
Abstract

The only fair credit for work is its attribution to the originator. Stealing this credit is in
some way equivalent to stealing money or other property. However, this is much easier to
perform and much harder to detect. This became particular tempting with the growth of
the Internet, since many recent works are readily available for download. Since the
Internet is frequently used for plagiarism, it is natural to suggest that it also can be used
for plagiarism detection. The present paper shows one way to tackle this problem.

Introduction

The problem of misusing other people's work is omnipresent; from the present work to
movies and urban district construction, previous projects are being reused and attributing
proper credit is necessary. The extreme form of plagiarism when a project is copied
entirely is usually easy to detect; however, parts of projects copied from less well-known
sources without proper reference can be very hard to trace.

Background

There is a variety of both text document and code plagiarism detection software available
on the market. A popular text plagiarism detector is Plagiarism Detector, available at
http://www.plagiarism-detector.com. A popular code plagiarism detector package is
CodeScreener, available at http://www.codescreener.com. It works by comparing two
packages and determining the code correlation.

However, open-source software dealing with the issue is much less abundant. The software
used in the current project is the Incubator-based plagiarism detector. According to the
online description [1], “Apache RAT plagiarism detector is command-line tool for
searching the code base for possibly plagiarized code using web code search engines”.

Unlike the CodeScreener, it only detects direct copying from the Internet; however, it searches the web
automatically to determine matches. According to [1], the main goal is to make sure “if you borrow the
code from Apache, you are safe and legal.” Scanning also improves code reuse, for it is more efficient
to reuse entire libraries than separate code fragments.

Approach

The Winnowing algorithm was selected because of its simplicity. As mentioned by Cate Huston [3],
the algorithm parses the file into separate n-tuples of characters, places into hashes and selects a small
fraction of them at random to produce a fingerprint.

For simplicity, fingerprinting is replaced by simpler heuristics, such as the brute force heuristic, where
the entire file is scanned, the function heuristic, where the code is parsed into functions or methods, and
the comment heuristic, where the comments are ignored. However, the principal part of the
Winnowing algorithm, the sliding window, is retained. The window grows until matches no longer can
be found. The longest matching string is checked against the criteria for suspects and added to the list if
suspicious. Then the sliding window moves to the next element of the heuristic. The process continues
until the whole file is parsed.

Design

The code consists of five packages: core, engines, heuristic, report and util. The core package contains
the main class, the simplified Winnowing algorithm implementation, and the auxiliary classes to parse
the command line and pass the parameters. The engines package consists of classes that feed the code
fragments into the Google or Koders search engine, depending on the option. The heuristic package
parses the code; the report package generates the report, and the util package contains auxiliary classes
for file manipulations. The command line includes the name of the jar file, the codebase path, and
optionally the language, the verbose output, the heuristic(s) and the time limit for search.

The following table summarizes the classes and their use.

Package Class Description
org.apache.rat.
pd.core

PlagiarismDetector Main class. Reads options and invokes the heuristic and
the engine accordingly.

org.apache.rat.
pd.core

PauseListener Determines if user requested a pause.

org.apache.rat.
pd.core

PdCommandLine Parses command line and retrieves arguments. Missing
arguments are replaced by default values.

org.apache.rat.
pd.core

PlagiarismDetector
Report

Wrap-up for RAT's IdocumentAnalyzer class

org.apache.rat.
pd.core

SourceCodeAnalyser Implements the sliding window algorithm

org.apache.rat.
pd.engines

ISearchEngine Interface implemented by the project's search engine
wrap-ups.

org.apache.rat.
pd.engines

KodersCodeSearchPa
rser

Wrap-up for Koders search engine

org.apache.rat.
pd.engines

Managable Interface for plagiarism criteria implementation

org.apache.rat.
pd.engines

RetryManager Suppresses network exceptions

org.apache.rat.
pd.engines

SearchResult Search result

org.apache.rat.
pd.engines.goog
le

GoogleCodeSearchPa
rser

Invokes the search engine and passes code fragment

org.apache.rat.
pd.engines.goog
le

MultilineRegexGene
rator

Improved line matching

org.apache.rat.
pd.engines.goog
le

RegexGenerator Line matching

org.apache.rat.
pd.heuristic

BruteForceHeuristi
cChecker

The trivial heuristic specifies all the code has to be
checked.

org.apache.rat.
pd.heuristic

HeuristicCheckerRe
sult

Specifies which fragments need to be scanned.

org.apache.rat.
pd.heuristic

IHeuristicChecker Heuristic checker interface

org.apache.rat.
pd.heuristic.co
mment

21 language-specific
classes

Sets comments to be ignored

org.apache.rat.
pd.heuristic.fu
nctions

12 language-specific
classes

Parses functions to be checked separately

org.apache.rat.
pd.heuristic.mi
sspellings

Dictionary Dictionary loader

org.apache.rat.
pd.heuristic.mi
sspellings

MisspellingsHeuris
ticChecker

Checks comments for misspellings

org.apache.rat.
pd.report

HtmlReportGenerato
r

Generates HTML report

org.apache.rat.
pd.report

Report List of suspicious matches

org.apache.rat.
pd.report

ReportEntry Represents one suspicious match

org.apache.rat.
pd.report

TxtReportGenerator Generates text report

org.apache.rat.
pd.report

XmlReportGenerator Generates XML report

org.apache.rat.
pd.util

FileManipulator Converts code to string for further processing

Results

The program was tested with the simplest Java code; it produced a non-surprising positive result. The
following is a chunk of output:

Link: http://www.google.com/codesearch/p?hl=en#p7P5M3b6aAU/skinz/sample_blog_pag
e.html&q=%5E(%5Cs%3F)%2Bpublic(%5Cs%3F)%2Bclass(%5Cs%3F)%2BHelloWorld(%5Cs%3F)
%2
B%5C%7B(%5Cs%3F)%2B$%20%5E(%5Cs%3F)%2Bpublic(%5Cs%3F)%2Bstatic(%5Cs%3F)%2B
void(%
5Cs%3F)%2Bmain(%5Cs%3F)%2B%5C((%5Cs%3F)%2BString(%5Cs%3F)%2B%5C%5B(%5Cs%3
F)%2B%5
C%5D(%5Cs%3F)%2Bargs(%5Cs%3F)%2B%5C)(%5Cs%3F)%2B%5C%7B(%5Cs%3F)%2B$%20
%5E(%5Cs%3
F)%2BSystem(%5Cs%3F)%2B%5C.(%5Cs%3F)%2Bout(%5Cs%3F)%2B%5C.(%5Cs%3F)%2Bprint
ln(%5
Cs%3F)%2B%5C((%5Cs%3F)%2B%22(%5Cs%3F)%2BHello,(%5Cs%3F)%2BWorld(%5Cs%3F)%
2B%22(%
5Cs%3F)%2B%5C)(%5Cs%3F)%2B%3B(%5Cs%3F)%2B$%20%5E(%5Cs%3F)%2B%5C%7D(%5
Cs%3F)%2B$%
20%5E(%5Cs%3F)%2B%5C%7D&sa=N&ct=rx&cd=4

 Match 320: public class HelloWorld {
 Match 321: public static void main(String[] args) {
 Match 322: System.out.println("hello, world");
 Match 323: }
 Match 324: }
chunk of code copied:
--
public class HelloWorld {

 public static void main(String[] args) {
 System.out.println("Hello, World");
 }

 }

The program thus works well for checking simple programs for plagiarism; however, it was taking very
long time to scan itself. It may not have been sufficiently developed to ensure its suitability for
detecting plagiarism of real software.

Conclusion and future work
It would be desirable to make the search more efficient by more thorough parsing of the source code,
with emphasis on the structure of the files. It may also be a good idea to include the possibility of
renaming variables or functions and slight interchange of operations, since this is very frequently
performed when code is plagiarized.

Overall, this is an excellent effort by a Serbian student Marija Šljivovič; the author even mistook it for
deployed open-source software.

References
[1] Summer-of-Code project proposals, 2009, http://wiki.apache.org/general/SummerOfCode2009#rat-
project
[2] Marija Šljivovič, Apache RAT PD project abstract,
http://wiki.apache.org/general/MarijaSljivovic/SoC2009ApacheRatProposal
[3] Cate Huston, Fingerprinting JAR Files Using Winnowing, unpublished paper,
http://catehuston.com/work.html

