Adrian Filip

Carleton University
Ottawa, Ontario, Canada
01 613 943 9716

adrian.filip@ec.gc.ca

ABSTRACT
In this paper, we describe the considerations and approaches to identify the origin of Java libraries. The intention is to detect unlawful uses of licensed Java software.
D.3.3 [Programming Languages and Software]: Expert system tools and techniques
General Terms
Algorithms

Keywords
Licensing, decompiling, piracy, java, jar, tools, fingerprint, signature, obfuscation, detection, plagiarism detection
1. INTRODUCTION

The software domain produced an abundance of Java libraries under different licensing terms. The Open Source Community released a large number of source files protected under a variety of licenses. Both of these artifact types could be unlawfully exploited and included in other software either partially or integrally. These activities break the license agreements however they are difficult to detect due to packaging and intentional application of stealth techniques. The attempts to conceal the piracy can not be easily detected thus the need of detection software instruments. These software instruments should employ approaches and algorithms that detect and bypass the concealing techniques and discover the original pedigree of the code.

Copyright Notice

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy, republish, or post on servers, requires prior permission.
Conference’11, October 18, 2011, Ottawa, Ontario, Canada.

Copyright 2011 ACM 1-58113-000-0/00/0011…$10.00.
2. BACKGROUND

Open Source Software license violations are abundant. There is information to suggest that Skype violated the GPL in the VoIP phone, CISCO violated OSS License in IPhone etc. Some of these violations might be un-intentional and some of them might not.

There is need for both software producing bodies to be able to detect infringements and software-using organizations to protect themselves from liability resulting from un-intentional use of licensed software. In my past experience as an IBM product development manager I had to employ tools and procedures to minimize that risk. These efforts achieved the desired results and managed to remove surprises before becoming issues.

To detect and combat plagiarism specific software instruments are necessary.
3. ASSUMPTIONS & CONSIDERATIONS
3.1 Assumptions

· A person intentionally tampering with a library will most likely not release the tampered source but just the byte code so the solution should address compiled libraries where the source is not available
· Libraries will not be Sealed
· Libraries will be in a .jar format and the binary format should adhere to standard format found in [1].
· Should address jar files that participate in a larger project and do not contain all the dependent classes
· Will address only class files from archive and the archiving will be done only to one level. Archives will not contain other libraries. This is a sensible assumption unless the people that tamper with the libraries decide to steal full applications

· The algorithm should be scalable and performance should be linear so large amounts of libraries could be subject to detection in acceptable time
· The fingerprint should be significantly smaller than the data that was used to create the fingerprint

3.2 Considerations

It is common for a jar file not to be sealed but rely on other libraries therefore a jar submitted for fingerprinting might not include all dependencies.
The normal mechanism for extracting class metadata information is reflection as in:

 URL[] url = { new URL("jar:file:/" + jarFilename+"!/") };

 URLClassLoader loader = new URLClassLoader(url);

 JarEntry jarEntry = null;

 JarFile jar = new JarFile(jarFilename);

 Enumeration<JarEntry> entries = jar.entries
 while (entries.hasMoreElements()) {

 jarEntry = entries.nextElement();

 String fileName = jarEntry.getName();

 int size = (int) jarEntry.getSize();

 if (!fileName.endsWith(".class")) continue;
 int index = fileName.lastIndexOf('.');

 fileName = fileName.substring(0, index).replace('/', '.');');

 Class cla = Class.forName(fileName, false, loader);

 Method[] methods = cla.getDeclaredMethods();

 for (Method m : methods) {

 System.out.println("Method:" + m.getName());

 }

…
As a direct result of non-sealed jars. the presented class loading mechanism involving reflection could not be used to extract class metadata or dependency metadata. This will force the use of de-compilation for the extraction of mentioned information.
4. BASIC NEEDS
A popular format for Java code libraries is .jar files. The detection software needs to be able to understand this format and able to extract out of the content elements that are good candidates to be compared with matching algorithms.

Note: There are other formats like .zip files could also be used and in the case of custom ClassLoaders any format could be used.
A de-compiler is needed to extract information.
5. POSSIBLE APPROACHES
Research on code theft is not new however it’s been done mostly on source code via plagiarism detection algorithms. In Java reverse engineering of code from byte code is possible especially if the goal is not to understand but to mangle, repackage and use directly. Another existing research cover code clone detection where the strategy is to detect duplicated lines of code. This technique would work well by detecting code steal by copying blocks of code however would fail in detecting obfuscation transformations. Software watermarking research could be used but OSS is being released without watermarking. Watermarking normally uses the concept of fingerprinting where the watermark (composed of the fingerprint) is embedded in the software. That can be bypassed by using custom class loaders as in [5]. There is some research in what is called birth-marking. This is similar to signatures however it needs good candidate information extracted from the library content itself instead of any private type key unrelated to the content. Reference [2] provides information in several techniques that have been employed.

Most approaches will consist in finding small nuggets of particular defining information.
The approach and algorithm for creating and comparing fingerprints should meet three main criteria:
· be resilient to transformations like obfuscations,

· produce decent credible matching
· be performant so it could be applied in practice

This is still an area of research. Algorithms for finding ideal credible identifiers could be developed or could be produced using evolutionary algorithms. Creating a genetic algorithm needs a training system that feeds the algorithm with tampered code, original code and match scores. Algorithms designed via non evolutionary methods should relay on class structure, class relationships, coverage trees or class behavior.

5.1 APPROACH COMPARISON
· jar metadata Approach
Advantages: fast and linear performance, de-compilation unnecessary

Disadvantages: vulnerable to most obfuscation techniques

· class structure considering method metadata and field metadata
Advantages: fast and linear performance, correct de-compilation possible, immune to most obfuscation techniques
Disadvantages: could yield false positives, some classes could contain scarce information

· class dependencies

Advantages: immune to most obfuscation techniques, could be quite precise, correct de-compilation possible.

Disadvantages: could lead to tree comparison that is slow and has exponential performance, some classes could contain scarce information

· flow or coverage could consider code path trees

Advantages: immune to most obfuscation techniques, could be quite precise.

Disadvantages: leads to tree comparison that is slow and has exponential performance, correct de-compilation is hard to achieve
· class behavior considering specific code fragments

Advantages: fast

Disadvantages: vulnerable to obfuscation techniques, correct de-compilation hard to achieve
· it would also be possible to adapt a more radical approach like for instance calling methods with random values until an interesting information rich response is obtained

Advantages: fast and linear performance, immune to most obfuscation techniques

Disadvantages: requires full class dependency presence, could yield false positives, most classes could contain scarce information

6. SELECTED APPROACH
A good balance in terms of performance versus quality should be offered by class structure with considering method metadata. This would be an excellent practical approach and will offer credibility, performance and immunity to intentional transformations targeting concealing. This was the main approach however we selected a secondary approach so we can compare the results. The reference approach was a simple jar metadata based algorithm. We will perform and detail measurements to assess the target properties:
Credibility: Let a and b be independently written libraries that accomplish the same task. Then we say:
f is a credible algorithm if f(a) ≠ f (b).

Immunity: Let a be a library and b a new library derived from a by applying a transformation that preserves semantics:
f is immune to T if f (a) = f (b)

see [3] for probable transformation techniques

Performance: Let a be a library containing n elements and b a new library containing 2*n elements

Performance would be met if:
Tf (a)*n ~Tf(b) where TF(l) is the computation time for library l
6.1 APPROACH DESCRIPTION
We selected two approaches so we can compare the results. The reference approach is a simple jar metadata while the main approach exploits class information
6.1.1 Main approach

6.1.1.1 Creating fingerprints and error margin
· Explore the library and dynamically retrieve class byte code class by class

· Decompile the class

· Retrieve the signature of each method in the class

· Extract just the parameter types of the method not the names
This is done to ensure immunity
see [3] for probable transformation techniques

· Eliminate any method that has any parameter not part of a known library
This is done to ensure immunity

· Eliminate all methods with no parameters (that will also exclude default constructors)
This is done to ensure immunity

· Build a list with all the identified good candidate methods per class
· Sort the list so it becomes immune to transformations that change the method order
This is done to ensure immunity

see [3] for probable transformation techniques

· Apply a hashing algorithm to the list. This is designed to reduce the size of the compound method data
This is done to ensure performance
· Collect all the class hashes in a collection chain that becomes the fingerprint
· Calculate an error margin based on the number of average good method per class

This is done to ensure credibility
6.1.1.2 Compare fingerprints, generate fingerprint results and calculate match score

· Calculate the fingerprint for the inspected jar

· Extract the signature for each jar signature stored in the fingerprint database
· Sort the composing hash values for the database stored fingerprint

This is done to ensure immunity

· Using a standard binary search compare all the fingerprint hashes with the sorted stored fingerprint hashes and record the number of matches
· Calculate the match score percentage out of the candidate classes number and total number of matches
This is done to ensure credibility

· Record the combine estimated error margin as a comment in the fingerprint result
This is done to ensure credibility
6.1.2 Alternate simpler approach to use as reference
6.1.2.1 Creating fingerprints and error margin
· Explore the library and dynamically build a list with file and path name information
· Apply a hashing algorithm to the list. This is designed to reduce the size of the compound method data
This is done to ensure performance
6.1.2.2 Compare fingerprints, generate fingerprint results and calculate match score

· Calculate the fingerprint for the inspected jar

· Extract the signature for each jar signature stored in the fingerprint database
· Sort the composing hash values for the database stored fingerprint

This is done to ensure immunity

· Using a standard binary search compare all the fingerprint hashes with the sorted stored fingerprint hashes and record the number of matches
· Calculate the match score percentage out of the candidate file number and total number of matches

This is done to ensure credibility

6.2 IMPLEMENTATION DESIGN
The design intention was to create a system that is modular, configurable and decouples specific function and algorithm implementations from the general framework. That offers the advantage of being able to change the implementations without changing the general framework.

The design established that Hashing, Filtering and Compare algorithms and functions were independent in purpose and should be decoupled from the main flow.

The main Fingerprint managers delegate these functions to dedicated classes implementing this functionality.

The design required a configuration method and some creational patterns to be able to replace Hashing, Filtering and Compare with alternate algorithms from different providers.
Another goal of the design was creating a system ready for further extension and that the de-compiler should be able to decompile field information and other information not necessary for the first version. That was achieved by using a base class that does more de-compilation and a derived class that specializes in method information.
6.3 IMPLEMENTATION ASPECTS
One of the challenges was creating the de-compiler. While some de-compilers exist in the public domain none found seem to fully and correctly decompile byte code. So we had to implement a de-compiler starting from Java specification for binary class file format defined in [1].
There were some challenges related to optimally storing the version of the software. A production system shall have a provision for subsequent releases and versions. A concatenated string was used however a better approach would have provisioned for independent fields retrievable separately.

There were challenges related to lack of an error margin value. While the need to have that is beyond the scope of this paper a good explanation of why the match score is hardly relevant without an error margin is provided in [4].
There were challenges related to calculating the error margin for the library jar structure algorithm. The challenge consisted in algorithm and the fact that the fingerprint objects did not have a dedicated field for storing that information. The solution was to concatenate that to the fingerprint and re-extract it during comparison. It’s important to note that while the method based approach could estimate the error during filtering the jar structure approach could infer the error only after comparison.

There were challenges related to performance and compromises had to be made due to the fact that the encoding was stored as a String instead of bye array or an Object. That would have allowed for avoiding some unnecessary Collection to String conversions and re-parsing.
The chosen Filtration algorithm allows for duplicates. While in some cases that makes fingerprints more unique in other cases it affects the precision of the scoring algorithm.

To create the desired level of configuration a fair amount of classes needed to be developed.
7. ASSESSING THE APPROACHES
In order to validate the approaches we create a number of scenarios with different types of libraries of different composition. We also included boundary conditions where the libraries contained none or a very low number of subject files and classes. That was done to gage the comparative performance of the Main algorithm versus the reference algorithm.

We also included test designed library types and real production library types from Eclipse and JBoss software.

The number of subject classes varied from 0 to about 40 which is a normal range for an average library.
To test the credibility we elected two main transformations engines with several variations in the transformation technique. All elected transformations preserved semantics to satisfy the terms of initial assumptions. Both ranges of transformation are automatic and that reflects the most likely case where the code theft concealing will be intentional and applied at low level to a usable amount of code.
We have chosen two obfuscator implementations to reduce the impact on measurements due to the quality of obfuscators.

The first obfuscator software was RetroGuard [6] by Retrologic and the second one, a second generation Obfuscator produced by Allatori [7] .
The libraries that have been obfuscated have been prefixed with ‘obf’.

The libraries that have been obfuscated changing the obfuscation configuration to aggressive have been prefixed with ‘obfHard’.

Table 1. Jar files analyzed

	Library
	Attributes

Value

	jboss-bootstrap 1class =bootstrap.jar
	total non class files:0 total classes:1 total packages:4

	jboss-bootstrap half classes.jar
	total non class files:4 total classes:8 total packages:13

	jboss-bootstrap less classes.jar
	total non class files:4 total classes:24 total packages:13

	jboss-bootstrap.jar
	total non class files:4 total classes:25 total packages:13

	mousegestures-1.2.jar
	total non class files:1 total classes:4 total packages:4

	mouseObfuscated.jar
	total non class files:2 total classes:5 total packages:6

	net.sf.jadclipse_3.3.0.jar
	total non class files:5 total classes:26 total packages:6

	obf-mousegestures-1.2.jar;
obfHard-mousegestures-1.2.jar
	total non class files:1 total classes:5 total packages:4

	obf-test.jar
	total non class files: total classes:6 total packages:6

	obfHard-jboss-bootstrap.jar
	total non class files:4 total classes:26 total packages:13

	obfHard-net.sf.jadclipse_3.3.0.jar
	total non class files:5 total classes:27 total packages:6

	obfHard-stripped-jboss-bootstrap.jar
	total non class files:0 total classes:26 total packages:8

	onenonclassfile.jar
	total non class files:1 total classes:0 total packages:0

	out.jar
	total non class files:3 total classes:37 total packages:0

	stripped-jboss-bootstrap.jar
	total non class files:0 total classes:25 total packages:9

	test.jar
	total non class files:2 total classes:5 total packages:6

	this.jar
	total non class files:3 total classes:41 total packages:0

8. MEASUREMENTS AND RESULTS
We created a number of standard JUnit test cases to compare signatures of selected pair of libraries obtained under main Approach versus the Reference approach.
For convenience we named the implementer of the Main approach FingerprintManagerSherlock while the Reference approach was implemented by FingerprintManagerWatson.

Table 2 shows the Match Percentage corresponding to the two libraries being compared.

Table 2. Measurement Results
	Test

#
	JUnit Test

Library 1
	JUnit Test

Library 2
	Score
%

	Watson Approach

	1
	empty.jar
	empty.jar
	0

	2
	onenonclassfile.jar
	onenonclassfile.jar
	100

	3
	jboss-bootstrap.jar
	jboss-bootstrap less classes.jar
	100

	4
	jboss-bootstrap.jar
	jboss-bootstrap half classes.jar
	100

	5
	this.jar
	out.jar
	38

	6
	obf-test.jar
	test.jar
	69

	7
	obf-mousegestures-1.2.jar
	mousegestures-1.2.jar
	78

	8
	obfHard-mousegestures-1.2.jar
	mousegestures-1.2.jar
	22

	9
	obfHard-net.sf.jadclipse_3.3.0.jar
	net.sf.jadclipse_3.3.0.jar
	19

	10
	obfHard-stripped-jboss-bootstrap.jar
	stripped-jboss-bootstrap.jar
	0

	11
	jboss-bootstrap.jar
	jboss-bootstrap.jar
	100

	Sherlock Approach

	12
	onenonclassfile.jar
	onenonclassfile.jar
	0

	13
	jboss-bootstrap.jar
	jboss-bootstrap less classes.jar
	100

	14
	jboss-bootstrap.jar
	jboss-bootstrap half classes.jar
	100

	15
	jboss-bootstrap.jar
	net.sf.jadclipse_3.3.0.jar
	11

	16
	this.jar
	out.jar
	97

	17
	obf-test.jar
	test.jar
	80

	18
	obf-mousegestures-1.2.jar
	mousegestures-1.2.jar
	100

	19
	obfHard-mousegestures-1.2.jar
	mousegestures-1.2.jar
	100

	20
	obfHard-net.sf.jadclipse_3.3.0.jar
	net.sf.jadclipse_3.3.0.jar
	100

	21
	obfHard-stripped-jboss-bootstrap.jar
	stripped-jboss-bootstrap.jar
	100

8.1 RESULT INTERPRETATION
As expected for an empty library both approaches produce 0%.

For a library with one file that is not a class the Watson produces the correct 100% result while the Sherlock algorithm does not have any data to work with so it produces a 0%. That is expected and consistent with the assumptions. This is the only test where Watson compares favorably to Sherlock, and is a result of no transformation being applied.

Regardless of the size of the library, when no name mangling transformation is applied both algorithms test 1 scores correct at 100%.

When comparing unrelated production type jars jboss-bootstrap.jar with net.sf.jadclipse_3.3.0.jar (Test 9 and Test 15) both algorithms yield less than 20%. Sherlock returns a 11% match being as expected superior to Watson and proving its credibility.

When comparing obf-test.jar with test.jar (Test 6 and Test 17) we also conclude that Sherlock is superior, rating really high at 80% compared to 60% yielded by Watson. A surprise is that Watson scores so well with this obfuscation. A closer look determines this being the result of the weight of obfuscated elements (8) versus only 5 classes. The non classes are not obfuscated and Watson scores proportional to the non-obfuscated files.

As expected Test 7 and Test 18 yield 100% showing again the superiority of Sherlock. Watson scores very high because of non obfuscated files.

Tests 8, 9 and 10 with Watson show a constant depreciation of results scoring 22, 19 and 0% for identically semantically libraries. The last test was done with aggressive obfuscation and no non class files and Watson scores 0% when the correct result should be 100%.
The ultimate credibility test is offered by the same type of tests (Test 19 to 21) done in Sherlock. The result is actually impressive and shows that Sherlock is totally immune to the aggressive transformation and identifies the files to be identical with a 100% match.

8.1.1 Performance

Performance will be measured as speed and size of the fingerprints.

Direct extract from log indicates:

Processed: 42 files in: 16.0 milliseconds
The maximum time measured was 16 milliseconds for 42 files which results of sub-milliseconds per class. That could be further optimized by introducing conditional logging and by adjusting the interfaces to reduce the amount of necessary String parsing.
The average fingerprint size was about 10 characters per contained class. That should be acceptable.

Note: The machine where measurements were performed was an average to low performance server.

9. INDUSTRY ADOPTION

A fair numbers of academic papers have been published commencing with 2004. Despite that, we found just one published tool called Stigmata [8]. The likely cause of this is that the business value is low or unclear.
10. COMPARISON WITH EXISTING SOFTWARE

Stigmata seems to be either the most common or the only available software in this area. Stigmata does not work in English due to a character conversion issue documented in [8]. One advantage of this tool is its extensible architecture where new algorithms could be added. Currently it implements at least 5 or 6 algorithms out-of-the-box.
Stigmata was not able to handle the hard obfuscation test due to the fact that it requires sealed jars of specific configuration per jar. See Figure 1.
[image: image1.png]% Stigmata: Java Birthmark Toolkit
Fie Help

Cortral

Targets | welkknownclasses | Classpeth | Propertis

R

(Citempjar|obferd-strippecjboss-boststrap. jar
(Citempjaristrippe-fhoss-bootstrap.jar

Faled proccessed operation because Folluwing classes did not found,
Please exatine your dasspath settings at **Classpath tabin ** Control” tab.

@ orgfjbossjmetatypespi/values{itetaiapper

Figure 1

Stigmata handled pretty well obfuscated sealed jars like the test .jar and obfuscated test.jar (see Figure 2). The results were comparable with the main approach in this paper and the granularity was at the class level. Note the fact that false positives were quite abundant. See red cells (denoting high score) in the Stigmata interface for details

[image: image2.png]# Stigmate
Fie tHep

Control | Extract Result 1 (| Compare Result 1

com smardec mousegestures.test TestFrameg1 | com.smer... | comsmar... | com.sm
com smardec.mousegestures.test. TestFrames 1

com smardec.mousegestures test. TestFrames2

com smardec. mousegestures test. TestFrame$3

camsmardec. mauseqestures et TestFramedd [0.433a03464 7066531 0.43380346... [0.43380346,
comsmardec.mousegestures.est, TestFrae 7

com smardec.mousegestures.est, TestFrae
com smardec.mousegestures.test s 043115353,
comsmardec.mousegestures.test.t

com smardec.mousegestures.est.2

com smardec.mousegestures.test.o

Figure 2

The fingerprint size varied with the chosen Stigmata sub-algorithm and it was comparable to the main approach of this paper. Depending on the algorithm being used by Stigmata the fingerprint went down to a lower granularity per class as in the kgram algorithm (see Figure 3).
[image: image3.png]O Birthmark.
(52 com.smarde mousegestures.test TestFrame
ERSLrE)
2 java.ant event. ActorEvent
1: ava.ant event ActionLstener
2 javalang.Obect
CX=pey
* <>
@ java.lang.Object

{25,183, 25,25}
{183,25, 25, 181 }
(25,25, 181, 177}
{25, 181, 177, 25}
{181,177,25, 180}
{177,725, 180, 184}
{25, 180, 184, 7}
{180, 184,7, 182}

® {184,7,182,177}
RPN

.
.
.
.
.
.
.
.

Figure 3

11. FUTURE WORK
The approach could be improved by including the method return type and field types in the finger print

The approach could be improved by refining the method for score calculation and error margin level

The approach could be extended to consider the known named entities as long as they are present in the subject library. That will have to expand in reference identification and will reduce the performance.
The performance could be improved both in terms of speed and fingerprint size. The fingerprint could be easily compressed with any no-loss compression algorithm.

A fingerprint generator algorithm might morph to accommodate different forms of incoming data. That could also be handled at a umbrella level, internally in the fingerprint generator or as a hybrid combination. We could for instance reserve the first byte in the fingerprintResult to specify the sub-algorithm used.
The best sub-algorithm could be determined dynamically similar to some compression tools used today. Those compression runs are precluded by a short analysis of a small data sample. That determines the best sub- algorithm to use.
12. CONCLUSIONS
Aggressive transformations are probable in real life situation and the results show clear superiority and success of the main approach versus the reference approach.

We expect this detection field and algorithms to evolve as an arm race situation where improved algorithms will trigger creation of better concealing techniques.
A well maintained collection of algorithms could be the solution to this expected evolution. That would be similar to antivirus approaches where new signatures are added daily to the detection.

There is no silver bullet solution however an up-to-date, comprehensive collection of algorithms could address this issue.
13. ACKNOWLEDGMENTS

Our thanks to Mr. Dwight Deugo for all his clear lectures and the help and support in the production of desired artifacts.
14. REFERENCES

[1] Sun Microsystems Inc. 1999. Binary class file format.
http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.html#16628
[2] Grover, D. 1989. Program Identification. The Protection of Computer Software. Cambridge University Press, NewYork, NY, USA
[3] Michael Batchelde. 2006. Java Obfuscation Techniques, Renaming Identifiers: Classes, Methods, and Fields (RI[C,M,F]).
http://www.sable.mcgill.ca/JBCO/examples.htmlSannella
[4] N.N. Taleb. 2007. The Black Swan, Penguin Books

[5] Vladimir Roubtsov. 2003. Cracking Java byte-code encryption.
http://www.javaworld.com/javaworld/javaqa/2003-05/01-qa-0509-jcrypt.html
[6] Retroguard Obfuscator

http://www.retrologic.com/

[7] Allatori Obfuscator

http://www.allatori.com/
[8] Haruaki Tamada. 2006. Stigmata Project

http://stigmata.sourceforge.jp/

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=4296969
Sun, Sun Microsystems, Java and all Java based marks are trademarks or registered trademarks of Sun Microsystems in the United States and other countries.

PAGE

