
COMP4900-Velociraptor

1

Abstract

In the world of open source software there is a problem

concerning the determination of the origin of code being

contributed to open source projects. Does the modified program

comply with license it was set for? Can this program be

distributed for profit? In most cases people have to manually go

through the programs to figure out licenses. The proposed

solution will help lawyers, programmers, and whoever is asking

to quickly identify known programs to unknown programs so an

identity could be made, or licenses can be determined.

I. INTRODUCTION

 major problem that the open source community is being

faced with is the recognition of contributions to a piece of

open source software (OSS) that have come from other pieces

of software. This may not seem like a huge problem, but with

regards to software licensing (among other issues) it is a huge

problem; not all licenses are compatible with each other. In the

case of our project, the input provided consists of a JAR file

from unknown origin and we must identify how similar it is to

a JAR file that we have on file from a known source.

Potential reasons for why we would need to solve a problem

like this: software licensing violations, copyright infringement

(or other intellectual property violations), or simply to identify

a mislabelled program. In open source software it is always

important to keep track of what kind of licenses are being used

within the software; certain licenses prevent software being

utilised/included in other projects because it violates the terms

of it license. There are lot of cases that prevent good software

being released due to the fact that they violate terms of the

software it was built off of. The solution to this problem will

help teams to scrub the contributions to their OSS software to

ensure that it is from a source that is compatible with its

license and can be used in the existing software. In the case of

the Eclipse Foundation, who has 100,000+ contributions, each

one must be checked to ensure that no intellectual property has

been infringed upon and that any license on the contribution is

compatible with the existing license on the project.

It is also important to make sure that the proper contributors

are being recognized for their works. Sometimes contributors

will grab a piece of code, strip out a few variables/comments

and/or rename some classes and call it their own work. Our

solution is designed to sniff out these changes and provide the

user with a percentage that indicates how closely the

contribution resembles another piece of OSS software. Going

back to the Eclipse example, with our solution they can take

the contributed JAR file and compare it to known JARs that

have already been deemed safe for use within the Eclipse

software.

The objective is to create a fully functioning program using

Java that will take the given interface classes, implement a

solution around those and be able to generate fingerprints from

a collection of known JAR files. A fingerprint is a unique

identifier that will be generated from specific JAR files that are

known to be from a trusted source. Just like a human

fingerprint, every fingerprint of a JAR file is unique and no

two unique JAR files can have the same fingerprint. Once

fingerprints have been generated from JAR files of a known

origin, they can be fed into the application and it will compare

it with others to give a confidence level of certainty that the

fingerprints match.

II. BACKGROUND

As issues with mismatching of software licensing has been a

problem since the invent of open source software, there are

similar open source projects already available that will

compare two JAR files and outline the differences between

them.

Eclipse has a built in compare function for JAR files that will

visually show the differences between contents of the JAR.

However, this “easter egg” feature of Eclipse does not provide

a solution to our fingerprint problem; it only visually shows

the comparison and differences of a JAR file. The problem that

Fingerprint Identification of Open Source

Software

Matthew Ng (mng@scs.carleton.ca), Andrew McCallum (amccall2@scs.carleton.ca),

School of Computer Science, Carleton University

A

COMP4900-Velociraptor

2

needs to be solved for the purposes of our project is the

generation of a confidence level (in percentage form) of how

similar an unknown JAR file is to a known JAR file. Although

this tool is half the solution of the problem, this would not be

the ideal path to build off of to solve the problem.

In addition to the Eclipse functionality, there is also a third-

party Java console application available called Jar Compare

(jarc). As the name suggests, it will compare two JAR files

together, however it will not run unless the full Java

Development Kit (JDK) is installed. Since it will not run under

the Java Runtime Environment (JRE), this application would

not be ideal to build the solution for our project off of.

Finally, another piece of software that is available is the zdiff

or zcmp command in Linux. These commands are available to

compare compressed files.

III. APPROACH

The approach we are taking to solve this problem is to create

a XML fingerprint of an unpacked JAR file. Using a utility

class (JarUtils) we can manipulate the given JAR file and

extract it to a temporary directory. This will allow us to get

access to the files and their receptive contents/attributes that

will be used to create our fingerprint. The XML fingerprint

will consist of a serialised instance of the Fingerprint class,

which in turn contains information on files from the JAR (i.e.

file name, file sizes, MD5 hashes, file types, and class file

information) using the respective class (FileInfo). The

information being stored will be stored in primitive types like

strings (i.e. file name, MD5 hash) and longs (file sizes). For

things like file types and class files, they will be stored in Hash

Maps. A “confidence comparison” function will go through all

of the collected data, run tests upon it, and produce a

confidence level of how similar the JAR of unknown origin is

to a fingerprint generated from a JAR of known origin.

Execution will begin in the application class

(FingerprintApp), with the program branching off depending

on if the comparison or generation functionality is selected.

When selecting the generation functionality, a JAR filename

is provided to the program, from which a fingerprint file is

generated. In order to do this, the JAR contents must be

extracted and analyzed (as well as the JAR file itself). To

facilitate this information gathering, three classes were created

for this purpose: JarInfo, FileInfo, and ClassInfo. The former

is for information pertaining to the JAR file, whereas the latter

holds Java class-specific information (i.e. methods, fields, etc.)

and FileInfo holds general file information. In terms of general

file information that’s contained in the FileInfo class, the

following are collected and/or calculated:

• file size,

• MD5 hash of the file contents, and

• file name.

ClassInfo and JarInfo complement that data; ClassInfo stores

methods and fields contained in the class, while JarInfo stores

a list of files (of type File) and metrics regarding file types (i.e.

totals for each file type) contained in the JAR.

Once all of the files in the JAR have been iterated over and

analyzed, the fingerprint can now be exported to XML. This

functionality is facilitated by the XStream library, which

serializes object instances to XML (and supports reading them

back in). For an example of an exported fingerprint, refer to

Appendix B – Exported Fingerprint.

IV. RESULTS AND VALIDATION

For the comparison functionality, a fingerprint is provided

along with a JAR file at execution time; the specified JAR will

be tested with the supplied fingerprint. From the supplied JAR,

an in-memory fingerprint is created, while the fingerprint

supplied is imported using the previously mentioned XStream

library. Once the fingerprint has been loaded and a second

fingerprint for the JAR file has been created, the “confidence

comparison” can begin!

Pseudo code for the overall confidenceCompare() is as follows

(after calling confidenceCompare() in the Fingerprint

instance):

 jarInfo.confidenceCompare()

o compare MD5 hashes, if same then return 100%

o compare filesize same, if same then return 30%

 if returned > 80%, then return

 for larger set of fileinfo instances

o for smaller set of fileinfo instances

 fileInfo.confidenceCompare()

 compare MD5 hashes, if same then return 100%

 compare file sizes, return 70% if same

o if file type matches then return 80%

 if class, then classInfo.confidenceCompare()

o return average based on number of fields and

methods (plus applied weighting of 50%)

 if exactMatches > 60% (i.e. from MD5 matches), then

return

 else, return average from fileInfo confidenceCompare()s

The confidence compare (i.e. how similar the JAR files are

to each other) makes use of the IConfidenceCompare interface,

COMP4900-Velociraptor

3

with all classes that need to be involved in the comparison

implementing it. The classes that implement (and are thus

involved in the comparison) are JarInfo, FileInfo, ClassInfo,

and most importantly, Fingerprint. An iteration of fingerprint

comparison functionality involves the calling of

confidenceCompare() on the following objects:

• all instances of ClassInfo & FileInfo (in both fingerprints),

• the single instance of JarInfo (in both fingerprints), and

• the instance of Fingerprint (on fingerprint imported from

file).

In order to iterate through all of these instances, the “root”

call of confidenceCompare() is in the Fingerprint object; all

other calls to instances begin from that call. When the “root”

confidenceCompare() is called, an instance of

ConfidenceCompareComments is supplied to the method,

which stores comments added along the full execution of the

call. The execution hierarchy illustrates the order of the

confidenceCompare() calls; it also indicates which objects

hold others (i.e. ClassInfo instances are held within FileInfo

instance). The execution hierarchy is as follows:

 Fingerprint

o JarInfo

o FileInfo

 ClassInfo

The implementations of confidenceCompare() within each

class run tests against the JAR-generated fingerprint data and

generate a confidence of similarity percentage based on the

test results. Each respective implementing class tests the

information contained within its instance with the data

contained within its JAR-generated counterpart. Where a

specific counterpart in the JAR-generated fingerprint does not

exist (i.e. for all the FileInfo instances), all instances are tested

against each other.

Once the execution of the confidenceCompare() call in the

“good” Fingerprint instance has returned, the

FingerprintResult can be generated based on the percentage

return value and all associated comparison comments collected

on the full execution. When the FingerprintResult is generated

it is written to the console, outputting all comments and finally,

the confidence of similarity percent.

For quantitative examples of generation times and

comparison examples, please refer to Appendix A.

V. CONCLUSION

The implementation that has been built for the purposes of

the project is a good start at trying to solve the overall problem

of software from unknown origin winding up in OSS and

causing potential licensing issues.

There are many improvements that could be added to the

implementation, such as threads while conducting

confidenceCompare()s, as well as the addition of more test

cases. This software is only as good as the test cases that are

built into it.

REFERENCES

[1] http://www.javalobby.org/java/forums/t19700.html

[2] http://www.extradata.com/products/jarc/

[3] http://download.oracle.com/javase/1.4.2/docs/api/java/util/jar/package-

summary.html

[4] http://linux.about.com/library/cmd/blcmdl1_zdiff.htm

[5] http://xstream.codehaus.org/

http://www.javalobby.org/java/forums/t19700.html
http://www.extradata.com/products/jarc/
http://download.oracle.com/javase/1.4.2/docs/api/java/util/jar/package-summary.html
http://download.oracle.com/javase/1.4.2/docs/api/java/util/jar/package-summary.html
http://linux.about.com/library/cmd/blcmdl1_zdiff.htm
http://xstream.codehaus.org/

COMP4900-Velociraptor

4

VI. APPENDIX A – QUANTITATIVE EXAMPLES

The following table indicates the average time to compute fingerprints for a selection of well-known JARs:

The following table indicates the confidence comparison results (all tests were conducted on the fingerprint generated from

commons-cli-1.2.jar):

Action Expected Percent Percent Result

Real Jar 100% 100%

Renamed Jar 100% 100%

Added extra file > 90% 96%

Added extra class >90% 96%

Removed a class > 90% 96%

Removed a file > 90% 96%

Renamed file/class 100% 100%

Supplied

commons-io-

2.0.jar

< 10% 1%

Supplied ant.jar < 10% 1%

Product Jar File Size (KB) # Files # Classes Avg FP

Gen Time

Avg

Time/File

Test

1

Test

2

Test

3

Apache Ant Ant.jar 1479 886 873 4.395s 0.005s 5.16 4.07 3.96

Apache

commons IO

2.0

Commons-io-

2.0.jar

156

109 104 1.960s 0.018s 2.12 1.84 1.20

Apache

Commons

Codec 1.4

Commons-

codec-1.4.jar

158 35 30 0.604s 0.017s 0.63 0.62 0.56

Apache

Commons

Compress

1.1

Commons-

compress-

1.1.jar

57 82 77 0.716s 0.009s 0.76 0.71 0.68

Apache

Commons

CLI 1.2

Commons-cli-

1.2.jar

41 27 22 0.530s 0.020s 0.55 0.55 0.50

COMP4900-Velociraptor

5

VII. APPENDIX B – EXPORTED FINGERPRINT

The following is a basic class exported as a fingerprint:

 <ENTRY>

 <STRING>CLASS</STRING>

 <INT>1</INT>

 </ENTRY>

 <ENTRY>

 <STRING>MF</STRING>

 <INT>1</INT>

 </ENTRY>

 </FILE-EXTENSIONS>

 </JAR-INFO>

 <FILEINFO>

 <ENTRY>

 <STRING>HELLOWORLD.CLASS</STRING>

 <FILE-INFO>

 <FILE-SIZE>610</FILE-SIZE>

 <MD5-HASH>6A90D73DA2F0DEC1B805717192C324C9</MD5-HASH>

 <FILE-TYPE>CLASS</FILE-TYPE>

 <FILE-NAME>HELLOWORLD.CLASS</FILE-NAME>

 <CLASS-INFO>

 <METHODS>

 <METHOD>

 <CLASS>ORG.LAME.PROJECT.HELLOWORLD</CLASS>

 <NAME>MAIN</NAME>

 <PARAMETER-TYPES>

 <CLASS>[LJAVA.LANG.STRING;</CLASS>

 </PARAMETER-TYPES>

 </METHOD>

<< ALL DEFAULT OBJECT METHODS HAVE BEEN OMMITTED >>

</METHODS>

 <FIELDS/>

 </CLASS-INFO>

 </FILE-INFO>

 </ENTRY>

 <ENTRY>

 <STRING>MANIFEST.MF</STRING>

 <FILE-INFO>

 <FILE-SIZE>66</FILE-SIZE>

 <MD5-HASH>9CF97B6BB17EE0915001D76135789F80</MD5-HASH>

 <FILE-TYPE>GEN</FILE-TYPE>

 <FILE-NAME>MANIFEST.MF</FILE-NAME>

 </FILE-INFO>

 </ENTRY>

 </FILEINFO>

</FINGERPRINT>

