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1 INTRODUCTION

1.1 Background

With the advent of inexpensive cloud computing resources,
scalable distributed data stores have surged in popularity [7,
10, 16, 17, 20]. Such systems focus on horizontal scalabil-
ity and take advantage of cheap, pay by the hour, compute
nodes provisioned through the cloud [6]. In doing so, these
systems are able to distribute query and insert load across
many “shared nothing” compute nodes, improving latency
and throughput performance. Consequently, the use of multi-
ple compute nodes increases the likelihood that a node may
fail at a given time, making availability a critically important
quality [10]. Key-value stores typically address this problem
by maintaining � redundant replicas of its data set [10, 16].
In doing so, if a single node in the system fails, � − 1 nodes
replicating the same data remain accessible. Increasing �

increases the availability of a system.
However, introducing redundant replication to a system

introduces the problem of consistency. Since networks are
unpredictable, each insert operation will arrive at the �

different replicas at different times. This leads to the data
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stored on replicas being inconsistent from one another until
each insert arrives on each of the � replicas. The direct
consequence of inconsistent replicas is the possibility that
any read can return an outdated result. One widely popu-
lar method of approaching this problem is to implement a
quorum consensus algorithm [12, 13, 15]. With a quorum con-
sensus, each write operation is considered complete only after
� replica replies confirming a successful write have been
received. Likewise, each read operation requires a result from
� replicas before a final result is returned. � and �, or the
write quorum and read quorum are used to ensure each write
or read operation has been applied to a subset of replicas.
Setting �+� > � guarantees consistency because each read
will contain at least one of the � most recent writes. In order
to decrease latency, many distributed data stores [3, 10, 16]
use partial quorums, i.e. � +� < � , thereby accepting the
possibility of data staleness. For example, the default set-
tings for Apache Cassandra [16] are � = 3 and � = � = 1.
In their landmark paper “Quantifying eventual consistency
with PBS” [4], Bailis et.al. studied this trade-off between
operation latency and data consistency. They introduced a
Probabilistically Bounded Staleness (PBS) consistency mea-
sure to calculate expected bounds on staleness for partial
quorums and provided an explanation for the experience by
practitioners that basic eventual consistency in replicated
data stores with partial quorums is often “good enough” in
practice.

1.2 Contributions

Modern decision support systems rely heavily on data aggre-
gation, typically provided by an underlying online-analytical
processing (OLAP) system [8]. Data aggregation is accom-
plished by issuing binary associative aggregation queries (for
example, sum or max) over a specified subset of the data
items stored in the OLAP system. The issue of data staleness
is of particular importance for real-time distributed OLAP
systems such as CR-OLAP [11] and Druid [20] that support
streaming data ingestion and real-time aggregate queries.

Aggregate Probabilistically Bounded Staleness. In this pa-
per, we present Aggregate Probabilistically Bounded Staleness
(A-PBS). Inspired by the Probabilistically Bounded Staleness
(PBS) measure [3] for key-value stores, A-PBS measures stal-
eness for aggregate queries. While a key-value query only re-
trieves a single key, an aggregate query in a distributed OLAP
system typically aggregates a large set of data items specified
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by a multi-dimensional bounding box in �-dimensional space.
Instead of examining the write/read history of the different
copies of a single data item as in the case of PBS, the A-
PBS measure introduced here depends on the write/read
history of the different copies of all data items within a multi-
dimensional space, possibly the entire database. This greatly
increases the complexity of both measuring and modelling
staleness, and clearly distinguishes A-PBS for distributed
OLAP systems from the PBS measure for key-value stores.

The A-PBS measure introduced here includes a formal
model for describing an OLAP system’s data stream and
the state of consistency for individual aggregate queries. A-
PBS uses both the number of missed inserts and the relative
numerical error of the query result to quantify staleness.
These different cases do not arise for PBS. We introduce (�, �)-
staleness for queries that have missed more than � inserts and
were issued � time units after the last write, and (�, �)-staleness
for queries that have a relative numerical error greater than
� and were issued � time units after the last write. These
measures are then utilized to introduce the following system
wide probabilistic staleness measures: bounded (�, �)-staleness
and bounded (�, �)-staleness.

Simulation. To complement A-PBS, we also present a generic
model and corresponding Monte Carlo simulation of data
aggregation in quorum-replicated distributed OLAP systems.
Given a list of system parameters, our model and simula-
tion can be used to estimate staleness for aggregate queries,
thereby enabling the exploration of the trade-offs between
consistency and latency in quorum-replicated distributed
OLAP systems.

Case Study. We used the CR-OLAP [11] quorum-replicated
distributed OLAP system for a case study to evaluate our
A-PBS measure and Monte Carlo simulation. The CR-OLAP

system was chosen here because we had access to all the
required system parameters. We observed that the staleness
of aggregate queries predicted through our A-PBS measure
and Monte Carlo simulation was close to the actually observed
staleness of aggregate queries in CR-OLAP.

Our A-PBS analysis also confirmed our previous observa-
tion for CR-OLAP that a partial quorum with [N=3, W=0,

R=1] is “good enough” in practice. Even very large aggregate
queries that cover the entire database and are issued only
10 milliseconds after the last insert have ≈80% probability
to have zero staleness. If staleness occurs for such aggregate
queries, the number of missed data items is expected to be
low, as only 0.5 inserts are missed on average. This results
in only a very small numerical error in the aggregate query
result for the mean and mean aggregation functions, and
very close to zero probability of any numerical error for the
max aggregation function.

2 RELATED WORK

Several papers have been published on the topic of impre-
cise or ambiguous data in OLAP systems [5, 9, 18], where
rather than examining uncertain but eventually consistent

data caused by a lack of synchronization within a distributed
system, uncertain dimensional data and measures which are
uncertain by nature are explored. For example, all measures
may have a certain amount of error with a known distribution.
Another work [5] proposes a modified OLAP model which
incorporates this concept of uncertain data and, much like
this paper, presents different metrics of query correctness
within this context. However, since the metrics are within
the context of inherently uncertain data, the model and cor-
responding metrics are inapplicable to eventually consistent
OLAP systems studied in this paper.

Another work [19] presents a middleware for distributed
OLAP systems which manages replication, insert and query
operations through the system to guarantee a certain fresh-
ness bound. A “freshness index” is described, which measures
between [0, 1], how consistent a replica of a set of data is
at the current point in time. In the paper, a model is used
where query-answering OLAP nodes receive batch updates
from writeable OLTP nodes. Thus, “delay freshness” is used
to compute the freshness index: the time of the last update of
an node �(�), divided by the commit time of the most recent
transaction on an OLTP node �(�0).

Much of the work of this paper is rooted in Probabilis-
tically Bounded Staleness (PBS) for key-value stores [2–4],
wherein the authors examine eventual consistency from the
perspective of quorum-based key-value stores and present a
probabilistic metric of staleness for simple partial quorum
(� +� ≤ �) read operations. PBS (�, �)-staleness is defined
as a property of a key-value quorum system which, with a
specified probability, returns a result within � versions of the
most recent write for reads sent � units of time after a write
response has been received by at least � replicas for each
write relevant to the read.

Another work by the same authors [4] presents a model and
corresponding simulation for evaluating PBS (�, �)-staleness
are also presented. In it, distributions describing the time
taken to read and write keys, as well as send read and write
response messages, are sampled to estimate a key-value sys-
tem’s probability of bounded staleness.

3 AGGREGATE PROBABILISTICALLY
BOUNDED STALENESS (A-PBS)

In this section, we present Aggregate Probabilistically Bounded
Staleness (A-PBS), a means of analyzing consistency in dis-
tributed OLAP systems. Like PBS, A-PBS defines metrics
examining the consistency of aggregate queries in terms of
missed writes. Unlike PBS, since aggregate queries, especially
in OLAP, are conventionally numerical by nature [14], new
consistency metrics are introduced that view consistency
from the perspective of numerical error.

3.1 Data Streams and Queries

While queries in key-value stores essentially pull a single
value specified by a key from a node, aggregate queries may
involve a much larger percentage of the data. For example, a
single query in a typical aggregate OLAP system can operate
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on anything between a single point in the system to all
points across all nodes in the system. This is an important
distinction which divides key-value staleness analysis from
aggregate OLAP-style staleness analysis. Therefore, we begin
with a set of definitions describing the stream of incoming
insert operations to a system, henceforth described as the
data stream, and the coverage and aggregation function of an
aggregate query, both fundamental for further discussion of
correctness in aggregate stores.

Definition 3.1 (Input data stream DATA(n, Λ, D)). DATA(n,
Λ, D) is a stream of � insert operations, where each insert,
with measure value sampled from the distribution �, is sent
to the system according to a Poisson process with rate Λ.

Definition 3.2 (Aggregate query �). An aggregate query
� is defined by an aggregate function � and a coverage �

which describes the percentage of inserts in a data stream
required in the computation of the aggregate function.

Figure 1 presents a graphical representation of a simple
data stream. Since each insert in the stream is sent to the
system according to a Poisson process, the amount of time
between adjacent inserts in the stream follows an exponential
distribution using the same Λ parameter.

3.2 (�, �)-staleness

We proceed to define our first metric of staleness in an ag-
gregate setting.

Definition 3.3 ((�, �)-staleness). Given an insert data stream
DATA(n, Λ, D), a query �, initiated � units of time after
each insert in the stream has been partially committed, has
(�, �)-staleness if and only if more than � insert operations
covered by the query’s bounding box were not included in
the computation of the aggregate function �.

We define the notion of a partially committed insert as
an insert which has been sent to a system, but may or may
not be readable. In a partial quorum system, a partially
committed insert is an insert that has been written to at
least � replicas, but not all � replicas.

Figures 2 and 3 demonstrate queries with (�, �)-staleness
and without (�, �)-staleness, respectively, and provide a visual
representation of (�, �)-staleness and the “slack” parameters �
and �. As time proceeds from left to right, insert operations,
represented by white circles, are sent to the system according
to a Poisson process with parameter Λ. Consequently, the
distance of time between each adjacent insert obeys an expo-
nential distribution with the same Λ parameter. Once each
insert has been partially committed (for example, � replica
replies have been received in a partial quorum system), �
units of time are waited until the query, represented by the
black diamond, is initiated.

3.3 (�, �)-staleness

In key-value PBS, read operations are deemed fresh or stale
solely by the number of writes missed by the read operation.
In A-PBS, the number of missed insert operations is not the

only means of qualifying query staleness. The numerical error
of the aggregations results from a query can also be used as
an indicator of a query’s staleness, which can be useful in
understanding the practical impact staleness has on a query’s
result and how different the result would be under a perfectly
consistent system.

We refer to the (correct) result of a given aggregate query
on a perfectly consistent system as the true aggregate value,
and the (possibly incorrect) result observed from issuing
the same query on an eventually consistent system as the
observed aggregate value. We define the error of a query as the
relative error of the true aggregate value and the observed
aggregate value, or, more formally:

Definition 3.4 (Aggregate relative error). The aggregate
relative error of a query � with an observed aggregate value

of � and a true aggregate value of � is |o−v|
v

.

With this in mind, we present a definition, much like (�, �)-
staleness, to classify the result of a query of being acceptably
consistent, with respect to a relative error:

Definition 3.5 ((�, �)-staleness). Given an insert data stream
DATA(n, Λ, D), a query � with aggregation function �, ini-
tiated � units of time after each insert in the stream has been
partially committed, has (�, �)-staleness if and only if the
query’s relative error is greater than �.

(�, �)-staleness essentially places an upper bound � on the
relative error of a query. A query whose relative error is less
than or equal to � is said to have an acceptable amount of
error, in which case the query is acceptably consistent (sim-
ilar to � in (�, �)-staleness). Where (�, �)-staleness measures
staleness depending on whether or not points are present
during the time the aggregation takes place, (�, �)-staleness
measures staleness based on the result of the aggregation.
Thus, (�, �)-staleness is dependent on the aggregation func-
tion � used by the query, as well as the distribution � of
measure values in the data stream.

Another important difference is, unlike (�, �)-staleness,
points missed by a query only impact (�, �)-staleness if the
missed point has an impact on the final aggregation. For
example, missing a single point will not likely have an impact
on (�, �)-staleness where the aggregation function used is max,
as that point would have to be the largest point covered by
the query in order to impact the result of the aggregation
function. Conversely, missing a single point where the aggre-
gation function is count is guaranteed to increase the relative
error of the query.

3.4 Probabilistic Staleness

So far, we have examined how staleness impacts individual
queries. Since we would like to be able to reason about a
system’s accuracy as a whole, we now introduce staleness
metrics on a probabilistic level.

Definition 3.6 (Bounded (�, �)-staleness). A system for
aggregate queries on an input data stream DATA(n, Λ, D)
has bounded (�, �)-staleness if and only if, with probability
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Time of operation initiationbc bc bc bc bcexp(λ)

Figure 1: A DATA(5, Λ, D) insert stream. The white circles represent the points in time in which inserts in
the stream are sent from the client. The amount of time between adjacent inserts is determined by sampling
from an exponential distribution with parameter Λ.

Time of operation initiation

Time of operation partial committal

bc bc bc bc bc

bc bc bc bc bc
�

exp(Λ)
l

Time of operation committallbc bc bc bcbc

Figure 2: A query that has (�, �=1)-staleness. The upper bar represents the time of initiation of a query or
insert, the middle bar represents the time at which each insert has been partially committed and the bottom
bar represents the time at which the corresponding insert is readable, or the cutoff time at which the query
begins to read committed inserts. White circles represent inserts, black diamonds represent queries. The last
two inserts in the stream and the query are reordered, so more than � = 1 inserts are missed.

Time of operation initiation

Time of operation partial committal

Time of operation committal

bc bc bc bc bc

bc

bcbcbcbcbc

bc bcbc bc

l

l

exp(Λ)

�

Figure 3: A query that does not have (�, �=1)-staleness. Since � = 1, the reordering of the last insert in the
stream and the query does not impact (�, �)-staleness.

�, an aggregate query � with coverage � does not have
(�, �)-staleness.

Definition 3.7 (Bounded (�, �)-staleness). A system for
aggregate queries on an input data stream DATA(n, Λ, D)
has bounded (�, �)-staleness if and only if, with probability
�, an aggregate query � with coverage � and aggregation
function � does not have (�, �)-staleness.

Using bounded (�, �)-staleness and bounded (�, �)-staleness,
the probability of a system being unacceptably inconsistent
(determined by � or �), can be described. For example, given
a system constantly ingesting a stream of new points at a
rate of 10,000 a second, if we would like to approximate
the probability of a query returning a result with a relative
error of no more than 0.01, we need only to model a stream
DATA(n, Λ = 1

10000
, D) and find the probability � of bounded

(�=0, �=0.01)-staleness.

4 SIMULATION

In order to evaluate how the different parameters affect stale-
ness within our model, a method for estimating the probabil-
ity � of bounded (�, �)-staleness and bounded (�, �)-staleness
is needed. To accomplish this, we use a Monte Carlo simula-
tion to evaluate repeated trials consisting of an insert stream
followed by a query. The result of each trial is whether or
not the query has (�, �)-staleness or (�, �)-staleness.

4.1 Aggregate Model

The basis of our simulation is a simple model of a distributed
quorum-replicated aggregate system with the following prop-
erties:

• The set of multi-dimensional point data and their asso-
ciated measure values is partitioned into � partitions.
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• Each partition of the data is redundantly stored in
� buckets. The set of � buckets which replicate a
partition is called a bucket set.

• Location data used to determine which buckets store
which points are held in a structure called an index.

• Insertions and queries are produced by clients, and are
sent to the index to route operations to the relevant
buckets.

Insert operations in this model function similar to a typical
quorum-replicated key-value store. Inserts are sent from a
client to an index, and are then routed to all � buckets
within the relevant bucket set. A response is sent to the client
from the index once � buckets have reported a successful
write.

Like inserts, queries are initiated from a client and sent
to an index. An index that receives a query request must
route the query to all � buckets for each bucket set relevant
to the query. Once at least � bucket set aggregations are
received from all relevant bucket sets, the index aggregates
each response and sends the final aggregation to the client.

Figure 4 presents a graphical representation of the model.
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Figure 4: Diagram illustrating the node structure of
the aggregate model.

4.2 Simulation Parameters

Each simulated insert represents an insert operation as de-
scribed in our distributed aggregate model. Using a set of

system distributions, which describe the latency timings of
insert and query operations of a system, the time at which
each simulated insert in the stream is consistent (or read-
able) at each of � replicas can be determined. The same
set of distributions can be used to determine the time a
query arrives at each bucket in the system, and the set of
� buckets from each bucket set which are the first to arrive
at an index. Comparing the insert committal times against
the query arrival times can then be used to determine the
number of stale inserts.

A summary of the key system parameters is given in Ta-
ble 1. � (�) is a distribution which describes the network
latency of sending a message from an index to a bucket or a
bucket to an index. For simplicity, we assume that all query
and insertion requests and replies have the same impact on
network latency, and thus network latencies for any type
of message (insert or query) sent within the system can be
drawn from � (�). �w(�) and �w(�) are distributions which
describe the time taken for an index (I) or bucket (B) to
complete the local computation required for an insert. Like-
wise, �r(�) and �r(�) describe the time taken for an index
or bucket to complete the local computation required for a
query.

4.3 Algorithm

Each trial in our simulation begins by modelling the initiation
time of each insert. We refer to the initiation time of an insert
as �i, where � is the number of inserts previous in the stream.
We assign the earliest insert in the stream �0 = 0, and all
subsequent inserts �i = �i−1 + ���(Λ), where ���(Λ) is a
random sample from an exponential distribution according
to the ingestion rate parameter Λ. The committal time of
the insert for each of the � relevant buckets is computed by
sampling �w(�), � (�) and �w(�) and adding the insert’s
initiation time, �i. The quorum reply time (the time at which
the index has received the � write replies) is computed by
adding a sample from � (�) to the � th fastest bucket replica
committal time. The committal time of each insert, and the
insert’s quorum reply time are stored for later use.

Once each insert has been simulated, the query simulation
begins by determining the time at which all inserts have been
partially committed. This is accomplished by taking the max
of each insert’s quorum reply time from the previous step.
The time is then offset by � to get the time of query initiation.
This value is added to a random sample of �r(�) to get the
time at which the index has done its local bucket location
lookup. Then, for each bucket � in the system, the time of
query arrival is recorded by adding a sample of � (�) to
the time the index has finished its local work. To determine
which buckets are the first � responders, the time of query
arrival from each bucket is offset by a random sampling
from �r(�) and � (�). From this, the time � responses have
been received from each bucket set can be observed, and the
maximum value is taken to get the time the query has met
its read quorum rules for each bucket set.
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Name Description

� (�) Distribution of time taken to send a message from one node to another

�w(�) Distribution of time taken for local insert work on an index

�w(�) Distribution of time taken for local insert work on a bucket

�r(�) Distribution of time taken for local query work on an index

�r(�) Distribution of time taken for local query work on a bucket

Table 1: The set of system parameters

The query simulation groups all buckets into two sets:
those which have responded to the query before or during
� responses have been received from each bucket set, and
those which have not. Since those that have not responded
in time are not included in the result of the query, they may
be safely ignored. The buckets which have responded in time
will simulate an aggregation operation on all inserts they
contain (within the query’s coverage), with the exception of
points that were committed locally later than the time of
query arrival on the current bucket. Afterwards, the partial
aggregation of each bucket is combined by bucket set, and
finally aggregated to get the observed aggregation value. This
process of aggregation is repeated regardless of committal
time, to compute the true aggregation value, the result of
the aggregation we would expect to get under a perfectly
consistent system. With the true value and the observed
value, whether or not the query has (�, �)-staleness can be
determined by evaluating the error between the true and
observed value. Likewise, (�, �)-staleness can be determined
by comparing the observed and true counts in relation to the
value of �.

5 CASE STUDY

In this section, we use the CR-OLAP [11] quorum-replicated
distributed OLAP system for a case study to evaluate our A-
PBS metrics and Monte Carlo simulation. By using recorded
system parameters from CR-OLAP in our Monte Carlo sim-
ulation, we compare staleness metrics obtained by simulation
against actual staleness metrics observed from an OLAP
system.

We obtained the operational latency distributions �w(�),
�w(�), �r(�), �r(�) and the network latency distribution
� (�) by sampling the amount of time taken to execute or
transmit an insert or query operation in CR-OLAP. The
latencies observed for CR-OLAP were from experiments on
an Amazon EC2 cloud with 8 c4.xlarge nodes using the
TPC-DS [1] data set with 8 hierarchical dimensions. Read
and write latencies were recorded while processing a workload
composed of an even mix of inserts and 100% coverage queries.
The first 99 percentiles of the distributions used are shown as
cumulative distribution functions in Figure 5. The ingestion
rate was measured to be approximately 20,000 inserts per
second with � = 3, or Λ = 1

20000
seconds between inserts.

To determine the actual probability of bounded (�, �)-
staleness on CR-OLAP, we first generate a pool of queries
of which we know the approximate coverage and aggrega-
tion result. To do this, we submit to the system a stream of

100,000 insert operations. A quorum configuration of [N=1,
W=1, R=1] is used to ensure consistency during the query
generation step. After all inserts are complete, the random
queries are issued to the system and their results are recorded.
Once the pool of queries with known aggregation results and
coverage has been generated, we approximate the probability
of bounded (�, �)-staleness by repeating several trials of the
following. We begin by clearing all previous inserts from the
system and issuing the same stream of inserts (this time with
a partial or eventually consistent quorum configuration) used
during the query generation step. After waiting � units of
time after � quorum responses from each insert have been
received we issue a query from the pool. We compare the
possibly incorrect result against the recorded correct result to
determine whether the query in this trial has (�, �)-staleness
or (�, �)-staleness.

Figure 6(a) plots the observed CR-OLAP probabilities
of bounded (�, �=0)-staleness across increasing � values in
the x-axis with varying query coverages. We use the quo-
rum configuration [N=3, W=0, R=1] instead of the typical
[N=3, W=1, R=1], as setting � ≥ 1 in our test environment
results in the relatively uninteresting case where nearly all
queries return correct results. When � = 0, queries are
initiated � units of time after the last item the data stream
has been sent, without waiting for any partial committal
responses. Figure 6(b) plots the estimated CR-OLAP proba-
bilities of bounded (�, �=0)-staleness, obtained via simulation.
In both (a) and (b), the probability of bounded staleness is
proportional to the coverage of the query. Queries with higher
coverage have a lower probability of bounded staleness, as
they cover a greater number of possibly unreadable points.
For 100% coverage queries, the simulated probabilities line up
reasonably well with the observed probabilities of bounded
staleness. For < 100% coverage queries, the simulation is
somewhat pessimistic compared to the observed probabil-
ities, especially at the first 10 milliseconds. This is likely
because the simulation’s latency distributions are sampled
from queries with 100% coverage, which CR-OLAP processes
faster than lower coverage queries.

In Figure 7(a), we plot CR-OLAP’s observed probability
of bounded (�, �=0.00001)-staleness using various aggregation
functions and measure distributions. A small amount of rela-
tive error (0.00001) is allowed for demonstration purposes, as
setting � = 0 is equivalent to bounded (�, �=0)-staleness for
most aggregation functions. We include the sum aggregation
function, whose rate of change is steady regardless of the
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Figure 6: Observed (a) and simulated (b) bounded (�, �=0)-staleness with [N=3, W=0, R=1].

number of points (similar to count), max, as its value is es-
sentially determined by a single point and is therefore highly
insensitive to randomly selected missing points, and mean,
as it is a non-monotonic aggregation functions whose rate
of change drops as the number of points in the aggregation
increases. For the measure distributions, we use the folded
normal distribution with mean � = 0 and standard deviation
� = 1 to represent a short tailed distribution of measure
values, and an exponential distribution with � = 1 to emu-
late the case where the distribution of measure values has a
longer tail. Both distributions have been selected to yield only
non-negative values in order to further contrast sum, which
is monotonically increasing if � yields only positive values,
with mean, whose aggregation value can increase or decrease
on the inclusion of a single point. 100% coverage queries on a
data stream with 100,000 inserts and quorum configuration
[N=3, W=0, R=1] were used. At the top of the figure with
> 99% probability of bounded error is the max aggregation
function for both distributions, illustrating the function’s in-
sensitivity to missing points. The sum and mean aggregation
functions have a much lower probability of bounded error,
but still have a slightly higher probability than bounded
(�, �=0)-staleness in Figure 6(a), due to the slight amount
of slack in �. We note that the mean aggregation function
has a higher probability of bounded error than sum. This is

because the amount of relative error incurred by missing a
point under mean can be offset by missing a point to close to
the side opposite of the true mean. Since we are using positive
distributions, a missed point under sum cannot be offset by
missing a negative point of similar magnitude. In Figure 7(b),
which plots the simulated probability of bounded error, a
small but noticeable gap in the probability of bounded error
can be seen for the two measure distributions under sum and
mean. The exponential distribution results in a slightly lower
probability with mean, as the long, thin tail decreases the
likelihood that a pair of missed inserts will offset each other,
since the majority of the points lie to the left of the mean.
With sum, the exponential distribution performs better, as
a large part of the total sum is determined by a relatively
small number of points with large measure values, who are
therefore less likely to be missed compared to the much larger
number of points with smaller measure values.

Figure 8(a) shows the expected number of missed inserts
with varying coverage observed from CR-OLAP. Figure 8(b)
shows the average relative error of a 100% coverage query
on a data stream of 100,000 items with varying measure
distribution and aggregation function, also observed from
CR-OLAP. Both figures demonstrate that, in CR-OLAP,
when queries are stale, their results are expected to be only
one or two points off from the true result.
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Figure 7: Observed (a) and simulated (b) bounded (�, �=0.00001)-staleness with [N=3, W=0, R=1].
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Figure 8: Observed average number of missed inserts (a) and relative error (b) with [N=3, W=0, R=1].

Figure 9 demonstrates the impact a system’s read and
write speeds have on staleness by plotting the simulated
probability of bounded (�, �=0)-staleness with varying query
(�r(�), �r(�)) and insert (�w(�), �w(�)) distributions. Under
the “fast reads” configuration, an exponential distribution
with � = 1 (mean of 1 millisecond) is used for the query
distributions, and an exponential distribution with � = 0.5
(mean of 2 milliseconds) is used for the insert distributions.
“Fast writes” uses � = 1 for its write distributions and � = 0.5
for its read distributions, and “fast reads and writes” uses
� = 1 for all read and write distributions. In all configurations,
the network transmission distribution � (�) is set to � = 1.
The importance relative query and insert speeds have on
bounded (�, �)-staleness is clearly illustrated. When inserts
are as fast or faster than writes, more inserts are likely to
become accessible by a query in the extended amount of time
the query takes for processing at the index, leading to high

probabilities of bounded (�, �)-staleness. With faster queries,
the opposite is true; queries spend less time being processed
at the index and thus queries arrive at buckets to aggregate
insertions earlier.

6 CONCLUSION

In this paper, we have presented Aggregate Probabilistically
Bounded Staleness (A-PBS), a measure of staleness for ag-
gregate queries. Inspired by the Probabilistically Bounded
Staleness (PBS) measure [3] for key-value stores, A-PBS mea-
sures staleness for aggregate queries in distributed OLAP
systems that aggregate a large set of data items and depend
on the write history of the different copies of all data items
covered by the query.

Our A-PBS measure includes a formal model for describing
an OLAP system’s data stream and the state of consistency
for individual aggregate queries. A-PBS uses both the number
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Figure 9: Probability of bounded (�, �=0)-staleness
with varying read and write speeds.

of missed inserts and the relative numerical error of the query
result to quantify staleness. To complement A-PBS, we have
also presented a generic model and corresponding Monte
Carlo simulation of data aggregation in quorum-replicated
distributed OLAP systems. Given a list of system parameters,
our model and simulation can be used to estimate staleness
for aggregate queries, thereby enabling the exploration of
the trade-offs between consistency and latency in quorum-
replicated distributed OLAP systems.

In a case study evaluating our A-PBS measure and Monte
Carlo simulation using the CR-OLAP [11] quorum-replicated
distributed OLAP system, we observed that the staleness of
aggregate queries predicted through our A-PBS measure and
Monte Carlo simulation was close to the actually observed
staleness of aggregate queries in CR-OLAP. For example, the
difference between the simulated and observed probability of
consistency for a query delayed 10 milliseconds was found to
be between ≈1 and 10%, depending on coverage.

Our A-PBS analysis also confirmed our previous observa-
tion for CR-OLAP that a partial quorum with [N=3, W=0,

R=1] is “good enough” in practice. Even very large aggregate
queries that cover the entire database and are issued only
10 milliseconds after the last insert have ≈80% probability
to have zero staleness. If staleness occurs for such aggregate
queries, the number of missed data items is expected to be
low, as at � = 10 milliseconds only only 0.5 inserts are missed
on average, resulting in only a very small numerical error in
the aggregate query result for the sum and mean aggregation
functions, and very close to zero probability of any numerical
error for the max aggregation function.
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