
Fingerprint Generator and
Detector Implementation for JAR

Files
<Draft>

Naif A. Alzahrani

Graduate School of Computer Science

Carleton University
Ottawa, Ontario, Canada

E-mail: nalzahra@connect.carleton.ca

Java archived file (JAR) is a kind of compressed java package
file which contains mainly compiled java classes and other
necessary resources such as XML files, text files, and picture
files. Source code files are usually not included in the JAR file,
especially for commercial applications. JAR files are always
reused in open source software. Some developers adopt external
code to their application without considering license constraints.
Others reuse it after modifying the code to some level to appear
as new code not related to the original source. In both cases,
reusing the open source code should follow the license rules and
constraints. This paper will explain the implementation of the
fingerprint generator and detector program for JAR files. The
implementation works through JAR file and deals with Java
compiled files only to collect selected metadata attribute values of
all methods to be included in the fingerprint for the JAR file.

Index Terms— byte code, code cloning, copy detection, JAR,
Software licensing violations, software similarity

I. INTRODUCTION
In the last decade, open source software (OSS) became more
popular, robust, dependable, and cost effective. Many
companies adopted OSS in their businesses. OSS requires low
hardware specification and works with high performance
stability compared to other commercial software.

<To be developed later>

1) Problem

 The main issue in reusing and adopting OSS is the violation
of license constraints and how it can be merged and integrated
with other software licensed under a different license type. In
fact, some OSS is licensed under a specific license and cannot
be integrated with other licenses. For instance, any software
licensed under general public license (GPL) must remain
under the same license and the code should be available for
others to use.
 Some developers do not understand this point and they
reuse OSS in company products that are licensed differently.
This violation of OSS licenses raises a legal issue.
 The problem that this paper focuses on is how companies
and developers can avoid using open source illegally by
comparing their applications with other open source programs
and identifying the similarities.

2) Motivation
Many companies invest in developing commercial software
aiming to get revenue and a reputation. These companies test
their application before release. If OSS has been used in
developing such a product without considering the open
source license constraints, a company’s investment and
reputation may be lost due to illegal use of OSS. The
motivation for this paper is to solve part of this complicated
problem by helping companies, as well as developers, to
determine the similarity between two Java archived files
(JAR). Getting a similarity percentage will support companies
in evaluating the final product that adopts OSS before release.
Also, it will save company investments and reputation from
any illegal concerns related to OSS licensing violations.

3) Goal
 The goal is to develop a Java program that does the
following:

• Generate a unique fingerprint from the original JAR.
• Compare target the JAR file with the original JAR

file.
• Calculate the certainty present.
• Generate the required comments.

 The purpose of the fingerprint is to act as an information
container for an identifier that is used in the compression
process. It has an ID that is unique and different from other
fingerprints. The size of the generated fingerprint must be
manageable to reduce the time of compression.
 Certainty and similarity present result will show how two
JAR files are similar to each other. A high percentage
indicates that both JAR files have many classes and methods
that are similar; on the other hand, a lower percentage means
that fewer classes and methods are similar or the same.
 In addition, this program should show the end user
interesting comments during and after the compression
process. These include the status of each step in the
compression and the total number of class files and number of
methods in both JAR files.
4) Objective

 In order to generate a small-sized fingerprint, the
implementation of the fingerprint will focus only on the object
code files (.class) of a JAR file. The following steps must be
completed:

• Do some research on code cloning to deeply
understand other compression techniques and the
latest research in this field.

• Study the structure of Java object code.
• Find a Java library to read and parse object code files.
• Design the fingerprint structure.
• Find a way to calculate the similarity factor and

percentage.

5) Outline
 The work in this paper is provided in the following sections.
Section II gives some history and background knowledge in
the same research area – cloning detection technique. Section
III illustrates the design of the program that detects the
similarity of two JAR files. Section IV presents some results
and compares them with the goals and objectives that are

identified in previous sections. Section V concludes the paper
and suggests some future work.

II. BACKGROUND
 This section describes the knowledge and work related to
project implementation.

1) Related work

Java programs are compiled into a platform-independent
format as byte code (.class file). These files contain important
information about the original code [2]. To read byte code
files and extract the information about the original code, a
developer uses one of the following methods:

• Interprets class files by reading metadata [9].
• Reverse engineers the byte code to java source code

[2] [8].

 The first method – interpreting the byte code (.class) files –
is done by reading the metadata of each class in a JAR file,
such as return type, input parameters, access flag, and other
information about each method in the class file. Many open
source Java libraries are customized to read and interpret byte
code such as [9].

 Expert developers can access byte code, modify and correct
the code even without the original source code. Qing et el,
study and the byte code file structure and they developed a
strategy to read and modify the byte code. In fact, this strategy
is limited since it can modify some metadata values.

 The reverse engineering method is done by De-compiler
application [8]. These applications transform the byte code to
an instruction set or Java source code that can be recompiled
again. Memone et el, proposed two byte code obfuscation
techniques to prevent the De-compilers from generating the
correct source code.
<To be developed later>

III. APPROACH
 The following section will illustrate the design and
decisions that were made based on [2] [4].

1) Design
 A JAR file contains different file types, such as java source
code, text file, images, XML files, and class files. Developers
can modify the JAR file easily except for class files that need
special skills as well as advanced tools for modification. The
approach of implementing a fingerprint generator and detector
will focus on byte code (.class files).
 As mentioned before, the main goals are to generate a string-
based fingerprint and get a similarity factor after matching to
the JAR file. The design of the fingerprint generator and
detector are summarized in the following points:

• Ignore all file types and focus on byte code (.class
files) only in order to generate small size fingerprint

• Collect some selected values from metadata of class
files that are not changeable or not easy to change.

• Build up a fingerprint as a string containing the data
collected in the previous step for each byte code file
in JAR.

A. Pseudocode for fingerprint generator
The following is Pseudocode for the generator:

Get JAR file
If the passed file is not JAR then
 Print error message and exit
Else
 Unzip JAR file
 For each .class file
 For each method on .class file
 Read method metadata attributes
 Add attribute value to Array List
 Build up the fingerprint with unique ID

Return fingerprint for JAR file

B. Pseudocode for fingerprint detector

Get JAR file
Get the fingerprint
Set certainty percentage value to zero
Set similar method counter value to zero

If fingerprint ID is not valid then
 Print error message and exit.
Else

Pass JAR file to fingerprint generator

Parse fingerprint one in array list one.
Parse fingerprint two in array list two.

For each value in the array list one
 Read collected metadata attribute
 For each value in the array list two
 Read collected metadata attribute
 Compare values
 If match then
 similar method +=1
Calculate certainty percentage.
Add total number of methods to the comments.
Return comments and certainty percentage.

1) Decision made
 In order to implement a fingerprint generator and detector
that are based on the byte code files, we have to carefully
select the metadata attributes. In fact, some attribute values are
easy to change even without the original source code. As
mentioned above, [2] is an example of one strategy developed
to modify byte code files. Using this strategy, experts can
modify some metadata values of the byte code to refine or
modify the code of any Java class file without having the
source code of that class. However, this strategy is limited to

some modifiable attributes of metadata. As a result, we
decided to select non-modifiable metadata for each method in
the .class file. The fingerprint will be a string containing a
metadata attribute value for each method. The following table
shows the main metadata selection decision in our
implementation.

Metadata attribute name Result Description
Name_index Refers to a string in the

constant pool.
Attripute_count Number of entries in

attribute table of the method.
Max_stack Size of stack required by the

method's code.
Max_local Number of local variables

required by the method's
code.

Code_length The method's executable byte
codes length.

Exception_table_length The length of the method
exception table.

Table 1 : Description of method metadata

IV. RESULTS
 This section shows the results of the fingerprint generator
and detector in different scenarios. The following table
summarizes the results in each scenario.
Scenario Results
Original and target JAR files
are the same

Figure 1 shows that the
Certainty percent = 100
number of similar function
=1120
number of functions in 1st
JAR = 1120
number of functions in 2ed

JAR = 1120
Two different JAR files Figure 2 shows that the

Certainty percent = 23.07
number of similar function=3
number of functions in 1st
JAR = 1120
number of functions in 2ed

JAR = 13
Two identical JAR files, each
one containing only one
.class. In the second file we
modify the following in one
method only

• Method name
• Return data type
• Input parameter data

type.

Figure 3 shows that
Certainty percent = 33.33
number of similar function=1
number of functions in 1st
JAR = 3
number of functions in 2ed

JAR = 3

Figure 1: Results of first scenario

Figure 2: Results of second scenario

Figure 3: Results of third scenario.

<To be developed later>

V. CONCLUSION
1) Review goal and contribution

 To summarize, the implementation of the fingerprint
generator and detector show a positive result. In fact, selecting
specific metadata has an impact on the overall accuracy.
Including only non-modifiable attributes in the fingerprint
increase the accuracy and reduce the execution time.
 There were four goals set in the previous section:

• Generate a unique fingerprint from original Java
archived file (JAR): this goal successfully achieved
since we defined unique ID for generated fingerprint

• Compare target JAR file to original JAR file: from
the result section we can see the positive results of
JAR files compressions. In fact, scenario three shows
how the smart modification can also be identified.

• Calculate certainty and similarity present
• Generate required comments. As it can be seen on the

result section the implementation shows the certainty
percentage based on number of matched methods and
the total number of methods in each JAR file.

2) Future work
 The implementation of the current version will match the
selected metadata of each method as one block. For instance,
if all metadata are matched in both methods the program will
consider it, but if one value is different the current version will
not consider it as a matched method. So developing an
existing version to include a partially matching technique is
one of the most important points for future work.
<To be developed later>

REFERENCES
[1] Java class file format.

http://java.sun.com/docs/books/jvms/second_edition/html/ClassFile.doc.
html. Accessed: October 10, 2010.

[2] Jan M. Memon, Shams-ul-Arfeen, Asghar Mughal, and Faisal Memon,
“Preventing Reverse Engineering Threat in Java Using Byte Code
Obfuscation Techniques,” 2nd International Conference on emerging
Technologies. page 689-694. 2006.

[3] Open Source Initiative Licenses - http://www.opensource.org/licenses/
Accessed: November 1, 2010.

[4] Qing Su, Yongfeng Cao, and Guoda Liang Su, Q, Cao, Y and Liang, G.,
“The Strategy of Java Class File’s Modification,” 2009 Second
International Workshop on Computer Science and Engineering. page
322-326.

[5] DJ Java Decompiler. http://members.fortunecity.com/neshkov/dj.html
Accessed: October 1, 2010

[6] Java Class File Specification. http://en.wikipedia.org/wiki/Class (file
format) Accessed: October 10, 2010.

[7] Free Software Foundation - http://www.fsf.org/licensing/licenses/
Accessed: November 1, 2010.

[8] JD-GUI. Java De-Compiler. http://java.decompiler.free.fr/ Accessed:
October 1, 2010.

[9] Java class library.
http://www.amosshi.net/site/freeinternals.org/product/javaclassfilelibrar
y/javadoc/. Accessed: October 15, 2010.

