

Abstract—This paper is the description of an algorithm to test
an unknown JAR library file against several fingerprints
generated from other JAR files. This paper discusses the problem
addressed, the algorithm used to solve the problem as well as
extensive testing of the algorithm to ensure speed and accuracy.

Index Terms – Introduction, Background, Approach,
Results/Validation, Conclusion

I. INTRODUCTION

One of the things that makes the Java programming language
great is the availability of user made code libraries. These code
libraries are collections of Java classes contained in JAR files.
Many programmers publish their code for others in the form of
these JAR files, with some associated license specifying
restrictions on their use. This greatly helps programmers by
allowing them to use development time that would otherwise
be spent on coding these classes elsewhere. This means they
can use their time writing code that is more specific to the
project they are working on. Essentially, the fact that there are
so many JAR libraries available on the internet means that
Java programmers rarely have to reinvent the wheel; that is,
code something that has already been written.

Some of the licenses associated with code libraries are more
restrictive than others. For example, any code released under
the GPL license requires any code produced using that library
to be released itself as open source software. This would mean
any project produced using this code would have to forfeit its
source, making itself essentially available for free, which
would ruin any commercial viability.

The goal of this project is to help identify any code in a library
which may come from a source with a more restrictive
software license. The application produced from this project
would allow software designers and developers to identify any
code with a restrictive software license inside of a JAR library
they've chosen to use with their project. This would allow
them to know what libraries they can and cannot use in the
case that they are looking to sell their project, and help them to
avoid having to open source their work.

In order to identify code with restrictive licenses inside of a
JAR library, this project will take known JAR libraries and be
able to identify if any part of those libraries are contained
within a library the user would wish to test it against. In order

to achieve this goal, the project will make a fingerprint of
known JAR files, and use these fingerprints to test against
unknown JAR files. This way, you can use these fingerprints,
instead of the JAR files themselves, to test two JAR libraries
against each other and see if one is a partial or complete copy
of the other.

II.BACKGROUND

There has been some similar archive comparison software
released by other developers. One example of another piece of
similar software is JAR Compare.

JAR Compare is a tool designed to show the changes made
from one release of a JAR library to another. It takes the
classes from the JAR file, decompiles them, finds changed
lines of code, and returns the result to the user. Though this is
useful for its designed purpose, it doesn't quite fit as a solution
to the problem targeted by this project.

III. APPROACH

The fingerprint taken from a JAR file is very simple. The
fingerprint itself stores information about file names, file sizes
and the depth of files inside the JAR library. When this
fingerprint is tested against another JAR library, each file
inside of the original fingerprint is tested against each file in
the destination JAR file. The goal of this is to determine if the
file inside of the fingerprint exists in the JAR library its being
tested against. The program initially tests the file size, and if
there is an exact file size match, it is returned that the program
is 100% certain for that one file that it is a copy. If the two
files don't have exactly the same file size, it then checks the
file name and the folder depth inside of the JAR file. If the file
name and depth are the same as the fingerprint, it considers
this a 66% match. If only the file name is the same and not the
file depth, its taken as a 33% match. These certainties are
summed for each file in the fingerprint, and is then divided by
the total number of files in the fingerprint. This way, if the
unknown JAR file contains more files than the fingerprint, but
also every file from the fingerprint unaltered and in full, this is
still considered to be a 100% match.

The decision to store such a simple fingerprint in this manner
was derived from two core assumptions. First, that the
likelihood is very high that any included restricting licensed
code inside of a JAR library would have been included in the
JAR library not maliciously, but by mistake. The second is that
with a simple fingerprint, you can parse through, store, and test

JAR Library Copy Identification Through
Fingerprint Creation and Comparison

Grant McNeil, 100686111

1

against other JAR files much more quickly than you would a
more complex fingerprint and algorithm.

The first assumption being made that the creator of the JAR
file simply wasn't aware or cautious enough while constructing
the JAR file. Taking this into account, we can assume they
wouldn't have decompiled and altered any of the class files
themselves, which would mean they would maintain their
initial file size. On the chance that the JAR library creator did
modify a class file (for whatever reason), as long as their
intention wasn't malicious, they would most certainly maintain
the same file name and location within their new JAR library.
Taking this into account you can use these three variables to
determine whether a file from a fingerprint matches a file from
an unknown JAR library.

The second assumption was that a user wouldn't just want to
test two JAR libraries against each other, but instead test a
JAR library against a large stored database of JAR library
fingerprints. There are many JAR libraries available on the
internet, many of which include code with restrictive licenses.
Testing a JAR library against one fingerprint is simply not
enough to ensure that the JAR library doesn't contain any code
that would force the project to become open source. With a
simple fingerprint, you'd be able to create fingerprints and test
multiple JAR libraries much faster than you would be able to
with a more complex fingerprint and testing algorithm.

Below is a table describing the different things you could do to
a file within a JAR library, and how the Identifier handles each
case (in terms of changing a file name, size, or depth):

Change Name Change Size Change Depth Certainty
Returned

No No No 100.00%

Yes No No 100.00%

Yes Yes No 0.00%

Yes Yes Yes 0.00%

No Yes No 66.00%

No Yes Yes 33.00%

No No Yes 100.00%

As you can see, if two files are found to have identical file
sizes, in all cases its considered to be a 100% match. Once the
file size has changed, the certainty goes down significantly. A
File with a changed file name and file size, regardless of depth,
is undetectable by this solution. The only case in which the file
name and size of a class would change, however, would be if
the user packaging the JAR had malicious intent. These cases
are not within the scope of this solution, have been ignored.

IV. RESULTS / VALIDATION

There are several steps to the process described in this project
that can be extensively tested. Shown below are tests related to

the speed to generate a single fingerprint, the speed related to
generating a group of fingerprints, the time required to test a
single unknown jar of a specific size, as well as the accuracy
of the system in identifying copied JAR libraries.

The first test run was a check to see how long it took to
generate a fingerprint against the number of files in a single
JAR. The results of the first test are as follows:

As you can see, there is an outlier. This was the file J2EE.jar,
which contained over 7,000 entries. This is 5,000 files more
than the next closest JAR library. With this entry removed, the
graph appeared as follows:

From this graph you can see that most JAR libraries had fewer
than 500 files, and took a trivial amount of time to process.
The more files added, however, the longer the process took,
and the time seemed to increase exponentially. For most
future tests, the file J2EE.jar was removed (unless otherwise

specified).

The second test conducted was to show how long it would
take to generate fingerprints from all 26 randomly selected
JAR Libraries at once. The time elapsed for all libraries,
including J2EE.jar, is showed in the graph below (time was
recorded after 9, 18, and 26 entries processed).

2

0 1000 2000 3000 4000 5000 6000 7000 8000
0

10000

20000

30000

40000

50000
Time Required to Generate Fingerprint for a Single Jar

Number of Files in Jar

Ti
m

e
re

qu
ire

d
in

 m
ill

is
ec

on
ds

0 500 1000 1500 2000 2500
0

200
400
600
800

1000
1200
1400
1600

Time Required to Generate Fingerprint for a Single Jar

Number of Files in Jar

Ti
m

e
re

qu
ire

d
in

 m
ill

is
ec

on
ds

This graph shows a large increase in time between the first and
second recordings. This was as a result of the J2EE.jar file.
With this file removed, the results were as follows:

 This graph shows the time to process all JAR files, with the
J2EE.jar file removed. It is still easy to see a fluctuation based
on the number of files held within a single JAR library. Of
course, ideally you would only want to generate the
fingerprints each JAR library once, and store them in some
sort of flat file or database.

With this in mind, the following graphs show the time required
to test the 25 fingerprints (J2EE.jar excluded) against the
smallest, two mid-sized, and a large JAR file:

This shows that the time required to test the fingerprint
database against an unknown JAR file seems to increasing
fairly linearly for the first 3 data values, then exponentially as
the size of the unknown JAR file increases significantly. This
shows that the algorithm produced would work best when
tested against JAR files of less than 1000 files. Of course, the
time it takes to calculate the results may not be important as
the accuracy determined within the results themselves.

The accuracy test was to test each JAR file from the 25 total
JAR files (excluding J2EE.jar) against the other 25. This was
to see if the correct JAR file was returned as the source of the
unknown JAR file. In each case, the correct JAR file was
returned from the detector. This shows that, while the system
may take a significant amount of time to generate fingerprints,
and test against large JAR files, in the end the generated
results are worth the time waited.

V. CONCLUSION

Determining shared resources among two archives may seem
like a simple task, but it grows more complex as the accuracy
required and size of the archive increase. The solution shown
in this paper would be best implemented while working with
smaller JAR files, but when manipulating large numbers of
JAR files with more than 1000 entries, this solution would be
slow. Depending on the sample size, and the number of files
held within each of the JAR libraries within a sample, it could
easily take hours to determine the source of an unknown JAR
library.

Future studies may wish to determine ways to calculate the
certainty more accurately, and more quickly. It may even be
possible to create fingerprints and generate results in
significantly less time than was demonstrated by the algorithm
shown in this paper. Also, future work may want to increase
the sample size of the JAR files used, and increase the duration
of testing to cross thousands of JAR files with thousands of
entries.

REFERENCES

[1] Jar Compare -
http://www.extradata.com/products/jarc/

Authorship

Grant McNeil is a 4th year level Computer Science student at Carleton
University. He learned BASIC programming at a very young age and
branched out to learn Visual Basic, Java, C/C++, Python, and many other
programming languages throughout his adolescence.

3

8 10 12 14 16 18 20 22 24 26 28
0

10000

20000

30000

40000

50000

60000

Time Required to Generate Fingerprint

Number of Jar Files Processed

M
ill

is
ec

on
ds

8 10 12 14 16 18 20 22 24 26 28
0

500

1000

1500

2000

2500

3000

3500

Time Required to Generate Fingerprints
(with file J2EE.jar removed)

Number of Jar Files Processed

M
ill

is
ec

on
ds

0 500 1000 1500 2000 2500
0

2000
4000
6000
8000

10000
12000

Time Required to Test Unknown Jar

Size of Unknown Jar

Ti
m

e
R

eq
ui

re
d

