
execution times and feed this information to the on-line
tuners. The on-line tuner would use a gray-box hill climbing
algorithm to find the next set of parameters for subsequent
tasks. MRONLINE performance was evaluated using Terasort
and BBP benchmarks at data scales up to 100GB. The authors
claimed 30% performance improvement relative to the default
configuration[13].

III. KERMIT AUTOMATIC TUNING ARCHITECTURE

Our KERMIT system takes an on-line approach simi-
lar to that used in MRONLINE but with important differ-
ences. MRONLINE introduced dynamic configuration into the
Hadoop MapReduce framework. KERMIT introduces dynamic
configuration into the more general YARN resource manager
framework. Unlike MRONLINE, KERMIT does not keep
track of task performance, but focuses instead on YARN
container life-cycle. KERMIT runs as an integral part of the
YARN resource manager, intercepts resource requests arriving
from frameworks, and adjusts actual memory and CPU settings
used for containers. This allows KERMIT to be used not
only with Hadoop MapReduce, but also with other analytic
frameworks such as Spark. In KERMIT we also implement
a different search algorithm that does not require users to
configure domain-specific rules. KERMIT is capable of finding
close-to-optimal solutions in a small number of iterations.
Compared to MRONLINE, KERMIT was evaluated using a
more complex benchmarks, such as TPCx-HS, using much
larger and more realistic data scales up to 2 TB. KERMIT
also introduces a new, low-overhead on-line tuning algorithm
called the Explorer.

We first review the relevant aspects of the YARN architec-
ture, and then present the details of our KERMIT method.

A. YARN Architecture Review

For ease of presentation we discuss YARN within the
context of Hadoop MapReduce v.2.0 which uses YARN but
our discussion applies to other YARN frameworks as well.
The YARN ResourceManager has two main components -
the Scheduler and the ApplicationsMaster. The Scheduler is
responsible for allocating resource to various applications
running on the cluster. The scheduler uses an abstract Con-
tainer to encapsulate all tasks and applications. The Container
incorporates key system resources needed by the applications
- in Hadoop 2.6.0 it supports memory and CPU. The YARN
architecture is shown in Figure 1.

The ApplicationsManager component of the ResourceMan-
ager is responsible for accepting job-submissions, negotiating
the first container for executing the application specific Appli-
cationMaster. The NodeManager is responsible for containers,

Fig. 1. YARN architecture [14].

monitoring their resource usage (cpu, memory in Hadoop
2.6.0) and reporting it to the ResourceManager/Scheduler.

The per-application ApplicationMaster has the responsibil-
ity of negotiating appropriate resource containers from the
Scheduler, tracking their status and monitoring for progress.

B. KERMIT Architecture

Figure 2 shows the KERMIT architecture and how it relates
to YARN. YARN is designed to support multiple frame-
works. Frameworks, such as Apache Hadoop MapReduce
and Apache Spark connect to the YARN resource manager
server. When a framework, for example Hadoop MapRe-
duce, needs to run a job it sends a resource request to the
YARN resource manager. The resource request includes all
of the remaining tasks that need to be run and the desired
amount of memory and CPU for each task. For Hadoop
MapReduce the desired amount of memory and CPU for each
task in the request is determined by the values in mapred-
site.xml for: (1) mapreduce.map.memory.mb; (2) mapre-
duce.map.cpu.vcores; (3) mapreduce.reduce.memory.mb; (4)
mapreduce.reduce.cpu.vcores. The YARN resource manager
then uses one of a number of configurable schedulers to
determine how much memory and CPU is available on the
cluster data nodes to be allocated to this job and determines
how many tasks can be executed concurrently on the cluster.
YARN creates a Container to track the execution of each task.
The Container in the version of YARN used in this study is a
virtual construct used to compartmentalize resource allocations
for tasks and track their life-cycle. The number of Containers
created by YARN is determined by the ratio of memory and
CPU resources requested by the framework to the total number
of memory and CPU resources available for this job on the
cluster. Thus the values of map-reduce parameters listed above
determine the container density. Container density, in turn,
governs the number of JVM processes concurrently executing
on the cluster. Optimizing the number of concurrently execut-
ing JVM processes produces performance improvements.

KERMIT is a Java class library that is loaded by and runs in-
process to the YARN resource manager server. Figure 3 shows
how KERMIT integrates with the YARN resource manager.
KERMIT consists of two main components: (1) AutoTuner;



Fig. 2. KERMIT architecture.

Fig. 3. How KERMIT integrates with YARN.

(2) Analyzer. KERMIT extends the ApplicationMasterService
class. It overrides the allocate() method, and intercepts the
resource request arriving from the framework. The KERMIT
AutoTuner then changes the amount of memory and CPU re-
sources requested by the framework for each task and observes
the effect using the Analyzer. This integration technique has a
number of advantages. It allows KERMIT to work with any of
the available YARN schedulers and application masters. This
is possible because in all cases the resource request will go
through the allocate() method of the ApplicationMasterService
class. The request is application-agnostic and contains only
generic desired CPU and memory information. KERMIT
focuses on container response-time analysis and is not aware
of any application-specific metrics.

The KERMIT AutoTuner has a sampling interval setting
called a Window. The Analyzer class maintains a list of
Window objects. Each Window object stores container data
collected during the corresponding Window sampling interval.
These data include the container start time, completion time,
and duration. Whenever a container request is made, the
Analyzer adds this container’s start time to the current Window
object. Whenever a container completes, which may happen
during one of the subsequent Windows, the Analyzer finds
and updates that container’s completion time and duration.
The Analyzer calculates the average and standard deviation
for these container response-time values. Only the last 20% of
containers in each Window (i.e. the containers that finished last
in that Window) are used for these calculations. This approach
is designed to reduce the effects of runtime change adjustments
lagging behind dynamic configuration changes.

The AutoTuner uses the Analyzer to detect whether a
significant change in container performance has occurred. Sig-
nificant change is currently defined to occur when the average
container duration in the current Window is further apart from

the average container duration in the previous Window than
the combined container duration standard deviations in those
Windows. Once the AutoTuner decides that this significant
change has occurred, it uses the Explorer algorithm to perform
a search.

The key goals for our Explorer algorithm design were: (1)
minimize tuning overhead by restricting the search space; (2)
minimize administration and configuration. Explorer uses pre-
configured ranges for it’s container memory and CPU values -
thus restricting the search space significantly, and reducing the
number of search iterations. The administrator needs to only
enter values for container memory and CPU ranges and specify
the duration of the Window. Values for memory and CPU
ranges can be generic values picked based on total memory
and CPUs available on data node servers. They can be re-used
for different applications.

The Explorer algorithm operates using 3 states: (1) Global
search; (2) Local search; (3) Observe. It uses container
statistics from the Analyzer to trigger state transitions. State
transitions include: (1) Initial to Global search; (2) Global
search to Observe; (3) Observe to Local search; (4) Local
search to Observe. The algorithm spends most of the time
in the Observe state, transitioning to Local search state only
when significant change in container performance is detected
as discussed above.

Note that for on-line tuning, it is important to minimize
tuning overhead. Therefore, a simple optimization method with
a small number of steps is more desirable. To reduce tuning
overhead, the KERMIT AutoTuner performs the Global search
only initially (whenever the resource manger is restarted).
Local search is performed only when it detects a change in
container performance. The rest of the time it simply observes.

Explorer starts with the default memory and CPU settings
for Hadoop and Spark and performs a Global search. During
Global search, the Explorer adjusts either memory or CPU
value one step up or down in the range. Which dimension to
adjust first is chosen randomly. Whether to go up or down
is chosen randomly as well. While in Global search state the
Explorer cycles through all CPU and memory values defined
in the ranges using one set of values for one Window. Once
all values have been tried, the Explorer picks the best set of
settings from it’s statistics table and switches from Global
search to Observe state. Each subsequent Window will apply
optimal container memory and CPU values determined during
Global search.

State transition from the Observe state to Local search
state is triggered if the average container duration of the
current Window is further apart from the average of the
previous Window than combined standard deviations of the
current and previous Windows. The Explorer randomly picks a
dimension and randomly choses whether to move once step up
or down in the range for that dimension. If the change resulted
in decreased or equal container performance then Explorer
moves in the opposite direction in the same dimension. If
the change resulted in improved performance the Explorer
moves one more step in the same direction. Explorer will keep



moving one step at a time in that direction as long as it sees
improvements in container performance. If Explorer detects
no change after moving in both directions, then it tries to
adjust a different dimension using the same logic. If this does
not produce an improvement then Explorer stops tuning and
transitions back to the Observe state using the best CPU and
memory values found during the Local search state.

IV. EVALUATION METHODOLOGY

Our evaluation methodology focuses on comparing job end-
to-end response-time achieved with KERMIT automatic tuning
with two baselines: (1) basic tuning baseline; (2) best possible
tuning (exhaustive search of parameter space). The reason
for using the first baseline was to make sure our approach
was yielding a clear, measurable performance improvement
relative to simple manual tuning typically performed by big
data practitioners. The basic tuning baseline did not use strictly
out-of-the-box (OOB) settings. Instead it was based on a
shallow-tuning approach typically used by field practitioners.

To achieve the basic tuning baseline, the OOB Hadoop or
Spark configuration was taken as the starting point. Then the
yarn.nodemanager.resource.cpu-vcores parameter in the yarn-
site.xml file was set to equal to the total number of CPUs
shown by the operating system on each of the cluster nodes.
The yarn.nodemanager.resource.memory-mb was set to equal
to the total amount of memory on each data node. In the
mapred-site.xml the only parameter that was tuned was the
mapred.child.java.opts setting which was modified to increase
the maximum JVM heap size setting from the default value of
200 MB to 890 MB. This was done to remove the possibility
of a memory bottleneck that could gate the performance of
both the baseline and the compare, and to make sure that
both the baseline and compare had the same JVM heap size
and only automatically tuned YARN parameters differed. This
tuning approach is also similar to the type of tuning commonly
performed by field practitioners.

To achieve the best possible tuning baseline,
Hadoop map-reduce or Spark settings that were
being intercepted by KERMIT and automatically
tuned on the YARN side, were searched exhaustively.
The settings that were tuned on the map-reduce
side are: (1) mapreduce.map.memory.mb; (2) mapre-
duce.map.cpu.vcores; (3) mapreduce.reduce.memory.mb; (4)
mapreduce.reduce.cpu.vcores. Spark parameters tuned
for this study were: (1) spark.executor.memory; (2)
spark.executor.cores.

For the CPU settings values were tested between 1 and 8.
For the memory settings the values were tested between 640
and 3200 MB for Hadoop and between 1024 MB and 12288
MB for Spark. The benchmarks used were Terasort, TPCx-HS
and SMB. For TPCx-HS the procedure defined in the TPCx-
HS specification was strictly followed. At least 5 data points
were collected for each combination of settings to make sure
results were repeatable, and the average end-to-end duration
or throughput was calculated. Results were plotted to show the
shape of the search space. The best combination of settings and

end-to-end benchmark duration were used as the best possible
tuning baseline for automatic tuning comparison. For Terasort
and TPCx-HS this procedure was repeated for several data
scales 300 GB, 500 GB, 800 GB, 1 TB and 2 TB.

Comparison runs for KERMIT on-line automatic tuning
were performed at the same data scale. Several automatic
tuning runs were performed to ensure consistency of the
results. Comparison focused on three aspects: (1) establishing
the improvement compared to the basic tuning baseline; (2)
establishing improvement compared to the best possible tuning
baseline; (3) establishing how the first two results change with
increasing volume of data.

For Hadoop, the Terasort and TPCx-HS benchmarks were
chosen as the primary workloads for our comparisons. Terasort
is a very commonly used Hadoop benchmarking application. It
was chosen due to it’s widespread use in the Hadoop commu-
nity. The TPCx-HS benchmark is a recent industry standard.
It is inspired by the Terasort/TeraGen/ TeraValidate utilities
that have been commonly used by big data practitioners for
several years. TPCx-HS requires that the generate, sort and
validate sequence of jobs is executed back-to-back without
interruptions. It explicitly disallows manual tuning between
the benchmark stages, but it explicitly allows for automatic
tuning. Since HS-Gen, HS-Sort and HS-Validate perform very
different types of processing, it is difficult to find a good
combination of tuning parameters that work well for all three
of these stages manually. For these reasons TPCx-HS was
judged to be a very good benchmark for our study.

For Spark the recently open-sourced Spark Multi-user
Benchmark (SMB) was chosen as the workload. YARN
works differently with Spark than with Hadoop. When YARN
provides containers to Spark, Spark uses them to start it’s
executors and schedules all job tasks to run on those executors.
Spark executors persist unchanged until the job is finished.
Thus for a useful on-line automatic tuning test, we need
a multi-job workload. SMB executes concurrently multiple
identical Spark Terasort jobs, and reports throughput and job
duration statistics for these jobs. For this study we used 2
GB data scale for the Spark Terasort implementation and 10
concurrent users for all tests. Our analysis focused on the
throughput metric - the most important metric to analytics
users. The number of Spark executors was left at default,
automatic setting. Spark 1.6.1 was used with YARN 2.6.0.

All measurements were performed on a 4-node cluster
comprising 1 management node and 3 data nodes (all bare
metal). Each data node was equipped with 1 SSD for operating
system and Hadoop stack installation and 4 1.8 TB data disks.
Each data node was also equipped with 32 GB RAM and 1
Intel i7 CPU with 4 physical cores running at 1600 MHz.
Half of the virtual CPUs visible at the operating system level
were disabled via operating system command to reduce noise
caused by I/O wait. All nodes were running the Ubuntu 14.04
operating system.



Fig. 4. Normalized performance summary for Hadoop and Spark benchmarks.

V. RESULTS

Figure 4 shows a summary of normalized performance
achieved by KERMIT for Hadoop and Spark workloads. The
best possible tuning result for each benchmark was set equal
to 1. For all benchmarks the KERMIT automatic tuning result
was observed to be very close to the best possible tuning
result. For Hadoop benchmarks Terasort and TPCx-HS, the
best possible tuning result was significantly better than the
basic tuning result. For the Spark benchmark SMB, our
KERMIT Automatic tuning result achieved an optimal level
of performance. By coincidence, the default container size of
1024 MB is optimal for our cluster and data scale, resulting
in optimal basic tuning. In general, this is very unlikely, in
particular for larger clusters. In follow-on studies, where we
intend to apply this technique to larger clusters and data
scales, we expect that this pattern will change and will be
similar to what we observe for other workloads such as
TPCx-HS.

Figure 5, 6 and 7 show the shape of the search space for
Terasort, TPCx-HS, and Spark SMB respectively explored
via manual tuning experiments conducted to establish the
best possible tuning baseline for container memory. In all
cases the data points shown are averages of data points
collected at those memory and CPU settings. The y-axis
error bars show the standard deviation of the data. The
KERMIT automatic tuning result for the matching data scale
is shown as the red marker with error bars that denote the
standard deviation of the autotuning results. The position of
the KERMIT Autotuning data points on the x-axis indicates
the container memory value that the Explorer algorithm
settled at. For Hadoop benchmarks the y-axis records the job
duration (response-time). For Spark SMB the y-axis records
show throughput as measured in jobs per hour. In all cases
the search space has a global maximum (within constraints
discussed in the Evaluation Methodology section) as well as
local maxima and minima. In all cases our Explorer algorithm
was able to find the global optimum (maximum for SMB and
mimimum for Terasort and TPCx-HS), and deliver a result
that was statistically very close to this optimum.

Figures 8 and 9 show a more detailed trace of how the
Explorer algorithm operates. The figures show how Explorer
behaved during SMB execution. Figure 8 shows container du-

Fig. 5. Data for best possible tuning for Terasort at 500 GB data scale.

Fig. 6. Data for best possible tuning for TPCx-HS at 500 GB data scale.

Fig. 7. Data for best possible tuning for SMB.

ration averages collected during all sampling intervals of one
of the SMB runs. Figure 9 shows how container memory val-
ues were changed by the algorithm during this same SMB run.
Although with SMB we are looking to optimize throughput,
the Explorer algorithm seeks to reduce the average container
duration observed during it’s sampling intervals. Reduction in
average container durations translates to increased throughput.
During the initial explore phase Explorer cycles through all
possible memory values defined in it’s ranges. These cycles
manifest as diagonal alignment of data points in Figure 9.
Once Explorer finds the optimal container memory value,
it maintains this value for all subsequent sampling intervals
until it detects a change from steady state. This manifests as
the horizontal alignment of data points in Figure 9. Figure
8 shows that average container durations are systematically
reduced after Explorer finds the optimum container memory
value.

Effects of data scale on the efficiency of the Explorer
algorithm were investigated using the TPCx-HS benchmark.
Table 1 shows the data collected for TPCx-HS at different
data scales ranging from 300 GB to 2 TB. Data in the column



Fig. 8. Explorer algorithm optimizing container durations for SMB workload.

Fig. 9. Explorer algorithm optimizing container memory allocations for SMB
workload.

labeled Basic Tuning shows values collected for the basic
tuning baseline discussed in the previous section. Data shown
in the column labeled Best Possible Tuning shows values
collected for the best possible tuning baseline discussed in the
previous section. Data in the column labeled KERMIT shows
comparison values collected with KERMIT on-line automatic
tuning. As expected KERIMT data points fall in between the
two baselines.

TABLE I
TPCX-HS - KERMIT AUTOMATIC TUNING EFFICIENCY FOR VARIOUS

DATA SCALES.

Data Scale Basic Tuning Best Possible Tuning KERMIT Tuning
(GB) Runtime (min) Runtime (min) Runtime (min)
300 172 159 166
500 291 266 274
800 481 438 449

1000 624 542 566
1500 977 852 865
2000 1350 1165 1179

Figure 6 shows in more detail the data points collected when
establishing the best possible tuning for TPCx-HS at 300 GB
data scale. For experiments shown in this figure the values of
mapreduce.map.cpu.vcores and mapreduce.reduce.cpu.vcores
were kept at the default of 1 (experiments were these values
were changed from the default value were also conducted). It is
interesting to note that when mapreduce.map.memory.mb and
mapreduce.reduce.memory.mb were set to the default value of
1024 MB, this resulted in the slowest TPCx-HS performance.
The fastest TPCx-HS performance was observed when these
container memory configuration parameters were set to 3200
MB. A similar pattern was observed at all the other data scales
that were tested.

Fig. 10. Comparison of KERMIT on-line automatic tuning with the best
possible tuning for TPCx-HS at different data scales.

Fig. 11. Performance of KERMIT on-line automatic tuning for TPCx-HS
appears to show linear increase with increasing data volume.

Figure 10 compares KERMIT on-line automatic tuning with
the best possible tuning of the TPCx-HS benchmark for data
scales ranging from 300 GB to 2 TB. The y-axis shows
the improvement (in %) achieved relative to the basic tuning
baseline discussed above. At small data scales around 300 GB,
even the best possible tuning is relatively modest. However, it
increases with increasing data scale to achieve nearly 14% at
2 TB. Likewise, the improvement achieved with KERMIT on-
line automatic tuning is relatively small at small data scales,
but grows to nearly 13% at 2 TB. We observe that KERMIT
tracks the optimal tuning curve rather closely.

Figure 11 illustrates that the performance of KERMIT on-
line automatic tuning for TPCx-HS shows a linear increase
with increasing data volume. It is important to note that
KERMIT was able to demonstrate this at much larger and
more realistic data scales compared to previous efforts such
as MRONLINE (2TB for KERMIT vs. 100 GB for MRON-
LINE), and that this improvement is measured against a tuned
configuration (basic tuning) rather than the default YARN con-
figuration used for MRONLINE. When extrapolated to larger
data scales, the total performance improvement achieved with
automatic tuning can be expected to continue to grow. Most
actual big data deployment operate at data scales larger than 5
TB. It is unlikely that the performance improvement trend will
remain linear as the data scale continues to increase. However,
at 5TB and above we expect the performance improvement to
be between 20% and 30%.

Figure 12 shows the efficiency of KERMIT on-line au-
tomatic tuning as a function of data scale. Here, KERMIT
efficiency is defined as the percentage of the best possible
tuning performance achieved by KERMIT. For small data



Fig. 12. KERMIT efficiency (percentage of the best possible tuning perfor-
mance achieved by KERMIT) at different data scales.

scales KERMIT efficiency is about 46% at 300 GB. However,
KERMIT efficiency increases significantly with increasing
data scale, reaching 92.7% at 2 TB. At larger data scales,
KERMIT on-line automatic tuning is expected to be even
closer to the best possible tuning.

The main reason why KERMIT efficiency improves with
increasing data scale is the fact that the total number of
containers executed by YARN is directly related to the size of
the data that is being processed. With larger data scale each
sampling interval used by KERMIT contains more data points
that are used to calculate container response time statistics.
More importantly, with larger data scale jobs run longer
allowing KERMIT to examine more sampling windows during
the job life-cycle. In addition, with larger number of sampling
windows the relative cost of Explorer searches decreases as
well.

VI. CONCLUSION

In this paper we presented KERMIT, the first on-line auto-
matic tuning system for YARN. KERMIT optimizes in real-
time YARN memory and CPU allocations to individual YARN
containers by analyzing container response-time performance.
Unlike previous automatic tuning methods for specific systems
such as Spark or Hadoop, this is the first study that focuses
on the more general case of on-line, real-time tuning of
YARN container density and how this affects performance
of applications running on YARN. KERMIT employs the
same tuning code to automatically tune any system that uses
YARN, including both Spark and Hadoop. The effectiveness
of our technique was evaluated for Hadoop and Spark jobs
using the Terasort, TPCx-HS and SMB benchmarks. KERMIT
on-line automatic tuning can produce configurations that are
significantly better than those produced by a human tuning
specialist using the shallow-tuning approach typically applied
by field practitioners. In fact, KERMIT on-line automatic
tuning was able to achieve performance close to the best
possible parameter setting. In our case, we observed a 92.7%
of the best possible performance for TPCx-HS, and close to
100% for Terasort and SMB. KERMIT configuration is very
simple and does not require developers or administrators to
develop complex, application-specific rules to produce signif-
icant performance improvements. Our Explorer algorithm has
very low overhead and delivers the best results at larger, more

realistic multi-terabyte data scales for Hadoop and for larger
multi-job workloads for Spark.

Another advantage of on-line automatic tuning over manual
tuning is that on-line automatic tuning can adapt in real-time
to changing workload conditions, for example as map-reduce
analytic jobs progress from the map to the reduce phase, or
when a new job in a sequence starts, resulting in overall better
and less brittle performance. It is possible to envision KER-
MIT working alongside application-specific automatic tuners
such as MRONLINE[13], with KERMIT focusing on tuning
application parameters common to all applications (such as
memory, CPU, network and disk utilization allotments) and
application-specific tuners focusing on tuning settings unique
to the respective application.

KERMIT on-line automatic tuning running on a resource
manager such as YARN dispenses with configuration settings
usually left to the user, instead delegating the responsibility of
finding the optimal settings to the resource manager. This will
reduce the overall tuning and configuration effort required to
deploy analytic applications, thereby reducing the time needed
to deploy the application and the overall cost of ownership.

REFERENCES

[1] H. Herodotou, H. Lim, G. Luo, N. Borisov, L. Dong, F. B. Cetin, and
S. Babu, “Starfish: A self-tuning system for big data analytics.” in CIDR,
vol. 11, 2011, pp. 261–272.

[2] H. Herodotou and S. Babu, “Profiling, what-if analysis, and cost-based
optimization of mapreduce programs,” Proc. of the VLDB Endowment,
vol. 4, no. 11, pp. 1111–1122, 2011.

[3] M. J. Cafarella and C. Ré, “Manimal: relational optimization for data-
intensive programs,” in Procceedings of the 13th International Workshop
on the Web and Databases. ACM, 2010, p. 10.

[4] B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir,
“Improving parallel i/o autotuning with performance modeling,”
in Proceedings of the 23rd International Symposium on High-
performance Parallel and Distributed Computing, ser. HPDC ’14.
New York, NY, USA: ACM, 2014, pp. 253–256. [Online]. Available:
http://doi.acm.org/10.1145/2600212.2600708

[5] C. A. Schaefer, V. Pankratius, and W. F. Tichy, “Atune-il: An instru-
mentation language for auto-tuning parallel applications,” in Euro-Par
2009 Parallel Processing. Springer, 2009, pp. 9–20.

[6] G. Liao, K. Datta, and T. L. Willke, “Gunther: search-based auto-tuning
of mapreduce,” in Euro-Par 2013 Parallel Processing. Springer, 2013,
pp. 406–419.

[7] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, “Towards machine
learning-based auto-tuning of mapreduce,” in Modeling, Analysis &
Simulation of Computer and Telecommunication Systems (MASCOTS),
2013 IEEE 21st International Symposium on. IEEE, 2013, pp. 11–20.

[8] T. Lipcon, “Cloudera: 7 tips for improving mapreduce performance,”
2009.

[9] ——, “Cloudera: Optimizing mapreduce job performance,” 2012.
[10] Impetus, “Hadoop performance tuning,” 2012.
[11] Q. Chen, M. Guo, Q. Deng, L. Zheng, S. Guo, and Y. Shen, “Hat:

history-based auto-tuning mapreduce in heterogeneous environments,”
The Journal of Supercomputing, vol. 64, no. 3, pp. 1038–1054, 2013.

[12] E. R. Lucas Filho, E. C. De Almeida, Y. Le Traon et al., “Intra-query
adaptivity for mapreduce query processing systems,” in IDEAS 2014:
18th International Database Engineering & Applications Symposium,
2014.

[13] M. Li, L. Zeng, S. Meng, J. Tan, L. Zhang, A. R. Butt, and N. Fuller,
“Mronline: Mapreduce online performance tuning,” in Proceedings of
the 23rd international symposium on High-performance parallel and
distributed computing. ACM, 2014, pp. 165–176.

[14] A. S. Foundation. (2016) Apache hadoop yarn. [Online].
Available: https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-
yarn-site/YARN.html


