
Tree Based Approach to JAR Identification
Lester Mundt

Carleton University
1125 Colonel By Drive

Ottawa, Ontario, Canada
lmundt@gmail.com

ABSTRACT
This document describes an approach used to compare Java JAR
files against pre-generated fingerprints. The fingerprints can be
stored to compose a library of known JAR files. The same tool can
then be used as a comparison tool allowing users to identify if a
JAR is from a known source. This allows project owners to
ascertain the source of a suspect JAR which in turn helps prevent
unintended intellectual property violations. The algorithm used in
this implementation uses the structure of the JAR’s contained
packages and classes as a means of identification which bypasses
many potential obfuscation approaches that can be applied to JAR
files.

General Terms
Algorithms, Experimentation, Legal Aspects, Verification.

Keywords
JAR, obfuscation, software fingerprint, trees, tree comparison,
ProGuard, Open Source.

1.INTRODUCTION
Developers now have access to a large body of code the size of
which was unimaginable in the time preceding the internet. While
this provides a significant learning potential for developers,
copyright holders of many products are faced with significant risk.
The risk that concerns these copyright holders is the inclusion of
intellectual property (source or binary code) that could imperil or
otherwise challenge the ownership of their own products. Even in
open source projects where one might think the ownership of
intellectual property becomes unimportant it has to be
remembered that each open source body of work is distributed
under a license and different open source licenses may actually be
incompatible [1] Thus knowing the true identity of all the
potential sources of intellectual property in a product become
paramount.

1.1.Problem
There needs to be ways to identify if additional sources of
intellectual property are original or copied so it can be determined
if the inclusion of the specific piece of intellectual property poses
issues. Relative to software there are really two avenues to look
at binary files and source code.

For the purposes of this implementation we will focus on one
small portion of the identity problem. We will confine ourselves
to the Java programming language and the granularity of
identification will be JAR files. To expand, instead of focusing on
a single piece of source and trying to deduct if classes, functions
or even smaller measurements of code have been plagiarized we
will look at the unit of distribution in Java the JAR and attempt to
identify if it is a copy of a known source.

1.2.Motivation
For both the open source and closed source communities there are
significant reasons to want to know if intellectual property
contained in their own works poses any threat to their own rights
in regards to original works. Failure to do this can have
significant financial risk [2]. Reliable methods of identifying the
source of intellectual property can prove invaluable.
In fact there are currently companies that charge exorbitant
amounts for the the service[3,4].

1.3.Goals
To help solve the problem an application will be written that can
do two things:

I. Produce a fingerprint from an arbitrary jar.
II. Compare an arbitrary jar to a preexisting fingerprint and

present the likelihood of them being the same.

These two functions can be combined to allow large libraries of
fingerprints to be generated and then automated tests that could
compare jars of unknown origin against the library.

With the extensibility and breadth of a library comparison
envisioned two other non-functional requirements arise:

I. The fingerprints should be small.
II. The comparisons should be fast.

Additional goals are to keep accuracy fairly high and false
positives need to be kept to an absolute minimum.

1.4.Objectives
We determined that with the goals in mind we wanted to develop
an algorithm that would work in real world settings. We
hypothesized that if a JAR has the potential for intellectual
property conflicts with the rest of a project there are three likely
ways in which it got there with each with varying degrees on the
likelihood of being able to detect it:

1. It is a legitimate mistake and the developer who added the JAR
to the project doesn’t realize that the inclusion of the JAR
presents a potential problem. In this case the jar would be in
it’s original form and easily matched.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
Open Source Software, November 15, 2010, Ottawa, Ontario, Canada.
Copyright 2010.

mailto:lmundt@gmail.com
mailto:lmundt@gmail.com

2. The developer who added the JAR wasn’t sure about the
inclusion of the JAR and has made some attempt to hide the
inclusion. Small modifications such changing the name of the
JAR, refactoring packages to not include identifying names, etc
may have occurred. This in turn increases the difficulty of
determining the JAR’s identity slightly.

3. Someone has gone to great efforts to make the identity of the
JAR obscured. The developer adding it either did this
themselves or received a JAR altered to such a degree they had
been unable to determine the JAR could pose an intellectual
property issue. Most likely the JAR will have been ran though
a professional obfuscator causing massive changes to the JAR.
This presents the most significant challenges to identifying the
JAR’s origin.

The three previous scenarios present several additional objectives
in addition to the original goals. The algorithm should be robust
in regards to obfuscation. To identify the accidental inclusion we
wanted to be able to identify unmodified JARs with 100%
certainty.

1.5.Outline
The rest of the document will be as follows. Section two will
provide some background information that pertains to the problem
domain and to the implementation domain. Section three will
illustrate the approach I had taken detailing features of the design
and the decisions made in the implementation. Section 4 will
provide some results from testing the implementation. Section 5
will review the goals and how close the implementation came to
reaching them. Additionally Section 5 will provide ideas for
future work.

2.BACKGROUND
2.1Technical Issues and Constraints
JARs and obfuscation methods and Java.

2.2Previous Research

2.3Related Open Source Software
Expand

3.APPROACH
With speed and a small fingerprint size being the two of the
primary objectives an examination of JARs, and classes was
discussed. Originally we envisioned a tree structure to contain
class nodes in quickly processable way and to develop class based
comparison upon some comparable and unique attribute set of the
classes was envisioned.

We then wondered if the structure of the JAR itself might present
enough of unique signature. It would help speed as the we would
only have to process the JAR itself and we could skip
introspection of the classes.

Using tree structures would involve direct comparison potentially
in the form of subtree detection. The trees involved were to be
reflective of the hierarchical structure within the JAR so the trees
couldn’t be balanced or binary as the original structure would be
lost.

It was then realized that the normal method of detecting similarity
between two trees would be subtree detection, testing if one tree
fit inside the other and comparing their sizes to see if they were
identical or if one was a subtree of the other and how many nodes
were in common. In our unbalance non-binary tree the
comparison would involve backtracking which would slow the
comparison down considerably. Additionally small changes to the
structure would cause the comparisons to fail.

With robustness against obfuscation an additional goal this form
of comparison would be too brittle. However we realized that
using the structure of the JAR could make the comparison
immune to some of the methods of obfuscation that obfuscators
regularly use. The renaming of classes of methods wouldn’t
matter. Partial flattening was identified as the obfuscation method
that would pose the most significant problem for a structure based
method. So a comparison method that could circumvent this
issues would be highly desirable.

We augmented the tree structure so a level of the tree could be
examined as a single list. A level consists of all nodes at the same
depth in the tree. In a normal tree structure this would be
accomplished by traversing all branches and returning nodes at
the specified depth. This level approach allows us to iterate over
the tree and the number levels is simply the height of the tree.

We then developed a level comparison algorithm that would allow
tree of different sizes to be compared.

Finally it had been observed by us that many JARs do not
distribute source and we wanted to avoid the speed issues with
using decompilers so it was decided to use the JARs and the
binary class files they contain. This lead us to using the using a
custom class loader to dynamically add the classes contained in
the JAR at runtime.

3.1Design
The fingerprinting is executed in a fairly simple way. In response
to our decision to forgo the use a decompiler the most significant
challenge was creating a custom class loader to load all the classes
contained in the JAR at runtime.

As the JAR is processed a tree structure is built representing the
hierarchical package structure inside the JAR

Table 1. Algorithm for generating a fingerprint

Input: A JAR file (jar)

Output: ASCII string representing the
hierarchy of the JAR

Open jar
Create empty tree
 foreach entry in tree
 Get parent
 if entry->parent exists in tree
 Add node(entry,parent) to tree
 else
 Find parent in jar
 Add node(entry, parent) to tree
 endfor

Input: A JAR file (jar)

Output: ASCII string representing the
hierarchy of the JAR

Find
Input: A name that for a new node (parent)
 A JAR file (jar)
 A tree (tree)
Output:A new node that is a parent

Get grandparent
if grandparent exists in tree
 Add node(parent, grandparent) to tree
else
 Find grandparent in jar
 Add node(parent, grandparent) to tree
return node

The comparison is done between a fingerprint and a JAR.

Add comparison stuff here

4.RESULTS
4.1.Test Setup
All tests were executed with a selection of jars that are indicative
of what can be found on a Java developers machine. However
server and client JARS are JARs of our design that we have the
ability to modify for any special cases we wanted to test.

All tests were ran on a MacBook Pro with a 2.1GHz Core 2 Duo
Intel Processor, 4GB of RAM, running on OSX 10.6 and a 1.6
JVM.

4.2.Fingerprint Size and Speed
The first test was to look at the size of the resulting fingerprint
and the speed in which it can be generated.

Table 1. Fingerprint sizes and creation speed

JAR Name JAR
Size(bytes)

Fingerprint
Size (%)

Time
(ms)

androidprefs.jar 2705 25.101663586 22

client.jar 59276 8.7860179499 213

Java2D.jar 396061 2.0102963937 408

javax.mail_1.4.0.jar 320972 5.6297745598 723

junit.jar 121204 4.9008283555 180

org.apache.commons.
lang_2.1.0.jar

222427 4.604207223 384

org.apache.commons.
lang_2.3.jar

259489 4.4314017165 290

server.jar 44946 9.1687803142 48

swt.jar 1388610 4.7955869539 1020

The fingerprints seem to be a reasonable size with one notable
exception. Androidprefs.jar is the smallest JAR used and since
the content of the fingerprint file is ASCII and uses package
names the encoding is a significant percentage of the size of the
JAR. As the JAR size increases the size penalty imposed by the
uncompressed ASCII become much less significant.

The speed appears to have O(n) growth with swt.jar being four
times as large as the org.apache.commons.lang_2.3.jar and taking
about four times as long to generate the corresponding fingerprint.
The growth order continues with server.jar taking one tenth as
long as Java2D.jar and being approximately one magnitude
smaller.

4.3.Fingerprint Comparisons
Appendix 1 shows the compete data set for comparisons we will
only show a subset here. We have chose some illustrative cases
that we will examine here.

Table 2. Androidprefs.jar comparison table

Fingerprint
compared against

Relative JAR
Size (%)

Time
(ms)

Match
(%)

androidprefs 1.00 14.0 100.00

client 21.91 30.0 72.50

Java2D 146.42 56.0 24.36

javax.mail_1.4.0.v201
005080615

118.66 64.0 28.10

junit 44.81 18.0 36.27

org.apache.commons.
lang_2.1.0

82.23 19.0 70.00

org.apache.commons.
lang_2.3.0

95.93 12.0 70.00

server 16.62 8.0 74.00

swt 513.35 187.0 72.50

Androidprefs.jar is the smallest JAR tested. As illustrated in
Table 2. the next smallest JAR is server.jar and it’s more than 16
times as large.

This table starts to show that just using the structure of the JAR
may be insufficient to avoid the possibility of false positive since
we have 5 other jars with a 70.00% match that are completely
unrelated to androidprefs. Interestingly size doesn’t seem to
matter as server.jar the next smallest jar has a similar match
percentage as swt.jar the largest JAR size.

Finally by examining the comparison times we not that that speed
illustrates a quick time that has a linear best fit but fluctuates
likely due to system overhead as task switches.

Table 3. Swt.jar comparison table

Fingerprint
compared against

Relative JAR
Size (%)

Time
(ms)

Match
(%)

androidprefs 0.01 283.0 70.00

client 0.27 175.0 56.10

Java2D 1.78 129.0 38.89

javax.mail_1.4.0.v201
005080615

1.44 140.0 34.30

junit 0.54 152.0 48.77

org.apache.commons.
lang_2.1.0

1.00 130.0 100.00

org.apache.commons.
lang_2.3.0

1.17 134.0 96.86

server 0.20 129.0 54.13

swt 6.24 153.0 47.87

The org.apache.commons.lang_2.1.0.jar was compared against the
fingerprints of the other JARs. The apache JAR was chosen
because there is a slightly newer version of it with a similar
structure amongst the test set as well. The other version of the
apache JAR produced a match percentage of over 95 percent
which illustrates that algorithm works on similarly structured
JARs. We also see the same result of 70 percent match percentage
with the android JAR that was discussed in the analysis of Table
1. this is expected because the algorithm just tries to identify the
percentage of commonality between the fingerprint and the tested
JAR.

Table 4. Apache-commons_2.1.jar comparison table

Fingerprint
compared against

Relative JAR
Size (%)

Time
(ms)

Match
(%)

androidprefs 0.00 928.0 72.50

client 0.04 725.0 67.21

Java2D 0.29 795.0 26.83

javax.mail_1.4.0.v2
01005080615

0.23 739.0 20.68

junit 0.09 798.0 36.27

org.apache.commo
ns.lang_2.1.0

0.16 741.0 47.87

org.apache.commo
ns.lang_2.3.0

0.19 766.0 48.43

server 0.03 745.0 60.16

swt 1.00 776.0 100.00

The swt.jar is the final JAR selected for analysis. This jar was
chosen because it is the largest of the JARs and it’s and ideal
candidate to refute the possibility that the comparison algorithm is
based primarily on size. It can be observed in Table 3. that the swt
JAR actually produces the highest match percentages against the
smaller libraries. This seems to makes sense since in such a large
library it is entirely feasible that portions of it could have
structures identical to some of the smaller JARS. The time stays
consistent because the other JARs are at best a fifth the size of swt
JAR and thus are negligible to the amount of time that it takes to
process their fingerprints the bulk of the time would be spend
processing the swt JAR.

4.3.Obfuscated Fingerprint Comparisons
In this test the Open Source obfuscation tool ProGuard was used
to alter JARs. ProGuard was used with default obfuscation
settings enabled for Test 1. This setting completely destroys the
class name, eliminates unused classes, and changes the size of the
compiled jar dramatically. Test 2 had the ProGuard setting
aggressively attack the package structure in addition to the
previous changes. Test 3 adds to the previous settings by
attempting to merge interfaces altering the class inheritance
structure. All tests are the fingerprint of the original JAR against
the obfuscated JAR.

Table 5. Swt.jar comparison table

JAR Test 1
Match(%)

Test 2
Match(%)

Test 3
Match(%)

server 78.51 46.5 46.51

Table 5. shows that 100 percent match of a the previous self tests
drops to just under 80 percent when a obfuscation tool is used.
Internal examination of the obfuscated JAR showed all class
names had been changed and several classes were removed.

Further customization of the obfuscation procedure oriented
towards the destruction of the original structure reduces the match
percentage below 50 percent. At this point it is well in the realm
of almost any JAR compared to any JAR as per the capabilities of
the comparison approach used in this paper.

5.CONCLUSION
5.1.Goal Attainment
While we had postulated that the internal JAR structure of
packages and classes could be used to generate a fingerprint and
easily compared using tree based data structures it seems that the
most aggressive settings of obfuscators can defeat our detection
algorithms.

The speed of the algorithm seems quite good. Comparisons seem
to happen in O(n) time according to the observed data.

The accuracy of comparing a JAR with it’s own fingerprint is
100% in all cases.

The accuracy against obfuscation is quite high with standard
setting on with setting enabled that aggressively alter the package
hierarchies there is a significant loss of accuracy.

Additionally with only the structure as the form of comparison the
potential for false positives seems to rise. In initial tests two
completely unrelated jars can produce a result indicating
similarity of up to 70 percent.

5.1.Contributions
The quick comparison speed and minimal fingerprint size make
the tree based approach a candidate to augment other detection
algorithms. Potentially this approach could be used as a first pass
to quickly eliminate a significant portion of potential candidates
and reduce the number of in depth comparisons needed.

5.1.Future Work
Further tests with a larger variety of obfuscators would help to
identify the capabilities of current obfuscators and also identify
further weaknesses in the algorithm.

One potential avenue to decrease the likeliness of false
positiveness and to increase robustness against obfuscation could
be to augment the tree structure with the inheritance hierarchy of
the classes us both parent classes and interfaces.

Additionally having weighting on the level comparisons could
reduce the amount of false positives.

Finally experimenting with exchanging the level bases
comparisons for subtree comparisons while decreasing the speed
of the comparisons might provide an increase in accuracy.

6.REFERENCES
[1] Brown, Carson, Barrera, David and Duego, Dwight. 2009.

FiGD: An Open Source Intellectual Property Violation
Detector. The School of Computer Science, Carleton
University. DOI= www.ccsl.carleton.ca/~dbarrera/personal/
figd.pdf.

[2] SCO-Linux Controversies. Wikipedia. DOI= . http://
en.wikipedia.org/wiki/SCO-Linux_controversies

[3] Palmida Software. Accessed November 15, 2010. Palamida
Software. DOI= http://www.palamida.com/products.

[4] Black Duck Software. Accessed November 15, 2010. Black
Duck Software. DOI= http://www.blackducksoftware.com/
protex.

http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://en.wikipedia.org/wiki/SCO-Linux_controversies
http://www.palamida.com/products
http://www.palamida.com/products
http://www.blackducksoftware.com/protex
http://www.blackducksoftware.com/protex
http://www.blackducksoftware.com/protex
http://www.blackducksoftware.com/protex

Appendix 1. Complete comparison data
JAR Name JAR

Size (bytes)
Fingerprint Name Fingerprint Size

(bytes)
Time(ms) Result (% match)

androidprefs 2705 androidprefs 679 14 100.00

androidprefs 2705 client 5208 30 72.50

androidprefs 2705 Java2D 7962 56 24.36

androidprefs 2705 javax.mail_1.4.0.v201
005080615

18070 64 28.10

androidprefs 2705 junit 5940 18 36.27

androidprefs 2705 org.apache.commons.l
ang_2.1.0

10241 19 70.00

androidprefs 2705 org.apache.commons.l
ang_2.3.0

11499 12 70.00

androidprefs 2705 server 4121 8 74.00

androidprefs 2705 swt 66592 187 72.50

server 44946 androidprefs 679 23 74.00

server 44946 client 5208 21 83.17

server 44946 Java2D 7962 22 28.17

server 44946 javax.mail_1.4.0.v201
005080615

18070 27 28.96

server 44946 junit 5940 23 39.19

server 44946 org.apache.commons.l
ang_2.1.0

10241 21 54.13

server 44946 org.apache.commons.l
ang_2.3.0

11499 27 53.51

server 44946 server 4121 22 100.00

server 44946 swt 66592 41 60.16

client 59276 androidprefs 679 157 72.50

client 59276 client 5208 106 100.00

client 59276 Java2D 7962 112 28.06

client 59276 javax.mail_1.4.0.v201
005080615

18070 84 34.53

client 59276 junit 5940 101 36.27

client 59276 org.apache.commons.l
ang_2.1.0

10241 62 56.10

client 59276 org.apache.commons.l
ang_2.3.0

11499 74 55.24

client 59276 server 4121 68 83.17

JAR Name JAR
Size (bytes)

Fingerprint Name Fingerprint Size
(bytes)

Time(ms) Result (% match)

client 59276 swt 66592 194 67.21

junit 121204 androidprefs 679 93 36.27

junit 121204 client 5208 54 36.27

junit 121204 Java2D 7962 97 40.39

junit 121204 javax.mail_1.4.0.v201
005080615

18070 152 52.16

junit 121204 junit 5940 69 100.00

junit 121204 org.apache.commons.l
ang_2.1.0

10241 172 48.77

junit 121204 org.apache.commons.l
ang_2.3.0

11499 186 48.77

junit 121204 server 4121 97 39.19

junit 121204 swt 66592 139 36.27

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 androidprefs 679 283 70.00

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 client 5208 175 56.10

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 Java2D 7962 129 38.89

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 javax.mail_1.4.0.v201
005080615

18070 140 34.30

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 junit 5940 152 48.77

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 org.apache.commons.l
ang_2.1.0

10241 130 100.00

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 org.apache.commons.l
ang_2.3.0

11499 134 96.86

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 server 4121 129 54.13

org.apache.commons.l
ang_2.1.0.v20100508
0500

222427 swt 66592 153 47.87

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 androidprefs 679 147 70.00

JAR Name JAR
Size (bytes)

Fingerprint Name Fingerprint Size
(bytes)

Time(ms) Result (% match)

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 client 5208 157 55.24

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 Java2D 7962 267 35.53

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 javax.mail_1.4.0.v201
005080615

18070 187 32.97

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 junit 5940 260 48.77

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 org.apache.commons.l
ang_2.1.0

10241 174 96.86

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 org.apache.commons.l
ang_2.3.0

11499 210 100.00

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 server 4121 149 53.51

org.apache.commons.l
ang_2.3.0.v20100508
0501

259489 swt 66592 166 48.43

javax.mail_1.4.0.v201
005080615

320972 androidprefs 679 478 28.10

javax.mail_1.4.0.v201
005080615

320972 client 5208 399 34.53

javax.mail_1.4.0.v201
005080615

320972 Java2D 7962 254 57.06

javax.mail_1.4.0.v201
005080615

320972 javax.mail_1.4.0.v201
005080615

18070 242 100.00

javax.mail_1.4.0.v201
005080615

320972 junit 5940 245 52.16

javax.mail_1.4.0.v201
005080615

320972 org.apache.commons.l
ang_2.1.0

10241 241 34.30

javax.mail_1.4.0.v201
005080615

320972 org.apache.commons.l
ang_2.3.0

11499 257 32.97

javax.mail_1.4.0.v201
005080615

320972 server 4121 265 28.96

javax.mail_1.4.0.v201
005080615

320972 swt 66592 234 20.68

Java2D 396061 androidprefs 679 460 24.36

Java2D 396061 client 5208 193 28.06

JAR Name JAR
Size (bytes)

Fingerprint Name Fingerprint Size
(bytes)

Time(ms) Result (% match)

Java2D 396061 Java2D 7962 163 100.00

Java2D 396061 javax.mail_1.4.0.v201
005080615

18070 180 57.06

Java2D 396061 junit 5940 274 40.39

Java2D 396061 org.apache.commons.l
ang_2.1.0

10241 161 38.89

Java2D 396061 org.apache.commons.l
ang_2.3.0

11499 155 35.53

Java2D 396061 server 4121 151 28.17

Java2D 396061 swt 66592 231 26.83

swt 1388610 androidprefs 679 928 72.50

swt 1388610 client 5208 725 67.21

swt 1388610 Java2D 7962 795 26.83

swt 1388610 javax.mail_1.4.0.v201
005080615

18070 739 20.68

swt 1388610 junit 5940 798 36.27

swt 1388610 org.apache.commons.l
ang_2.1.0

10241 741 47.87

swt 1388610 org.apache.commons.l
ang_2.3.0

11499 766 48.43

swt 1388610 server 4121 745 60.16

swt 1388610 swt 66592 776 100.00

