
Code Clone Detection using Method Signatures 
Dishant Langayan 

SITE 
University of Ottawa 

Ottawa, Ontario, Canada 

dishant.langayan@uottawa.ca 

 

 
 

 

 

 

 

ABSTRACT 

Through this paper we present a new approach towards code 

clone detection between Java ARchieve files (JARs). Many large 

Java projects with multiple developments often end up duplicating 

JAR files and class between modules. Moreover, different teams 

end up using different versions of the reference libraries, which 

make the software unstable and difficult to maintain. Our 

approach uses the concept of Method Signatures to construct 

unique fingerprints of JARs. We compare these fingerprints with 

unknown JAR files to detect the clone in compiled code and in 

specific duplication of method signatures. The implementation of 

approach is efficient in both performance and accuracy. 

1. INTRODUCTION 
[Introduction paragraph.] 

1.1 Problem 
This paper focuses on the problem of detection of code clones 

between close source software programs and modules. Although 

there has been extensive research in this area and many systems 

have been developed to detect code clones in software, we focus 

on one particular type of technology and software, i.e. the 

programs that have been developed for the Java Virtual Machine 

(JVM) and have been packaged in Java ARchieve files called 

JARs. In other words, we detect code clones in software that have 

been developed using the Java Programming language.  

Often the source code for the software is not available or is 

compiled to binary forms, which makes it even harder to detect 

code clones. Many clone detection software decompile binary 

files to obtain and analysis the source code []. These types of tools 

require lot of system resources such as memory, and thus are not 

optimized for performance but rather accuracy. Others are faster 

in performance but produce less accurate results.  

In the following sections the paper addresses these problems of 

code clones for closed source software and optimizes our 

approach for both performance and accuracy.  

1.2 Motivation 
The main motivation of the paper was to implement an open 

source code clone detection program. In large software projects 

with multiple teams, programs packaged in JAR files often get 

duplicated between the teams, and at many times developers use 

different versions of the JAR file. This makes it difficult to 

manage and maintain the project and decreases the stability and 

extensibility of the software.  Many solutions, to solve problems 

like these, have been proposed, but most are proprietary or costly 

and are not open source [2].  This was the primary motivation for 

the design of our approach.  

1.3 Goals 
Our main goal is to detect code clones, in specific method 

duplication, between two JAR files that contain compiled Java 

code using the concept of method signatures. 

To achieve our primary goal we implement our approach using to 

Java Programming language and define the following sub goals:  

 Generate a unique fingerprint for a JAR file that 

contains compiled Java classes and other file format. 

 Compare a fingerprint with an unknown JAR file for 

code clones in the best optimal time that increases 

exponential with the fingerprint size. 

 Output the similarity or certainty percentage between 

the fingerprint and unknown JAR file. 

1.4 Objectives 
One of the important objectives of our approach is to make the 

detection phase of our program highly efficient in terms of 

memory and performance for large JAR files (i.e. files > 5MB) 

while producing accurate results. 

Another objective is to output 100% certainty when comparing a 

fingerprint to the same JAR file from which the fingerprint was 

generated. To achieve this objective each of our fingerprints has 

to be independent of any time constraints and have to be 

constructed in the same manner, regardless of the JAR file. This 

also leads us to another objective, i.e. to output a high certainty 

when comparing a JAR file to itself that has been re-factored 

significantly in terms of class names, package structures, methods 

moved to other classes and packages, and in terms of the size of 

JAR file itself.  

Our final objective is to make the size of the fingerprint as small 

as possible while retaining the accuracy of the program. Although 

our fingerprint size will large depend on the number of methods 

in all classes in the JAR file, we can reduce the size by hashing 

strings to integer values or by including methods signature in the 

fingerprint that we feel represent the uniqueness of the fingerprint. 

In other words, to achieve our objective we could exclude 

methods like getter and setter functions from the fingerprint. 

Though this would reduce the accuracy by a small degree, it 

would still comply with our previous objectives. 

1.5 Outline 
The remaining part of the paper is outlined as follows: Section 2 

presents some background topics, terminology, and concepts used 

in the approach and program. We also look into similar 

approaches to ours and related software. Section 3 presents our 

approach, where we describe the design of our program. Section 4 

presents the results obtained from analysis of our implementation. 



Section 5 concludes the paper with future work and improvements 

that can be made in our approach. 

2. BACKGROUND 

2.1 Method Signatures 
We employ a very simple and elegant approach in detecting code 

clone using methods signatures. We define a method signature as 

a single string representation of a method that uniquely identifies 

it with in the class.  A method signature string would usually 

include the methods name, its parameter types (in order), and it 

return type. In the Java Programming language, a method 

signature is usually composed of two components, i.e. the 

methods name and it parameter types [3]. Listing 1 show a typical 

Java method declaration and Listing 2 shows its signature 

constructed by the Java environment.  

 

public double calculateAnswer(double wingSpan, 

int numberOfEngines, double length, double 

grossTons) { 

 //do the calculation here 

} 

Listing 1: A typical Java method 

 

calculateAnswer(double, int, double, double) 

 

Listing 2: Signature of the method declaration in Listing 1 

These types of method signatures are typically used by object-

oriented programming languages to support method overloading, 

which means there can be two or more methods with the same 

name in a class as long as the number of parameters or their types 

is different. We use the concept of method signatures in our clone 

detection approach and include the method’s return type as well in 

the signature. 

Often a single signature can become very long as the method 

might have many parameters. Comparing these long strings can 

reduce the performance of the program and consume more 

memory space. An alternative and efficient way to compare these 

strings would be to use a Hash function to compute hash values 

for all the strings and then compare the hash values. A hash 

function is a mathematical function that converts a string input to 

a signed integer value. Although hash values cannot be consider 

unique, i.e. more than one string input can may to the same hash 

value, in a simple example using the hasCode() function in 

java.lang.String API on a large set of strings, we obtained and 

evenly distribution on hash values. In other words, each string 

was mapped to a unique has value. 

2.2 Related Software 
There has extension research software developed to detect code 

clones [2], but most analyze source code files and are targeted for 

many programming languages. 

[Add specific project and research works.] 

3. APPROACH 

3.1 Design 
To detect code clones, the program is divided into two main parts 

a fingerprint generator that will generate a unique fingerprint for a 

JAR file, and a fingerprint detector that takes an existing 

fingerprint and an unknown JAR file. The approach considers 

certain file formats in a JAR and constructs the fingerprint based 

on these files. For the purpose of detecting code clones we 

consider only compiled Java classes, i.e. files ending with a 

“.class” extension. For each of these Java class files we only 

consider the signature of methods in that class. 

In our approach, the uniqueness of a JAR file is represented by 

the method signatures rather class names, inheritances, or other 

dependencies, because class names and the structure of classes 

can be re-factored very easily. Even though methods can be 

moved to other packages and classes, the signature of a methods 

and its function will very likely remain the same. Moreover, we 

only consider unique method signatures throughout the JAR file 

under observation. 

When determining the certainty percentage between a fingerprint 

and an unknown JAR file, comparison of method signatures 

contribute 90% to the overall certainty percentage. The rest 10% 

depends on other factors and files in the JAR, i.e. we also 

compare JAR names, size of the JAR, number of contents in the 

JAR file, etc. Table 1 shows the list of all the metrics used in the 

fingerprint for comparison and the weightings given to them. 

Table 1. List of metrics and their weightings 

Metrics Weighting Overall % 

Method signatures 1 (for each match) 90 

Name of JAR 1 

10 

Size of JAR file in bytes 1 

No of entries in JAR 1 

No of .html files 1 

No of .xml files 1 

No of .txt files 1 

No of .java files 1 

 

The following subsections describe how the program generates a 

fingerprint, how it compares it with other JARs, and some of the 

decision made in the design for performance and accuracy 

purposes. 

3.2 Fingerprint Generator 
The fingerprint generator accepts only the path of the JAR file. 

Since our approach considers methods signatures in compiled 

Java class files, we extract only files with “.class” extension to 

a temporary directory using the java.util.jar Java API. This 

API contains many useful methods and classes for analyzing a 

JAR file. Using the JarFile class in the API with can get a list of 

all the entries in the JAR and iterate or retrieve individual entries. 

The program iterates through all the entries and whenever an entry 

is a class file we retrieve an input stream from the JAR using the 

above mentioned API and output the stream to the temporary 

directory. For all other entries only the count is maintained. Upon 

termination of the generator the temporary directory is deleted. 

Once all class files have been extracted the program makes use of 

the org.netbeans.modules.classfile API in the Netbeans package 

[5], to get a list of methods from the class file. This Netbeans API 



loads the Java class to a ClassFile object, which then allows us to 

iterate through the all the methods and it parameter in that class. 

This Netbeans API does not allow classes to be instantiated or 

executes its method, like the Java Reflection API, and is 

particularly useful for our approach as we not concerned about 

instantiating classes or executing their methods and statements. 

The method signature, constructed by using the Netbeans API, 

consists of the method’s return type, method name, and its 

parameter types. These signatures are then stored in a HashSet 

which stores only unique values, so duplicate signatures are not 

stored. After all class files in the JAR have been analyzed, each 

method signature is hashed to output a signed integer value. Since 

we are looking for exact matches comparing integer values is 

faster that comparing two strings. Though another motivation was 

to reduce the fingerprint size as some signature strings can be 

large, hashing the signature and comparing integers neither 

improved the performance nor reduce it. An array of these hashed 

signatures was then constructed and sorted. 

To construct the final fingerprint, all the values obtained from the 

analysis were encoded to a single string, separated by the newline 

delimiter “\r\n”. Using this approach our encoding could be saved 

to a plain text file, and easily decoded by our fingerprint detector 

for comparison. Each fingerprint also contained our generator’s 

unique identifier, which the detector uses to verify that a 

fingerprint was constructed by our generator. The first eight 

values in the encoding are the generator id, name of the JAR, size 

of the JAR, number of entries in the JAR, number of HTML, 

XML, Text, and Java source files. The rest of the encoding 

consists of the list of hashed method signatures. 

3.3 Fingerprint Detector 
The fingerprint detector program takes in a previously generated 

fingerprint and a JAR file, and computes the certainty percentage 

between the two. The detector’s first task it to make sure that the 

fingerprint was constructed from our generator. It then decodes 

the encoding in the fingerprint to an array. To compare this 

encoding with the specified JAR file, the detector uses the 

fingerprint generator, described in the previous section, to 

generate the fingerprint for the JAR file. An array is also 

constructed from the newly created fingerprint encoding. The 

detector then compares the two arrays.  

The first eight entries in the arrays contribute only 10% towards 

the total certainty and are entries like name of JAR file, size of 

JAR, etc. The detector does not look for exact matches for these 

initial encodings. For example, when comparing JAR file names 

the program check whether the first file name “contains” the 

second file name. Therefore, commons-attributes-api-2.2.jar and 

commons-attributes-api-1.0.jar would be considered as a match. 

Similarly, when comparing number of XML files, if the difference 

is less than or equal to 1, then it would be considered as a match.  

When comparing method signature, exact matches are considered 

only. The hashed signatures from the first array are compared with 

all the hashed values in the second array until a match is found. 

All matches contribute to the remaining 90% of the total certainty 

percentage. To calculate this percentage, the number of matches 

found is divided by the method lists size of the first array. The 

final certainty is then the addition of these two percentage values. 

3.4 Decisions Made 
Several decisions were made in the design that affected the 

performance and accuracy of the program. One of the biggest 

decisions was the use of Netbeans ClassFile API over Java 

Reflection API. The initial implementation involved the use of the 

Reflection API, which proved to be very slow for large JAR files, 

and impacted the performance greatly. Although the Reflection 

API gives much more information about a class, the ClassFile API 

is low in memory usage as it does not load a class file and it 

dependencies. Moreover, we only required the signature of a 

method and not its implementation, therefore, ClassFile was the 

appropriate API for our program. 

To speed up the comparison of method signatures for very large 

JAR files it was decided to hash the signature string, as 

comparison of hashes it faster would consume less system 

resources. Although hashes are not unique and more than one 

string key can map to the same hash value, we believe that the 

false positive rate will be negligible.  

4. RESULTS 
To measure the performance and accuracy of the approach, 

various JAR files were used from the Eclipse 3.6 Classic IDE 

project and compared to each other. Different versions of the 

same JAR files were also included in the analysis as a reference, 

since they general should result in a higher similarity percentage, 

unless there is a major source code change between the two 

versions.  

But all these results don’t give us knowledge on whether our 

approach is returning valid code clones. To measure the validity 

of our approach we obtained the source for the commons-

attributes-api-2.2.jar and performed several type of re-factoring 

and compared them to each other, and expected a certainty 

percentage range to be 80-95%.  

The subsections below present the performance and accuracy 

results of our approach during construction of the implementation. 

4.1 Performance 
For performance measurement, JAR file in the Eclipse project, of 

sizes ranging from 30KB – 10MB, were used. These JARs were 

compared with themselves and different versions of them, which 

were obtained from their respective project web sites. Besides 

JAR files from the Eclipse project, we also compared our JAR 

file, i.e. our implementation of the approach to itself. The analysis 

was done on a Sony Vaio laptop with Intel® Core™2 Duo 

processor (T6600 @ 2.20GHz), 4BG of memory running 

Windows 7 64-bit operating system. Same tests were also done on 

a low memory configuration UNIX system, and computation 

times were 1-5 seconds slower large JAR files (i.e. > 5MB) and 

negligible for small files. Therefore memory and other hardware 

didn’t impact much on the performance. 

Table 2 show the results obtained from the performance analysis. 

In general, it was observed that for JAR sizes less than 100KB the 

certainty percentage was calculates within 2 seconds. The time 

shown in milliseconds includes the time to extract the second JAR 

file to the temporary directory. The performance of our approach 

cannot be measured and compared with just the file sizes as JAR 

files can contain other libraries and JARs (not included in the 

calculation of the certainty percentages), but variably depends on 



the number of methods to be compared with and the extraction 

time of the second JAR file.  

This was also observed when junit-4.8.jar, with 600 methods in 

the fingerprint, was compared with junit-3.8.1.jar, with 318 

methods in the fingerprint. The certainty was calculated 

approximately in 2.5 seconds. But when the same test was 

reversed, computation time doubled as the number of methods to 

compare with also doubled. 

Table 2. Performance testing with various file sizes 

 
JAR Files 

Certainty 

% 

Time 

(ms) 

1 commons-attributes-api-2.2.jar 

(36KB) to itself 
100 733 

2 commons-attributes-api-2.2.jar 

(36KB) to commons-attributes-

api-2.0.jar 

97.14 765 

3 com.dishant.fpgd.v1.0.jar (66KB) 

to itself 
100 406 

4 junit-4.8.jar (232KB) to itself 100 5242 

5 junit-4.8.jar (232KB) to junit-

4.7.jar (227KB) 
95.11 5226 

6 junit-4.8.jar (232KB) to junit-

3.8.1.jar (119KB) 
25.59 2434 

7 Previous test in reverse 44.47 5476 

8 org.eclipse.jface.text_3.6.1.jar 

(955KB) to itself 
100 19375 

9 org.eclipse.jdt.ui_3.6.1.jar 

(9758KB) to 

org.eclipse.jface.text_3.6.1.jar 

(955KB) 

5.37 19853 

10 Previous test in reverse 21.71 192770 

 

The performance of our approach was greatly impacted in 

extracting class files from the JAR to a temporary directory. For 

JAR files great than 1MB in size, extraction time ranged from 30 

seconds to several minutes. Although, the time to compare the two 

fingerprints was always within a minute. Figure 1 show the 

extraction time for various large JAR files when compared to the 

time to compare the fingerprint with the commons-attributes-api-

2.2.jar (36KB, 118 methods). Figure 2 show the same time to 

compare the fingerprint for the same JARs in details. From this 

figure it can be seen that when the commons-attributes-api-2.2.jar 

is compared with various other JARs the comparison time of 

fingerprint is fairly constant and fast, .i.e. within the range of a 

few milliseconds.  

As discuss in section 3.4, one of the decisions made was to hash 

the method signatures in-order to improve performance of the 

comparisons. The difference in time was negligible for smaller 

JAR files, when the same test in Table 2 was performed without 

hashing, but for larger JAR files difference was seen in 1-15 

seconds. Figure 3 present the comparisons of the results obtained 

when large JAR files were compared without hashing signatures. 

 
Figure 1: Extraction time and fingerprint comparison time for 

various JAR files increasing in file size 

 

Figure 2: Comparison of method signatures with various JARs 

 

 

Figure 3: Performance comparison between hashed signature 

and un-hashed signatures. 

4.2 Accuracy 
One of our main objective was to return a 100% certainty when a 

JAR if compared to itself. This was confirmed in the results 

obtained in Table 2 above. Using our approach we will always get 

a 100% certainty as we are comparing fingerprints and the 

fingerprint generated for an unmodified JAR file will always be 

the same regardless of the time and number of times it is 

generated.  



A high certainty percentage was also seen when various versions 

of the JARs were compared. The certainty obtained for minor 

version build was above 90%, and for some major version 

changes we saw certainty as low as 44%. This was seen when 

comparing JUnit v3.8.1 with JUnit v4.8, as there were many new 

features added and removed from version 3.8.1 to version 4.8. 

To measure the accuracy of our approach, the source code for 

commons-attributes-api-2.2.jar was re-factored; some with minor 

changes others with major structural changes, and was compared 

to the original unmodified version. We obtain certainty percentage 

ranging between 84-99%, confirming that approach is resilient 

code refactoring with high accuracy results. Table 3 lists the re-

factorings applied and result obtained. 

Table 3. Accuracy results when performing various 

refactoring on original source code 

 
Refactoring Description 

Certainty 

% 

Time 

(ms) 

1 No refactoring applied 100 733 

2 Comments removed and variable 

names changed 
99.23 723 

3 Class names renamed 98.14 803 

4 Classes moved to other packages 97.43 743 

5 Packages removed 81.25 699 

6 Additional methods and classes 

added 
97.88 786 

7 Some methods removed 84.78 755 

 

5. CONCLUSION 
Though this paper we have presented a fast and accurate clone 

detection approach using method signatures, that is resilient to 

minor and structural code refactoring. Although our approach 

only works for compiled Java classes, it is an advantage as we 

don’t have to decompile the class file to obtain the source code, 

and thus improve the performance of the detection. Our approach 

lacks in detail analysis of code clones, such as detecting whether 

statements within methods were copied from another JAR. Our 

program cannot detect code clone for Intellectual Property (IP) 

purposes, but rather it is a tool for detection of code clones 

between JARs that have re-used method implementations.  

We were able to achieve all our goals and satisfy mostly all our 

objectives. Though we were not successfully in reducing the 

fingerprint size for very large files, it didn’t impact the 

performance of the program, and the comparison mainly depended 

on the method signatures to compare, as our worst-case 

computing time is O(n · m), where n and m are the number of 

methods in the two JARs being compared. 

5.1 Future Work 
Although we believe our implementation of the approach is fast in 

detecting code clone for closed source JAR files, there are several 

code optimization that can be made.  

As many real-world JAR files include referenced libraries and 

APIs, we would like to extend the program to include sub JARs 

files are well, i.e. JAR files zipped within another JAR file. This 

would address the problems we had mentioned in section 1.1, i.e. 

to detect code duplication within sub modules of a project or 

duplication of libraries within a large project. 

6. REFERENCES 
[1] Apache Commons. http://commons.apache.org/attributes/. 

Accessed November 11, 2010. 

[2] Clone Detection Literature - University of Alabama at 

Birmingham. 

http://students.cis.uab.edu/tairasr/clones/literature/. Accessed 

November 11, 2010. 

[3] Defining Methods, Java Programming Language. 

http://download.oracle.com/javase/tutorial/java/javaOO/meth

ods.html. Accessed November 11, 2010. 

[4] JAR File Specification. 

http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html. 

Accessed November 11, 2010. 

[5] NetBeans ClassFile Reader Java API Documentation. 

http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-

classfile/org/netbeans/modules/classfile/ClassFile.html. 

Accessed November 11, 2010. 

[6] [More references required.] 

 

 

7. Appendix I 
Table 3: Comparison of Various JARs to the commons-attributes-api-2.2.jar 

JAR Name JAR Size Methods Extraction Time 

Fingerprint 

Comparison 

Time 

Certainty 

commons-attributes-api-2.2.jar 36 118 733 1  

apache-commons-codec-1.3.jar 46 121 796 10 5.05 

javax.servlet.jsp_2.0.0.v200806031607.jar 63 166 764.5 16 8 

org-netbeans-modules-classfile.jar 157 197 1934 15 8.1 

javax.servlet_2.5.0.v200910301333.jar 117 212 991 16 7.24 



org.eclipse.ant.core_3.3.jar 90 217 1295 16 7.33 

org.eclipse.core.runtime_3.6.0.v20100505.jar 70 261 1295 15 7.34 

junit-3.8.1.jar 119 318 2333 16 5.81 

junit-4.8.jar 232 600 4984 16 8.861 

org.eclipse.jface.text_3.6.1.r361_v20100825-

0800.jar 
955 1867 19305 32 8.099 

tools.jar 12341 13736 198921 14 9.62 

org.eclipse.jdt.ui_3.6.1.r361_v20100825-0800.jar 9758 13982 185718 31 7.43 

rt.jar 43607 54024 734834 141 14.2 

commons-attributes-api-2.2.jar 36 118 733 1  

apache-commons-codec-1.3.jar 46 121 796 10 5.05 

 


