
COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 1

Similarity Graph with Subgraph Isomorphism

For Fingerprinting
James McAvoy

Abstract—Police use fingerprint to identify suspects at a crime scene. In JAR files, we want to create fingerprints to detect

the present of classes from a given source. We assumed the difference between classes in a JAR file is unique and these

difference can be capture using a data structure called a similarity graph. When comparing a JAR file with a fingerprint, a

program creates two similarity graphs and determine if the smaller graph is a subgraph of the larger graph using subgraph

isomorphism. This paper will show how this method as a viable approach for fingerprinting.

Index Terms—COMP5900, Fingerprinting, similarity graph, subgraph isomorphism, Java, JAR.

F

1 INTRODUCTION

Police use fingerprints to identify suspects at a crime

scene. The premise is that fingerprints are uniquely as-

sociated with an individual. We want to apply this same

principle with identifying a collection Java classes in JAR

files with a fingerprint.

1.1 Problem

A non-trivial Java program can import several JAR files

for its structure and functionality. These JAR files may

have associated copyright and licensing agreements that

are incompatible to the organization’s goals or business

model. A capability to recognizes the inclusion of code

from different contributors will help detect copyright

infringements or determine the application’s providence.

1.2 Motivation

Graphs are powerful and versatile data structure to rep-

resents objects and their relationships in various fields of

science. In the application of pattern recognition, object

similarity is an important issue. If graphs are used for

object representation this problem turns into determining

the similarity of graphs, which is generally referred to as

graph matching.

A Java program can be expressed as a collection of

classes that cooperate together to achieve a result. Rarely,

JAR files contain one .class file. Each .class file is different

to each other. Can we exploit this observation to our

advantage? A Similarity Graph is a data structure that

can be use to express this dissimilarity or difference.

We hypothesis that a JAR file containing a collection

of .class files has an unique similarity graph, which is

like a fingerprint. Using graph matching, we can detect

this fingerprint in other JAR files that may contain these

groupings of .class files.

1.3 Aim

The goal of this project is to determine the following:

1) A JAR file has a unique similarity graph which can

be used as a fingerprint.

2) Subgraph isomorphisms can be used to determine if

a JAR file’s similarity graph matches a fingerprint’s

similarity graph.

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 2

1.3.1 Limitations and Constraints

This project narrowly focus on comparing Java .class files

contained in a JAR file and omitted the other artifacts and

file structure that one finds in a JAR file from comparison.

This method should be used in conjunction with other

techniques to create a more comprehensive solution.

1.4 Objectives

To demonstrate if this project meets its goal, a program

will be created. The project will be consider a success if

the program can accomplish the following objectives.

1) A fingerprint shall detect the JAR file it is derive

from and other JAR file 100% of the time.

2) A JAR file with missing .class files shall be detected

by a fingerprint.

3) A JAR file containing two different .class files from

two different JAR files shall be detected by two

fingerprints.

4) The fingerprint shall be less than 10% of the JAR

file size.

5) Matching a fingerprint to a JAR file shall take less

than 1 minute.

1.5 Outline

In this paper, section 2 will introduce the basic concept of

similarity graphs and why this representation is suitable

for fingerprinting. Section 3 will cover subgraph isomor-

phism as a means for detection. Then section 4 presents

a program implementation using similarity graphs with

subgraph isomorphism for fingerprinting. The results

and validation of the project is presented in section 5.

In the conclusion section 6, will summarize the results

and discuss future follow on studies.

1.6 Notation

The word ”class” is used several times in this paper and

has several different meanings depending on the context.

For clarity the word class will be presented below with

the following meaning:

TABLE 1

Fictional JAR File containing five .class files.

Class Constant

Pool Length

Field Length Method

Length

1 66 20 1

2 41 10 2

3 68 5 8

4 90 34 5

5 75 12 14

• .class: The Java .class file.

• class: The Java programming language class.

• class: The everyday generic or programming concept

of objects sharing similar properties and behaviour.

2 SIMILARITY GRAPH

The problem of grouping ”like” objects into classes based

on properties of the object can be represented using Sim-

ilarity Graph. The premise is that the grouping of ”like”

.class files in a JAR file is unique and using similarity

graph is a viable approach to express this uniqueness.

To create a similarity graph we first record certain

properties of a .class file. For purpose of instruction we

recorded the following properties from a set of .class files

in a fictional JAR file:

1) The constant pool length in a .class file.

2) The field length in a .class file.

3) The method length in a .class file.

See table 1 for an example of these values extracted from

a fictional JAR file.

A similarity graph G is constructed as follows. The

vertices corresponds to the .class files in a JAR file.

A vertex is denoted (p1, p2, p3), where p is the value

of property i. We define a dissimilarity function s as

follows. For each pair of vertices v = (p1, p2, p3) and

w = (q1, q2, q3) we set

s(v, w) = |p1 − q1|+ |p2 − q2|+ |p3 − q3|.

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 3

If we let vi be the vertex corresponding to a .class file

i, we obtain

s(v1, v2) = 36, s(v1, v3) = 24, s(v1, v4) = 42,

s(v1, v5) = 30, s(v2, v3) = 38, s(v2, v4) = 76,

s(v2, v5) = 48, s(v3, v4) = 54, s(v3, v5) = 20,

s(v4, v5) = 46.

If v and w are vertices corresponding to two .class files,

then s(v, w) is a measure of how dissimilar the .class files

are. A large value of (v, w) indicates dissimilarity, while

a small value indicates similarity.

For a fixed number S, we insert an edge between

vertices v and w if s(v, w) < S. In general, different

values of S will create different similarity graphs. We

say that v and w are in the same class if v = w or there

is a path from v to w. In the figure we show a graph

corresponding to the .class files of the above table with

S = 25. In this graph, only three .class files are grouped

which are {v1, v3, v5}. See figure 1.

Fig. 1. Similarity graph of fictional JAR file where S < 25.

The project tried different values of S to determine the

optimal value for detection. We want an S that provides

reliable detection with good performance.

3 SUBGRAPH ISOMORPHISM

Isomorphism is the problem of testing whether two

graphs are really the same. Certain pattern recognition

problems mapped to graph or subgraph isomorphism de-

tection. The structure of chemical components are natural

described by label edges and vertices representing atoms.

Identifying a molecule in a compound is an instance of

subgraph isomorphism.

Assume two label graphs G = (Vg, Eg) and H =

(Vh, Eg). We say that G and H are identical when (x, y) ∈

Eg iff (x, y) ∈ Eh. The isomorphism problem consists of

finding a mapping from the vertices of G to H such that

they are identical. This mapping is called an isomorphism.

Sometimes, the problem of finding this mapping is called

graph matching.

In practice, exact matches are rare. The variety we are

concern with is the problem of determining if graph G is

contained in graph H . Instead of testing equality, we are

interested in knowing whether a small of pattern graph

G is a subgraph of H .

There are two distinct graph-theoretic notions of ”con-

tained in”. Subgraph isomorphism asks whether there is a

subset of edges and vertices of H this is isomorphic to a

small graph G. Induced subgraph isomorphism is harder. It

asks whether removing edges and vertices from H can

we get G. For induced subgraph isomorphism, (1) all

the edges in G must in H , and (2) no non-edges of G

be present in H . In this project, the former, subgraph

isomorphism, is sufficient for our purpose.

Labelling a similarity graph can improve detection and

performance. The edges are labeled with the results of

the dissimilarity function between two .class files and

the vertices, which represent .class files, are labelled with

their properties.

Computing graph isomorphism can be very expensive

which is a drawback using this approach. There exists no

polynomial-time algorithm for solving this problem but

neither is it known to be NP-complete. One of the great

unanswered mysteries in mathematics. The general ac-

cepted understanding is that isomorphism problems lies

between P and NP-complete. In practice, if the size of the

graphs are small (i.e. less than 100 nodes) and the graph

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 4

is labelled for both edges and vertices, performance is

very reasonable.

4 APPROACH

This section outlines the implementation of the Finger-

print program used in this project. The program provides

two operations which are as follows:

1) Logging. The operation inputs a JAR file and outputs

a fingerprint of the JAR file. The program stores

the resultant fingerprint in a repository, which the

program reads later in the comparison operation.

2) Comparing. The operation inputs a JAR file and

compares with fingerprints that are stored in a

repository. The program outputs the results of each

comparison.

The section will first introduce what is a Java .class

file format, its structure and content. Then subsequent

subsections will discuss how the logging and comparing

operations were implemented.

4.1 Java Class File Format

Developers writing programs using the Java program-

ming language must compile the code into a portable

binary format called byte code. The Java compiler creates

a .class file for each Java class or interface with its data

and byte code instructions. If there exists multiple classes

in the source file, the compiler will create a .class file for

each class definition. An interpreter (Java Virtual Machine

aka JVM) loads these files and executes them. The JVM

are available cross multiple platforms. Therefore, the

.class file can be executed on multiple platforms, making

the Java programming language platform independent.

The Java Specification Request (JSR) 202 defines the

structure and binary layout of a .class file. A class file

has 10 basic sections which are as follows:

• Magic Number: 0xCAAFEBABE.

• Version of the Class File: The minor and major

versions of the .class file.

• Constant Pool: Pool of constants for the class.

• Access Flags: Specifies whether the class is abstract,

static, etc.

• This Class: The name of the class.

• Super Class: The name of its parent class.

• Interfaces: Any interfaces in the class.

• Fields: Any fields in the class.

• Methods: Any methods in the class.

• Attributes: Any attributes of the .class (for example

the name of the sourcefile, etc).

Later in this section, the paper will explain how these

attributes of this structure were used to create a finger-

print.

4.2 Logging

The logging feature reads a JAR file as an input and

outputs a fingerprint. The program stores the resultant

fingerprint in a repository. Later in the comparison op-

eration, the program will read these fingerprints and

compare them against an query JAR file.

The operations first step is to read the JAR file and

discovery where all the .class files are located. Then

program iterates over all the .class files and extracts the

following properties from the class file:

• Class Name;

• File Size;

• Constant Pool Length;

• Fields Length; and

• Methods Length.

A third party JAR file from Apache called Byte Code

Engineering Library (BCEL) was used to access the a

.class file’s properties. The BCEL library’s classes failed to

read the .class files in the JAR, so we wrote out the .class

file into the temporary file. Once this was completed,

BECL’s class instances were able to read the files.

A Comma Separated Value (CSV) was used for finger-

print format. It was decided early in the development

stage to use this format for several reasons:

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 5

• Very simple to write and read a CSV file.

• Another programs can read this format, even

database applications.

• Decouple the storage representation from the pro-

gram’s internal representation. This was the greatest

reason. Early in the development cycle, internal pro-

gram representation was vague. Similarity graphs

was one candidate data structure of many. Therefore,

having this decoupling provide more flexible during

the development cycle of the project.

You will notice that the program only collected the

physical attributes of a .class file and not its logical Java

programming language constructs that defines a class.

Using these properties and computing their dissimilarity

was far easier than comparing object-oriented concepts,

such as class IS-A and HAS-A relationships for example.

4.3 Comparing

Once the we created several fingerprints, we can start the

comparison operation. Let F be set of fingerprints:

F = {fi : SG(fi)},

where each fingerprint i is represented by a Similarity

Graph SG(fi).

Let q be the JAR file that we want to query against F .

First, the program builds two similarity graphs; one for

fingerprint and one for the query JAR file. Once build, the

programs then compares the two similarity graphs and

determines if SG(q) subgraph SG(fi) or SG(fi) subgraph

SG(q).

To build a similarity graph SG for both fi and q we

need to define a dissimilarity function first. A vertex

represents a .class file in a JAR file. A vertex is denoted

(p1, p2, p3, p4), where p is the value of the following .class

files properties:

1) The .class file size;

2) The .class file’s constant pool length;

3) The .class file’s field length; and

4) The .class files’s method length.

For each pair of vertices in a fingerprint v =

(p1, p2, p3, p4) and w = (q1, q2, q3, q4) we set

s(v, w) = |p1 − q1|+ |p2 − q2|+ |p3 − q3|+ |p4 − q4|.

This process builds a graph SG = (VSG, ESG), where

VSG represents all the .class files and ESG represents all

the dissimilarities values between the vertices. It follows

that SG is a complete graph on n vertices where n is the

number of vertices and every vertex is joined to every

other vertex by an edge. The number of edges in SG is(
n
2

)
. Therefore, the total running time to build this data

structure and store it is O(n2).

This is a lot of vertices and edges to compare with

other SG. We reduce the size of SG by grouping ”like

.class” files. Let Sl be the lower bound and Su upper

bound, using these values we create another similarity

graph SG′ where we select vertices pairs v and w from

SG such that:

s(v, w) ≥ Sl

and

s(v, w) ≤ Su.

This reduces the similiarity graph significantly and

creates an unique graph for each JAR file, just like a

fingerprint. During the experiment stage, several values

of S were used to determine the best result. Users can

change the S value in file, .fprc.ini. Figure 2 shows an

example similarity group of a JAR file.

Next we compare the SG(fi)
′ with SG(q)′ using

subgraph isomorphism. A successful operation returns

the number vertices that matched and an array of the

matching vertices, otherwise zero if no match was found.

The program used a graph matching C++ library,

VFLib. A search for a comparable graph matching library

written in Java was not found. A JNI .dll was create to

allow access to this library from the Java program. The

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 6

Fig. 2. Similarity graph of org.apache.commons.el JAR

file where Sl ≥ 0 and Su ≤ 10.

program used the subgraph isomorphism features that

the library provided. A noticable increase of performance

and accurancy was observed if the edges and vertices

were labelled. The program labelled the edges with the

dissimilarity values and each vertices were labeled with

the .class file’s constant pool, field and method length.

The program presented the results to the console stan-

dard output. It displayed the number of matches and the

percentage of certainty of the match. Let m be the number

of matches then percentage of certainty p is calculated as

follows:

p =

(
m

|VSG(fi)|
+

m

|VSG(q)|

)
∗ 50,

where |VSG(fi)| is the number of vertices in the finger-

print’s similarity graph and |VSG(q)| is the number of

vertices in the JAR file’s similarity graph.

5 EXPERIMENT

For the experiment, a subset of all the JAR files found in

the Eclipse plugin directory was selected. The following

ten JAR files are outlined in table 2. We assigned an ID

for each JAR file for reference in later tables.

To meet the projects objectives additional JAR files

were created. These JAR files are outlined in table 3.

TABLE 2

JAR Files under test.

JAR File ID JAR File

1 com.jcraft.jsch

2 javax.servlet

3 javax.servlet.jsp

4 org.apache.commons.codec

5 org.apache.commons.el

6 org.apache.commons.httpclient

7 org.eclipse.core.commands

8 org.hamcrest.core

9 org.mortbay.jetty.util

10 org.sat4j.core

TABLE 3

Created JAR files.

JAR File Comments

copy.jar A copy of com.jcraft.jsch JAR file.

combine.jar A combination of two JAR files.

missing.jar A copy of com.jcraft.jsch JAR file

with files missing.

5.1 Computer

The experiment was conducted on a laptop. Table 4

outlines the computer’s specification.

5.2 Exact Copy Matching

First project objective was to determine a fingerprint

can match with its derived JAR file with 100% accuracy

and no other. We hope this method would reduce the

occurrence of false positive results. Therefore, we ran the

TABLE 4

Computer platform used for the experiment.

Manufacturer Dell

Model Percision M4500

Processor Intel(R) Core(TM)i7 CPU, Q

720 @ 1.60GHz

Installed memory (RAM) 8.00 GB

Operating System Windows 7, 64 bit

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 7

TABLE 5

Result of an exact copy experiment.

FP for JAR File Match % Matches with JAR

File

1 100 1, copy.jar

2 100 2

3 100 3

4 100 4

5 100 5

6 100 6

7 100 7

8 100 8

9 100 9

10 100 10

comparison operation against all fingerprints for each

sample JAR file. The test used the following S values,

Sl ≥ 0 and Su ≤ 5.

The only fingerprint that should have two JAR file

matches is com.jcraft.jsch because copy.jar is a copy of that

file. Therefore, this method of fingerprint seems to reduce

the occurrence of false positives. See table 5 for results.

5.3 Missing .class Files

In this experiment, we removed files from the

com.jcraft.jsch JAR file and created a new one and

named it missing.jar. We compare missing.jar with the

fingerprint repository and the program correctly detected

that missing.jar could be from com.jcraft.jsch JAR file. The

test used a very small S value of Sl ≥ 0 and Su ≤ 5. See

table 6 for results.

5.4 Combined JAR Files

In this test, we combined two JAR files into one

and named it combine.jar. We compare combine.jar

with the fingerprint repository and the program cor-

rectly detected that combine.jar could be derived from

org.apache.commons.codec and org.apache.commons.el JAR

files. The test used a very small S value of Sl ≥ 0 and

Su ≤ 5. See table 7 for results.

TABLE 6

Result of missing file experiment.

JAR ID % certainty

1 59.37

2 0

3 0

4 0

5 0

6 0

7 0

8 0

9 0

10 0

TABLE 7

Result of two combine JAR files experiment.

JAR ID % certainty

1 0

2 0

3 0

4 63.33

5 86.66

6 0

7 0

8 0

9 0

10 0

5.5 Fingerprint Size

We want fingerprint size to be less than 10% of the size

of the JAR file. Table 8 shows that the program was

able to create fingerprints less than 10% and in fact most

were less than 5%. Having small fingerprints facilitates

efficient storage.

Size of the fingerprint could be smaller if the file

storage format was changed from text to binary or store

the fringerprints in a database.

5.6 Performance

Performance was measured by comparing the copy.jar

file against the fingerprint repository ten times. The

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 8

TABLE 8

Result of the fingerprint size experiment.

JAR ID JAR Size

(KB)

FP Size (KB) %

1 221 5 2.2%

2 117 3 2.5%

3 62 3 4.8%

4 54 2 3.7%

5 126 4 1.5%

6 314 12 3.2%

7 105 6 5.7%

8 28 1 3.6%

9 189 9 4.8%

10 190 9 4.7%

TABLE 9

Performance experiment results.

Run time (ms)

1 23,288

2 22,846

3 23,082

4 22,863

5 22,848

6 22,801

7 23,112

8 22,958

9 22,847

10 22,942

program called System.currentTimeMillis() at the start of

the comparsion operation and again at the end. The total

time is the difference between end and start time. The

program output the total time to standard console output

after each run. Table 9 displays the results after ten runs.

The test used a very small S value of Sl ≥ 0 and Su ≤ 5.

To compare one JAR file against ten fingerprints, the

program took approximately 22,953 ms or 23 seconds

on average. Therefore, on average comparing a JAR file

against one fingerprint takes about 2.3 seconds.

6 CONCLUSION

Using similarity graph as a data representation to

uniquely identify a JAR files and using subgraph isomor-

phism for detection seems to provide a viable method for

fingerprinting. We were able to achieve the objections

specified in the introduction with a limited set of JAR

files. It was demonstrated this method can detect JAR

files with missing .class files and JAR files containing

two JAR files. Performance was accepted when using a

small S value. The fingerprint files size meet the project

objective but could be smaller if fingerprints were stored

from a text to binary format.

The project scope and goals were limited on purpose.

More research needs to be conducted to answer the

following questions:

• Determining the best value of S to create a simi-

larity graph that provides optimal performance and

detection accuracy.

• Determining if fingerprint stored in a binary for-

mat will improve storage size and detection perfor-

mance.

• What are the best properties to use for calculating

dissimilarities.

• Could this method detect JAR files containing obfus-

cated .class files.

REFERENCES

[1] R. Johnsonbaugh, Discrete Mathematics, 2nd ed. New York,

NY USA: Macmillan Publishing Company, 1990.

[2] J. Ullmann, An Algorithm for Subgraph Isomorphism J. ACM

23 1 (January 1976), 31-42.

[3] H. Bunke, Graph Matching: Theoretical Foundations, Algorithms

and Applications .

[4] S. Skiena, The Algorithm Design Manual, 2nd ed. London,

UK: Springer-Verlang.

[5] A. Buckley, JSR 202: Java Class File Specifiation Update, Octo-

ber 2006. Sun Microsystems, Inc.

[6] L. Cordella,P. Foggia,C. Sansone,M. Vento, Performance Eval-

uation of the VF Graph Matching Algorithm Proc. of the 10th

ICIAP, IEEE Computer Society Press, vol. 2 (1999), 1038-1041.

November 10, 2010 DRAFT

COMP5900 FINGERPRINT PROJECT, NOVEMBER 2010 9

PLACE

PHOTO

HERE

James McAvoy Presently, a part-time

first year graduate student at Carleton

University and working full-time as an in-

dependent software consultant.

November 10, 2010 DRAFT

