
Java Archive Fingerprinting Application
Jeff Regis

Carleton University
134 Baseline Road

Ottawa, ON
(613) 324-0632

jjcregis@gmail.com

ABSTRACT
In this paper, a content-based approach to gauging the similarity
of two Java archives (jar files) is discussed. The jar files are
examined for similar functions and methods and any similarities
found are reported to the user.

Programming Languages
The application was programmed using Java.

Keywords
Application: The Java archive fingerprinter that this report
discusses

Jar file: Java archive

1. INTRODUCTION
The purpose of the application is to be able to examine two jar
files and give an indication of how similar they are. This
application was developed to satisfy the requirements for
completing the term project of COMP 4900/5900 offered by
Carleton University in the Fall 2010 semester.

There are many different strategies for examining jar files for
similarities. The main two approaches are examining the structure
of the archive and examining the contents of the files in the
archive. The application takes the content-based approach.

The application examines all Java source files contained in each
jar file. The application examines each of these files for function
or method definitions that adhere to a predetermined structure.
Several properties of functions that are found are stored. When
both jar files have been completely examined, the functions found
in their respective archives are compared against each other and a
percentage value is given based on their similarity.

2. CLASSES
The application uses several classes to perform its function.

It is required that the project implement a few interface classes.
IFingerprint is implemented by Fingerprint which stores a string
encoding of a jar file. IFingerprintGeneratorDetector is
implemented by FingerprintGeneratorDetector which generates a
fingerprint from a jar file and generates a comparison result from
two jar files. IFingerprintResult is implemented by
FingerprintResult which stores the similarity percentage of the
two jar files and a textual comment conveying information about
the analysis.

The application also utilizes a few custom classes not required by
the project requirements. Function stores information about each
function found in the source files, including the function's
protection, return type, name and the number of arguments it
takes. FingerprintProgram contains the main procedure.

A number of classes from the Java SDK are used as well.
BufferedReader, InputStream and InputStreamReader are used for
reading the contents of a file in an archive and are found in the
package java.io (IOException is also included due to being a
requirement for some of these classes to work). Jar files are
handled using the JarFile class and its contents are represented
with JarEntry objects, both from java.util.jar. Finally, three classes
from java.util are utilized in the application. ArrayList is used for
storing objects that need to be examined at a later time,
StringTokenizer is used for analyzing the textual content of the
JarEntries and Enumeration is used as a wrapper object for easy
iteration over a collection of JarEntries.

3. PROCESSES
3.1 Analysis
3.1.1 Setup
Most of the application logic is located in the
FingerprintGeneratorDetector class. All of the logic responsible
for analyzing the contents of jar files is located in the method
named generateFingerpringFrom(). When invoked, this method
will produce a Fingerprint object that stores the fingerprint data
for a jar file with the archive's name provided as an argument.

The jar file analysis process begins by opening an existing jar file
given its name. The archive is stored as a JarFile object. The
contents of the JarFile, JarEntry objects, are wrapped by an
Enumeration object into a list of entries.

The list of JarEntries is then examined for Java source files. The
application will know that a file is a source file if its filename ends
with the substring “.java”. Every file in the JarFile that has this
extension will be added to a list (using an ArrayList object) of
files to be examined further.

A BufferedReader is used for examining the contents of each
source file. The BufferedReader is fed an InputStreamReader as
an argument which is itself set up by the InputStream obtained
from each JarEntry. One at a time, the BufferedReader examines a
source file stored in the list. One line of the current source file is
examined at a time.

All brackets, curly braces and commas that may exist in each line
are spaced into their own tokens. That is, these characters are

replaced by the same character with a space on either side. This is
done in order to make processing easier which will be clear
shortly. When these characters have been spaced into individual
tokens, the current line is added to a large string that is used for
processing.

3.1.2 Processing
After the above steps are completed, the large string containing all
of the text from all Java source files in the jar file is tokenized and
examined for possible function and method definitions. The
application will search the string for a function having the
following format:

public|private|protected returnType funcName (argType1
argName1 , ...) { … }

The application will consider any sequence of tokens to be a
possible function if the token is the string “public”, “private” or
“protected”. Upon reading one of these strings, the string will be
added to a list to store the details of a Function object's properties
if an entire function definition ends up being found.

The next two expected strings in the sequence are the function's
return type and the function's name. Unlike the function's
protection which was previously detected, the return type may not
be a predefined word in Java since it could be a user-defined type.
This is especially obvious for the function name since the user has
the freedom to name their function whatever they want. The
application adds these two details to the list.

Next, the application expects an opening bracket which signifies
that there are arguments that are to be read in. Beginning here is
where the spacing of brackets, braces and commas becomes
important. Had this not been done before, a token of the format
“funcName(argType1” might exist. The processing of these
tokens is greatly simplified if spaces are used as the only
delimiters between the tokens. The types or names of the
function's arguments are not taken into account, only how many
arguments the function accepts.

After the closing bracket is read, the next token expected is an
opening curly brace which signifies the beginning of the
function's body. Analyzing the body in a meaningful way would
be a difficult endeavor so its contents are disregarded. Once a
closing curly brace is found, the application creates a new
Function object and stores the function's protection, return type,
name and its number of arguments. The object is then added to a
list of other Function objects to be encoded later.

3.1.3 Encoding
After all source content has been analyzed and processed, a list of
functions found in the jar file will available and will need to be
encoded into a string fingerprint. The encoding process is simple:
for each function in the list we have been keeping, the function's
protection, return type, name and its number of arguments are
appended to the string, separated by spaces.

3.2 Comparison
Comparison between two Fingerprint objects is done in the
gemerateFingerprintResultFrom() function in the
FingerprintGeneratorDetector class. A similarity value is
maintained and increased by varying, semi-arbitrary amounts
depending on how many of the properties of the functions being
compared are the same.

For each fingerprint, its encoding is dismantled and a list of
Function objects corresponding to their respective jar files is
created. The functions in each list are compared first by return
type, then by the number of arguments, then by name, then by
protection. If two functions have the same return type, the
similarity value increases by 5% since it is unlikely (yet still
somewhat likely) that two functions with the same return type will
be the same function. If the number of arguments match as well,
the similarity rises to 25%. If the names of the functions match
too, the similarity becomes 95%. This large jump is due to the fact
that little information can be gathered from the return type and
number of arguments alone, but if the names match then it is
likely that the functions have the same purpose. The similarity
becomes 100% if these three properties match in addition to the
protection since the protection of a function is a minor detail.
During this process, comments regarding the similarity of the two
functions being compared are stored in a FingerprintResult so the
user may better interpret the results and perform further
investigation if they desire.

After all of the functions have been compared, the certainty of the
two jar files being the same is calculated with the formula:

similarity / ((numFuncInjar1 + numFuncInjar2) / 2)

 This value should be used in conjunction with the comments in
order to determine if a certain function could exist in both jar
files being examined.

4. RESULTS
The formula used to compare the certainty that the two jar files
being compared will yield 100% certainty if a jar file is compared
against it self. The more the jar files differ, the smaller the
certainty value becomes. This approach of comparing similar
functions found within two jar files works relatively well with
smaller archives but the certainty value quickly becomes less
relevant as the files become larger in size and contain more
functions.

The comments produced by the application are a useful aid for the
user when determining if the same function is found in the two
files. Since comments are only added once functions with the
same names are detected, they still remain useful when comparing
large jar files as opposed to the certainty value which may become
obsolete.

	1. INTRODUCTION
	2. CLASSES
	3. PROCESSES
	3.1 Analysis
	3.1.1 Setup
	3.1.2 Processing
	3.1.3 Encoding

	3.2 Comparison

	4. RESULTS

