COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

Structure Based JAR Fingerprinting

SK Alamgir Hossain

Abstract—Usually Java software are releases as jar files under
GPL or other licenses. Users may violate the terms and conditions
of those licenses. In this paper we propose a structure based
system for registering jar files called jar finger printing and
then detecting copies, either complete copies or partial copies
of the source code. We describe algorithms for such detection,
and metrics required for evaluating detection mechanisms. We
also describes implementation issues of a working prototype and
present experimental results that suggest the proper settings for
copy detection parameters.

Index Terms—Software protection, Document fingerprinting,
Plagiarism detection, Fingerprint, Jar

I. INTRODUCTION

Steganography is the art and science of writing hidden
messages in such a way that no one, apart from the sender
and intended recipient, suspects the existence of the mes-
sage, a form of security through obscurity. Steganography
in the form of media watermarking and fingerprinting has
also found commercial applications. In a typical application
of image watermarking, a copyright notice identifying the
intellectual property owner is imperceptibly embedded into
the host image. Fingerprinting is a form of watermarking
in which an individualized mark is embedded into a copy
of the media. A typical fingerprint would include vendor,
product, and customer identification numbers. This allows the
intellectual property owner to trace the original purchaser of a
pirated media object. Here our main interest is software finger
printing specially Java jar file finger printing. Fingerprinting
a jar file discourages intellectual property theft, or when such
theft has occurred, allows us to prove ownership of the jar file.

Our contribution in this paper is three-fold. First, we present
a complete finger printing and verification algorithm for Java
jar file protection. Second, we introduces source level finger
printing method called RLE [1] encoding. Third, we evaluates
our methods in different metric and presents our developed
prototype’s results.

The remainder of the paper is structured as follows. Section
IT describes some background and well known related open
source software. Section III describes our design method-
ologies and different decisions that we made to finger print
and verify a jar file. We developed a prototype based on our
proposed approach. We performed different experiment using
this prototype and the evaluation results are in Section IV
and finally we conclude and our future goal are describes in
Section V.

SK Alamgir Hossain is with the School of Information Technology and
Engineering, University of Ottawa, Ottawa, ON KIN 6N5, Canada (e-mail:
shoss075 @site.uottawa.ca).

II. BACKGROUND
A. Related Open Source Software

Document finger printing and plagiarism detection is not
new in software piracy protection. Different well known tech-
niques are available now. One of the most familiar technique
is k-gram or chunk based detection. A variety of techniques
[2], [3], [4], [5] have been proposed based on this idea. One
such example is Moss [6] which is an automated tool used to
detect similarities between programs at the source code level.
The technique used to identify similarities is called winnowing
[7] which divides the file into k-grams. A hash of each k-gram
is then computed and a subset of hashes is selected as the
document fingerprint. This technique has proven to be quite
successful at detecting plagiarism within student programs.
However, one of the drawbacks of systems like Moss is that
similarity is computed at the source code level. Often source
code is unavailable.

Tamada, et al. [8], [9] have proposed a birthmarking tech-
nique specific to Java class files which is a combination of
four individual birthmarks: constant values in field variables,
sequence of method calls, inheritance structure, and used
classes. These four birthmarks could be used individually
but the combination yields a more believable and reliable
technique. The Tamada technique relies on characteristics that
are statically available and targets class level theft. A dynamic
birthmark technique has also been developed which uniquely
identifies a program based on a complete control flow trace
of it’s execution [10]. This technique targets whole program
theft.

Another notable work is JPlag [11] [12], an alternative
plagiarism detection service that operates in a similar way to
MOSS [6] in that it runs on a remote computer. They do not
give out accounts to “anonymous email addresses like Hotmail,
Yahoo, Gmail, etc”. JPlag is based on the “Greedy String
Tiling” algorithm [13]. Due to the use of a ’tokens”, JPlag only
supports Java, C#, C, C++, Scheme and natural language text
[11]. Another improved work is YAP [14] which is based on
the same algorithm but is designed to run locally. Although the
code is released only non-commercial use is allowed as per the
README in the download [14], and thus it is not Open Source
either. One of the main limitation is it supports only single
file submissions [15] instead of a jar file that contain multiple
files. Also Plaggie [16] is similar to JPlag in functionality and
UL, but is run locally like [14]. It is released under GPL, and
supports only Java code.

SID [17] is a modification of a genome comparison
algorithm. It works by comparing the amount of shared
information between two programs. It is not open source,
and files must be submitted to the server in a “carefully
formatted zip file”. Sherlock [18] and SIM [19] do not

COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

advertise licenses, but make the source code and instructions
for running the program on home machine. Sherlock formerly
worked in two steps, first by taking signatures and then by
comparing them, however it has since been modified not to.
AC [15] is a GPL-licensed, stand-alone program that supports
C, C++ or Java. It incorporates multiple similarity detection
algorithms found in the scientific literature and displays
results graphically [15]. The majority of these programs are
unsuitable for this application as they compare the files.

Algorithm 1: Finger Print Generation Algorithm

Input: A valid Jar file, jarFile
Output: XML sting representing the finger print
1 begin

2 fileList < extractJAR(jar F'ile)

3 decompile(fileList, destination)

4 xmlString < null

5 append jar properties to xmlString

6 foreach Class File f in fileList do

7 ‘ append public class properties to xmlString
8 end

9 rle < null

10 foreach Java source File f in fileList do
11 while read every line of f do

12 remove all white space

13 a + length of line

14 foreach Character c in line do

15 if ¢ is in the stripSymbols then
16 rle ++— c «

17 a+0

18 end

19 else

20 | a4 1

21 end

22 end

23 append rle to xmlString

24 end

25 end

26 return xmlString

27 end

III. APPROACH

In this section we presents our jar finger printing approach
and the verification approach. Here in Section III-A we discuss
the design of our method and next in Section III-B we discuss
some of the decision that we need to make for the finger
printing and verification process.

A. Design

The finger printing and verification are perform in two steps.
In the first step the finger print is created from the provided
jar file. The finger print contain some information that will be
used in the next step.

The finger print generation step is further divided into some
smaller steps which are shown in Figure 1. As the jar file is
a compressed file format so at first the system need to extract

P

e 3 &)

%Decompiler %RLE Encoder

Java files

Extractor

Jar File
H 0'

[class name, method
names et}

Store class attributes

Store Jar file attributes (file
name, size etc.)

Store Run Length Encoded
string

Finger Print File (compressed XML)

Fig. 1. Finger print generation process.

the jar file. A jar file may contain any types of file. It may
contain XML file, Image file, Class file, Java file, text file
etc. For our finger print generation process we use jar file
properties, class file properties and Java source structure. As
in a jar file the most important file is class file so here our
main attention is on class files. From the jar file the system
will collect the jar file properties like jar file name, jar file
size, last modification date, number of files inside the jar
file etc. When intruder misuse a jar file this attributes are
help full for the similarity check. After extraction the system
will calculate each class files properties like class file method
names, it’s super class name, package name, variables name
etc and will store in to the finger print file. In the next step
each class file decompile and generate the Java source file.
Always it is not possible to generate the Java source code from
the Java byte code. But most of the time it’s possible to get
significant amount code. After getting the source code from the
decompiler the system will calculate the run length encoding
of the corresponding source code. Run-length encoding (RLE)
is a very simple form of data compression in which runs of
data (that is, sequences in which the same data value occurs
in many consecutive data elements) are stored as a single
data value and count, rather than as the original run. This
is most useful on data that contains many such runs. Here in
our method we consider some selected symbol for the run.
All other symbols, characters are continuous character for the
count. This RLE code string is very shorter than the original
source code. The main benefit of this RLE code that it can
detect a simple change of code as it store the structure of the
code. As the RLE string may be big so we compress the string
with standard Gzip or gunzip compression tools for reducing
the finger print file. Those tools can compress a text file more
than 50:1 ratio. The finger printing generation algorithm is
shown in Algorithm 1. In the algorithm line number 2 and 3
will extract and decompile the jar file. Jar file properties and
class file properties will be calculated in line 5 and 6 to 8
respectively. In line 10 each Java file read one per line and
remove the white space then produce a nonstop string and then
convert to RLE.

COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

Algorithm 2: Finger Print Verification Algorithm

Input: A valid finger print file F'P generated by
Algorithm 1 and a valid Jar file jarFile to test
Output: Percentage of match
1 begin

2 oldF'P < fetch the content from finger print file F'P

3 newF' P < Algorithm 1 (jarFile)

4 B <+ compareJarProperties(oldF' P, newF P)

5 classPro < null

6 rle < null

7 foreach xml file tag f1 in oldF'P do

8 f2 < searchFileTag(newF P, f1)

9 classPro ++ compareClassProperties(f1, f2)

10 rle ++ Longest Common Subsequence of RLE
of f1 and f2

11 end

12 v < average classPro

13 0 < average rle

14 return w x 100

15 end

In the verification process the system need two files one
is the finger print file and another is a Jar file that need to
verify. The verification steps and the algorithm are shown in
Figure 3 and in Algorithm 2 respectively. In Algorithm 2 the
jar file need to extract, decompile and generate the finger print.
This process will perform line 3. Now there will be two finger
print one is the finger print that generated from the original
jar file and another is generated from the jar that we need
to verify. In line 4 the Jar file properties information stored
in the finger prints will be compare. Next in line from 7 to
11 the class properties and the RLE string will be compare.
For RLE compare the algorithm will use Longest Common
Subsequence [20] string matching algorithm. Finally in line
14 the percentage of match result will be returned. The RLE
comparison process are illustrated in Figure 2 where the green
down arrow indicate the source code in the original jar file and
the red down arrow indicate the partial copy of the original
source code and the final result shown in that figure. The
RLE string match algorithm will return for this example is
15+8+13+15+7 = 58 that a length of code 68 or 85% code
are common.

ey . e
. @ @ @
> ~
if T) :H Extractor %Decnmpi\er % RLE Encoder
- > AN
o JAR N AN
5 \ AN java fles
NN \\\
[.
[attributes | o —

File

Average match
result

Finger Print

_w\ compare [T Ve \
AN =/ Class
- Y
@ - . -‘f attributes par
e \ compare f— RLE:lnng\\
Ml ~a| compare |

.

Fig. 3. Finger print verification process.

B. Decisions Made

In this section we presents some of the decisions that we
need to make for the whole finger printing and verification
process. Here in our proposed method we use some metric

TABLE 1
METRICS USED FOR FINGER PRINT GENERATION

[[Metric

Name of Jar

Size of Jar

Last modification

Number of files in the Jar

File names in the jar

Modifier names of class files
Package name of class files

Super class name of class files
Inner class names of class files

10 | Interface names of class files

11 | Name of constructors of class files
12 | Name of variables of class files
13 | Name of methods of class files

14 | Run Length Encoding of Java source codes

©O| Co| | O U | W DN| —

that are shown in Table I. Where 1-5 are indicating jar file
properties, 6-13 are Java class file properties and 14 is the
RLE. In our approach we used ”; {}() = []” as the strip symbol
for the RLE encode. The more symbol we use the more perfect
match result will be found but the time and space will be
more. So we need to balance to determine the perfect list
of strip symbols. From the empirical estimation we selected
those symbol for our system as a stripping symbols. For the
decompile process different decompiler are available but we
suggest to use JODE [21] decompiler because it is open source
and also the performance is satisfactory. The content of the
finger print file is a XML as shown in Figure 4. For our method
we also consider that if A and B two jar file then in A, x% of
code from B not equal to in B, X% of code from A. Because
the percentage calculation depends on the size of the original
Jar file. It is true when we say that what percentage of code
match in a Jar file compare with an original Jar file. The results
depends on the original Jar file. For example if a Jar file copy
1KB of code from each of two Jar file of size 10KB and
100KB then result will be 10% source copy form 10KB and
1% copy from 100KB file.

<?xml version="1.@" encoding="utf-8"?>
FI<FP>
<!-- Finger Print Generator ID -->
<id>_ FPGenV1.8 SK_Alamgir Hossain Universite_of_Ottawa_ </id>

<jarname></jarnamey<!-- Jar file name --»
<jarsize»</jarsize»<!-- Jar file size -->
<lastmodified></lastmodified><!-- Last modification date time -->
<numoffilex</numoffile><!-- Number of files inside the Jar file --»
<filenames></filenames»<!-- File names in side the Jar file --»
= <similarities>
-] <file name="">¢!-- RLE code here -->
= <class modifiers="" name="" package="" superclass=""»
<innerClasses»</innerClasses>
<interfaces></interfaces>
<constructors»</constructors>
<variables»</variables>
<methods></methods>
</class>
</file>
[na

</similaritiess
</FP>

Fig. 4. XML Specification of Finger Print.

IV. RESULTS AND VALIDATION

Based on our proposed method described in Section III we
developed a prototype system (Figure 5) which was developed

COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

public class HTTP
{
String IP = "192.162.0.1";
public void setIP(String IP)
{
this.IP=IP;

¥

publicclassHITP{StringIP="192.162.0.1";publicvoidsetIP (StxingIP) {this.IP=IP;}}

public class HTTP

‘ t

String IP = "192.162.0.1";

public void setIP(String IPaddress)

{
15{8=13;15(8)0{7=2:0}0}

4

15{8=13;15(8)7=2;

4

4

this.IP=IPaddress:

publicclassHTTP{StringIP="192.162.0.1";publicvoidsetIP (StringlIPaddress) {this.IP=IPaddress;}}

15{8=13;15(15)0{7=9;0}0}

15{8=13:15(15) 7=9;

15{8=13;15(7=

Fig. 2. Step by step Run Length Encoding Creation Process.

TABLE II
JAR FILES FOR TESTING
[Jar ID | Jar Name [Jar ID [Jar Name |
1 axiom-api-1.2.8 jar 10 knownjar.jar
axiom-impl-0.95 jar 11 log4j.jar
eclipse.jar 12 mail.jar
http.jar 13 tomcat-jni.jar

jakarta-oro-2.0.8.jar 14
javamail-pop3-1.4.jar | 15

unknownjarl jar
unknownjar2.jar

©O| 00| N O U = W DD

jboss-j2ee.jar 16 unknownjar3.jar
jboss.jar 17 XmlSchema-1.3.1.jar
junit.jar 18 xwork-2.1.2 jar

by using JAVA 1.6 and Eclipse editor, and design a test case
contains a list of 18 jar files as shown in Table II. We perform
different experiment to identify the validity of our system.

[/ JAR Finger Prnt Generator and Tester = 5K Alamar How ==l J| (L2 JAR Finger Print Generator and Tester = SK Alamgir Ho.. (s | e S

Generate Finger Print
@® Generate finger Print

® Verity Finger Print
O Verify Finger Print " |
| Select the JAR file to verify

Selecta JAR file to generate finger print select I
Select l Select the appropriate finger print

select

Fig. 5. User interface of our developed prototype.

A. Overall Results

The Jar file tested fell into two groups. First group was
in standard commonly used jar downloaded from [22] and
the other group was created by using Eclipse that contain
almost identical sources. We used this jars to identify the
source level comparison that whether our method correctly
identify the similarities. Table II shows the jar files that we

used in our experiment. In the experiment we at first created
finger print of each of the jar file listed in Table II in batch
mode. In the next step we compare each jar file with the others
finger print generated in the first steps in batch mode. The
comparison results shows in Table III. Table III shows only
those results that returned a similarity percentage of over 30%.
For the validity of our approach we also compare some finger
prints with it’s original jar file, that is some entries in Table III
shows 100% match result. Here we were not considering those
results which percentage of match less than or equal to 30%
because none of the expected comparison returned a result of
less than or equal to 30% similarities at this level appear to be
identical and uninteresting likely as a result of both jars using
libraries or similar reasons. The overall distribution is shown
in Figure 6. It is clear that the vast majority of comparisons
are uninteresting, with over half of the comparisons generated
falling in the range of 0 to 10%.

TABLE III
COMPARISON RESULTS OVER 30%

[[Known Jar | Unknown Jar [Match (%) |
1 axiom-api-1.2.8 jar axiom-api-1.2.8 jar 100
2 javamail-pop3-1.4.jar | mail.jar 91
3 knownjar.jar unknownjarl.jar 97
4 knownjar.jar unknownjar2.jar 88
5 knownjar.jar unknownjar3.jar 77
6 log4j.jar log4j.jar 100
7 log4j.jar mail.jar 33
8 mail.jar javamail-pop3-1.4.jar | 36
9 mail.jar log4j.jar 33
10 | unknownjarl.jar unknownjar2.jar 90
11 | unknownjarl.jar unknownjar3.jar 77
12 | unknownjar2.jar unknownjar3.jar 77
13 | unknownjar3.jar knownjar.jar 100
14 | unknownjar3.jar unknownjarl jar 96
15 | unknownjar3.jar unknownjar2.jar 84
16 | xwork-2.1.2 jar xwork-2.1.2.jar 100

COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

61

18

7 8 9 10 11 12 13 33 36 77 84 B8 90 91 96 97 100

Numer of Comparisons

Range

Fig. 6. Comparison rating distribution.

100%

|

1

~ T
iy

0% 1/

Percentage of Runtime
g
#

B |}

H 9 10 11 12 13 1 15 1. 17 18
JarFiles

® Class Decompilation mJarExtraction mRunLengthEncoding m Class Structures m Jar File Attributes

Fig. 7.
print.

Different metric and percentage of runtime for generating finger

B. The Effect of Different Comparison Factors

In this section we presents the effect of different factors
of the comparison process of our algorithm. The effect of
different metric contributed in the finger print generation
process are shown in Figure 8. The Jar file numbers are the
same as in Table III. From this figure it is clear that lower than
10% time need to calculate the properties (Jar, class, RLE) and
the rest of the time required to compress and decompile the
file.

We also tested the Jar files (Table III) and plot the Jar file
size with the corresponding finger print file size and the result
shows in Figure 8. Based on this figure we can say that finger
print file size is not consistent because the size not only depend
on the Jar file attributes or class attributes but also depends on
how many Java class file inside the Jar as our algorithm mainly
concern about the Java class files or byte code available inside
the Jar file.

Figure 10 shows the effect of Jar file content in generator
outputs. In our experiment we used 3 sets of jars with 10 files
in each Jar and their size was identical for each group but the
content was different. In the first group all the files in the jars
were class file only and the detector output shown in Figure

2254 2233

2000

1500

File Sizein KB

1000

363 378

120
61 WP W° 121 61 a0 61)

1 2 3 4 5 6 7 8 9 0 11 12 13 14 15 16 17 18

mJarfile size (KB] M Jar file size (KB)

Fig. 8. Comparison of Jar file size and generated finger print file size

10(a). In the second group each jar has 5 class files and other
5 non class files. The detector result shown in Figure 10(b). In
the third group each jar has no class file, all files are non class
files and the detector result shown in Figure 10(c). From this
three figure we can say that the performance of our algorithm
is depend on the type of files inside the jar. If all the files
are class file the algorithm need more time to process. The
Figure 10(c) the FP size and output time is almost constant
because as there is no class file inside so there will be no de-
compilation time and also need not to calculate the class file
properties and also the RLE.

C. Running Time

The running time of our proposed system is approximately
linear. As shown in Figure 9, the length of time to finger print
the jar typically increases with size. Although there are some
exception available. In Figure 9 the straight line indicating the
average time to run the finger printing algorithm discussed in
Section III-A .

100

%0

80

Fi nger Print Generation Time [Seconds)
g

o 500 1000 1500 2000 2500

Jar File Size (KB)

Fig. 9. Average Time to fingerprint a Jar File (Extreme Values Removed).

V. CONCLUSION AND FUTURE WORK
A. Conclusion

In this paper we presented a method for finger printing
a jar file and later on verify other jar files with this finger

COMP 5900 - SELECTED TOPICS: OPEN SOURCE SOFTWARE - FALL 2010

» 50

/ 3

20

,/

. /
——TimeT1
/./. —W—fPsize1 F
20

Time (Second)
Time {Second)

/

40

/
% 1/
[-

——Time T2

Time (Second)

——FPSize 2

I

e

—B—FPSize 3
1N

o L}

0 1000 2000 3000 4000 5000 6000 bl
Size (KB) (a)

1000 2000

Fig. 10. Finger printing jar files and the results in different conditions.

print to get how similar the new jar file with the original jar
file. The developed system can be used for copy protection in
Universities or companies. From the experiment it is clear that
our method show good performance without some exceptions.
Although our system has some limitations like it need a good
decompiler for decompiling the class files. But practically
it’s not possible to regenerate the source code completely
from Java byte code. As normally jar file may contain large
collection of files so it will be very time consuming with
our system. But most of the time need to decompress and
decompile the jar file. In our future work we want to address
the issues into more details. We also need more experiment in
different uncertainty conditions. However, we believe that our
proposed techniques will remain as a motivation for further
research in this area.

ACKNOWLEDGMENT

I would like to thank Dwight Deugo, Professor, Carleton
University, Ottawa. Without his valuable feedbacks it was not
possible to finish my work properly.

REFERENCES

RLE, “Run length encoding, http://en.wikipedia.org/wiki/run-
length_encoding,” Last Access, November 08, 2010.

[2] N. Heintze, “Scalable document fingerprinting,” in Proceedings of
USENIX Workshop on Electronic Commerce, 1996.

[3] S. Brin, J. Davis, and H. Garcia-Molina, “Copy detection mechanisms
for digital documents.” in ACM SIGMOD international conference on
Management of data, 1995., p. 398409.

[4] A. Z. Broder, “On the resemblance and containment of documents,” in
In Compression and Complexity of Sequences, 1998, p. 2129.

[5] U. Manber, “Finding similar files in a large file system,” in Proceedings
of the USENIX Winter 1994 Technical Conference, 1994, p. 110.

[6] MOSS, “A system for detecting software plagiarism.” in
http://theory.stanford.edu/ aiken/moss/. Last accessed October 3l1th,
2010.

S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: Local al-
gorithms for document fingerprinting,” in Proceedings of the 2003
SIGMOD Conference, 2003.

H. Tamada, M. Nakamura, A. Monden, and K. Matsumoto, “Detecting
the theft of programs using birthmarks,” in Information Science Techni-
cal Report, Graduate School of Information Science, Nara Institute of
Science and Technology, 2003.

H. Tamada and M. Nakamura, “Design and evaluation of birthmarks for
detecting theft of java programs,” in JASTED International Conference
on Software Engineering, 2004, p. 569575.

[8]

[9]

Size (KB) (b)

3000 4000 5000 6000 a 1000 2000 3000

Size(KB) (c)

4000 5000 §000

[10] G. Myles and C. Collberg, “Detecting software theft via whole program
path birthmarks,” in Information Security Conference, 2004.

JPlag, ‘“Detecting software plagiarism,” in https://www.ipd.uni-
karlsruhe.de/jplag/. Last accessed October 31st, 2008.

L. Prechelt, G. Malpohl, and M. Philippsen, Finding Plagiarisms among
a Set of Programs with JPlag. Journal of Universal Computer Science,
2002, vol. 8, no. 11.

P. L, M. G, and P. M, “Jplag: Finding plagiarisms among a set
of programs.” in http://page.mi.fu-berlin.de/prechelt/Biblio/jplagTR.pdf.
Last accessed October 31st, 2010., March 28th, 2000.

P. D. . YAP, “http://luggage.bcs.uwa.edu.au/accessed november 1st,
20107

AC, “An anti-plagiarism system for programming assignments.” in
http://tangow.ii.uam.es/ac/. Last accessed November 1st, 2010.

Plaggie, “http://www.cs.hut.fi/software/plaggie/. last accessed november
Ist, 2010.”

S. P. Detection., “http://genome.math.uwaterloo.ca/sid/. last accessed
november 1st, 2010.”

T. S. P. Detector, “http://www.cs.su.oz.au/ scilect/sherlock/. last accessed
november 1st, 2010.”

T. software and text similarity tester SIM., “http://www.cs.vu.nl/

LCS, “http://wordaligned.org/articles/longest-common-subsequence,”
Last Accessed, November, 2010.

JODE, “Java optimize and decompile environment s
http://jode.sourceforge.net/, accessed november, 2010.”

javals, “http://www.java2s.com/,” Last Accessed, November, 2010.

(11]
[12]

[13]

[14]
[15]
(16]
(17]
[18]

[19]
[20]

[21]

[22]

SK Alamgir Hossain SK Alamgir Hossain received
the B.Eng. degree in computer science and engineer-
ing from Khulna University, Khulna, Bangladesh.
Currently he is studying M.C.S degree in Com-
puter Science, University of Ottawa, Ottawa, ON,
Canada. He is also working in the Multimedia
Communications Research Laboratory (MCRLab),
School of Information Technology and Engineer-
ing. From 2008 to 2009, he was a Lecturer with
the Computer Science and Engineering Discipline,
Khulna University, Khulna, Bangladesh. Before join
to Khulna University he worked a few years with JAXARA IT Ltd as a
Software Engineer. He has authored or coauthored more than 7 publications
including refereed journals and conference papers. His research interests
include Ambient Intelligence and Humanized Computing, Virtual reality with
Haptic, Smart environment and Telesurveillance System.

