
> FOR COURSE PROJECT< 1

 Similarity Calculasion of Two Jar Files

Meng Yao

School of Computer science, Carleton University, 1125 Colonel By Drive, Ottawa, ON 6139V6, Canada

This paper describes a system which can determine the percentage of similarity between two Java Archive (JAR) files. The system is
designed based on three kinds of information abstracted from Jar files-- the license and attributions, the name of all classes, the logical
structure of each class. An assisting tool is used to encoding the class file into source code. The first two kinds of information is usually
used as weight in the final calculating and percentage of similarity will then be presented based on the number of matched logical
structure of class of those two Jar files. Several comments regarding to the detail of each kinds of information are also presented at the
end of the execution of the system.

Index Terms—Open source license, fingerprint, encoding, fingerprint generator detector

I. INTRODUCTION

A. Problem
As the development of open source software, it is convenient

to acquire the source code under open source license.
However, there are rules that have to be obeyed prior to use
or modify or distribute the source code of such software for
the purpose of profit or not. Those rules may be different for
each OSS depending on the type of license that is being
applied to that particular software, but the bottom line is the
actual year of copyright and the correct name of the creator in
the project.

B. Motivation
Due to the existing of the problem mentioned above, it is

necessary to find out whether one Jar file violates the rules of
certain software license by using the code of open source
software without the proper declaration of the copyright. So,
calculating the simulation of two Jar files is a basic support to
solve the license violence problem. The word “similar” in this
particular case means that if a piece of code exists on both
JAR files. But we do not pay attention to other aspect of the
violation of a specific open source license. What we focus is
just the level of source code.

C. Goals
The general goal is to calculate the similarity as fast as

possible. However, it can be a difficult and time consuming
job to compare each code line in each source code file. Thus,
the demand for a tool which can determine the similarity of
two Jar files effectively and efficiently is high.

D. Objectives
This project designs two steps to realize the goals. First step

is to generate a fingerprint for the Jar file. The second step is
to generate the result from the fingerprint and a jar file, in
which a new fingerprint will be generated from the jar file and
the result is actually generated from the two fingerprints. In
the process of comparison, there are three kinds of information

used to generate the result: the license and attributions, the
name of all classes, the logical structure of each classed.

E. Outline
Section 2 of this paper describes about the background of this

project, section 3 is about approach taken to do the project, section 4
is the validations, section 5 is conclusion and section 6 is the list of
references used in this paper.

II. BACKGROUND

A. Introduction of open source and open source license
Open-source software (OSS) is computer software that is

available in source code form for which the source code and
certain other rights normally reserved for copyright holders
are provided under a software license that permits users to
study, change, and improve the software. Open source licenses
meet the requirements of the Open Source Definition. Some
open source software is available within the public domain.
Open source software is very often developed in a public,
collaborative manner. Open-source software is the most
prominent example of open-source development and often
compared to (technically defined) user-generated content or
(legally defined) open content movements.[1] The term open-
source software originated as part of a marketing campaign for
free software.[2] A report by Standish Group states that
adoption of open-source software models has resulted in
savings of about $60 billion per year to consumers.[3][4]

An open source license is a copyright license for computer
software that makes the source code available for everyone to
use. This allows end users to review and modify the source
code for their own customization and/or troubleshooting
needs. Open source licenses are also commonly free, allowing
for modification, redistribution, and commercial use without
having to pay the original author. Some open source licenses
only permit modification of the source code for personal use
or only permit non-commercial redistribution. All such
licenses usually have additional restrictions such as a
requirement to preserve the name of the authors and a
copyright statement within the code. One popular set of free
open source software licenses are those approved by the Open
Source Initiative (OSI) based on their Open Source Definition
(OSD)..

> FOR COURSE PROJECT< 2

B. Assisting OSS used in the program
This project use an open source application which can

decompile a jar file into a ZIP file where the .class file are all
replaced by .java file.

This application is supposed to run to decompile the jar file
before running the project. The process is opening the jar file
using the "jd-gui" application firstly, then click the menu of
"File", then click the submenu of "save JAR scouces", then
follow the instruction to save the zip file under the default
name in the path as same as the Jar file.

III. DESIGN
The approach to compare two Jar files can be divided

into two independent parts. The first is to generate the
fingerprint of the Jar file which contains the essential and
logical information of the Jar file. The second part is to
compare the well formed two fingerprints in order to get the
similarity of the two Jar files.

A. The format of the fingerprint
A fingerprint is an XML file which can explicates the

core information of the Jar file from three aspects: the aspect
of license, the aspect of name of classes and the aspect of logic
structure of classes.

 In the aspect of license, the program abstracts the name
of the license that the Jar file is under and the attributions of
the Jar file if it is an open Jar file. Because the number of open
source licenses are too large (the number of licenses which has
been approved by OSI is up to 66), so this program just
consider the six most popular open source license, including
MIT, BSD, GPL, LGPL, Apache1.1, Apache2.0, EPL. So, the
element named “license” just have 6 kinds of context. As to
the attribution information, each element named “attribution”
include a pair of elements named “author” and “year”
respectively, which indicate contributor and the time of the Jar
file. The number of the element named “attribution” depends
on the information abstracted from relative files. If the Jar file
is not open source software or lost its license information,
these elements would be empty.

In the aspect of the name of classes, the program acquires
every class’s name and put each name in the tag of
“classname”. So, there would be the same number of “tag”
with the name of “classname” as the number of class in the Jar
file.

In the aspect of the logical structure of classes, the
program generate a string for each class to show its logical
structure, which is composed by the key words, like “if”,
“else”, “while” and “for” with a specific numerical prefix to
show the different levels of each key word. The program put
the logical structure of every class in the tag of “classlogic”. If
a class does not have these key words, the corresponding
element would be empty.

B. The way to abstract essential information from the Jar
file

As to acquiring the information about the license of the
Jar file, what the program does in the first step is to find the
file which contains a copy of the license because the
requirement --“a copy of this Agreement must be included
with each copy of the Program” is a common requirement for
every license. Although the name of the text file which
contains a copy of the argument is not specified by each
license, we can get the preferable name of the file which are
recommended by some license, such as “LICENSE”,
“COPYING”, ” README”. If we cannot find the file with
these name, then every text file have the possibility to contain
a copy of license. The next step is to compare the content of a
test file to the content of six licenses one by one. If one license
matched, then we got the license the Jar file is using. If no text
file matches any license, then we give up finding the license
information including the next step of finding the attribution
of the Jar file. In the second step, what the program does is to
get the attribution information of the Jar file by the instruction
of the license if the name of the license has been got in the last
step obviously. Learned from these agreements, each license
has indicated the location and the format of the attribution
information. For example, the Apache license specifies that:

“to apply the Apache License to your work, attach the
following boilerplate notice, with the fields enclosed by
brackets "[]" replaced with your own identifying information.
(Don't include the brackets!) .The text should be enclosed in
the appropriate comment syntax for the file format. We also
recommend that a file or class name and description of
purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party
archives. “

 “Copyright [yyyy] [name of copyright owner]
 Licensed under the Apache License, Version 2.0 (the

"License");
 you may not use this file except in compliance with the

License.
 You may obtain a copy of the License at
 http://www.apache.org/licenses/LICENSE-2.0
 Unless required by applicable law or agreed to in

writing, software

> FOR COURSE PROJECT< 3

 distributed under the License is distributed on an "AS
IS" BASIS,

 WITHOUT WARRANTIES OR CONDITIONS OF
ANY KIND, either express or implied.

 See the License for the specific language governing
permissions and

 limitations under the License. "
As to other license which did not specified so strictly, such as
BSD, they still require the well formed attribution information
-- “Copyright yyyy name of copyright owner” to be showed in
source code. So the program can get the attribution
information by the clue of the license. If the program did not
match this information, the element “attribution” would be
empty.

As to the name of classes, what the program did is just to
acquire the name of class file, and then put the name in xml
tag named “classname” in fingerprint.
As to the logical structure of the classes, what the program did
is to abstract the key words and the relationship of these key
words. Because the variable names and method names and the
class names in a Jar file can be modified easily by existing
tools, it is possible that these names are modified if the
releaser wants to cover the origin of the source code. But what
cannot be changed in a class file is the logic of the code
which can be illustrated by these key words including “if”
”else” ”for” and ”while”. So, the program abstracts the logic
of a class to a string. For example, the string
“1if1else2if3if1for2for1while” means that in this class file,
first, there is an IF block, then the ELSE block. And in the
ELSE part there is a nested IF block in which there is another
nested IF block. So, it is a three level loop in the beginning
part of the class file. Then it comes a FOR loop nesting
another FOR loop, then there is a WHILE loop in the last part.

C. The way to compare the two fingerprints
Because the target is to compare the two fingerprints as

fast as possible, so the program do not go to compare the
source code (logical structure of the class file) at the
beginning. The first step in the comparison process is to match
the license and the attributions, if the two fingerprints both
have this kind of information and completely matched, which
can lead to the result that the two fingerprints are 100 percent
matched. Otherwise, the program generates the percentage of
the matched part (from 0.1 to less than 1.0) and keeps it as a
weight for calculating the final simulation percentage in the
last step.

In the second step, the program goes to compare the
content in classname tags one by one. If the classname of the
two Jar file are completely matched, then the program will
directly generate the result that the two fingerprints are 100
percent matched. Because it is possible that the two Jar file are
the same file or the one Jar file is a part of the other one
without any change. But they just lost their copyright notice.
So there is no need to go to the next step to compare the two
Jar file in the source code level if the classname of two Jar file
are completely matched.

In the third step, the program goes to compare the
content in the tag of “classlogic” which happened in most
situations, because the first two steps can be seen as the rapid
ways to solve the problem which just can be applied in special

situation. The third step is the general way to compare two Jar
file. The work in this step is to match the

 In the fourth step, the program goes to calculate the
percentage of the similarity of the two fingerprints. After the
first steps, the program have got the percentage of the matched
tag of attribution which is W (attribution), and the percentage
of the matched classname which is W (classname), and the
percentage of the matched logical structure which is W
(logic). So, the final result is calculated by this way:

1. If W(attribution)=0 and W(classname)=0 and
W(logic)>=0.5, similarity = W(logic)

2. If W(attribution)>0, similarity = W(logic);.
3. If W(attribution)=0 and W(classname)>0.5, similarity = (

W(logic)+W(classname))/2
4. In other situation, similarity = W (logic)/2

Here are the explanations: if the two fingerprints have no
common information about license and attribution and name
of classes, the similarity of the two fingerprints is as half as
the percentage of the matched logical structure. Because the
logic structure is just a fatal and unchangeable attribute of a
class file but is not a unique attribute. So the similarity of the
logical structure does not necessarily mean the similarity and
cannot be transferred into the similarity of the whole Jar files.
So the program cut down half percentage of the similarity by
the principle of Randomly assigned. But in case of more than
half of the logical structure of the class files in Jar file are
matched, it’s obviously that the two Jar file have a strong
relationship between each other, so it is not necessary to cut
down half of the similarity. Likewise, if the two Jar files have
some attribution information in common, we can get to know
that the two Jar files have a strong relationship between each
other (maybe they are the some software in different versions).
So the similarity of logical structure can exactly reflect the
general simulation. As to the similarity of the name of the
classname, it can be a weight to add to the general similarity if
it is bigger than 0.5 which is large enough to reflect the
relationship of the two Jar files.

D. The format of the result
The result not only gives the similarity of the two fingerprints
but also give additional information to support customers.
Firstly, the program offers the name of the licenses for each
Jar file if they have any to help the customer make a more
sensible decision through the detail of agreements. For
example, one Jar file under the license of EPL and other Jar
file under the license of GPL are not possible to share the
same source code because the two licenses are not compatible
which means the derived work from a software under the
license of EPL is not supposed to released under GPL. So the
real similarity may be not so high as in the result. Secondly,

Here is an example result to compare the same Jar file:
jar file name: org-netbeans-modules-classfile.jar
jar File name: org-netbeans-modules-classfile.jar
the CertaintyPercentage of the two Jar file is: 1.0
the former jarfile doesn't have a license
the latter jarfile doesn't have a license
the two jar has absolutely same classnames, there is no need
to compare the source code!
The CertaintyPercentage is 100%

> FOR COURSE PROJECT< 4

Here is an example result to compare two absolutely different
Jar files:
jar File name: tomcat-dbcp.jar
jar File name: org-netbeans-modules-classfile.jar
the CertaintyPercentage of the two Jar file is: 0.17391305
the former jarfile is under the license of APACHEV20
the latter jarfile doesn't have a license
the similarity of the ATTRIBUTIONS of the two jarfile is 0.0
the similarity of the NAMES of CLASSES of the two jarfile is
0.0
the similarity of the LOGIC of CLASSES of the two jar is
0.3478261,waived of the 20 class files which has no loop
statement or judgement statement in the total of 61 classes
so the overall certaintyPercentage is 0.17391305.

IV. VALIDATION
The result of the project is as the same as we expected. If

we compare two totally different Jar files, the result is usually
less than 0.2; If we compare the same Jar files, then result is
1.0 and it don’t even compare the logic structure of each
classes as the two Jar file have the same class names; if we
compare a Jar file which is built by deleting some portion of
the original Jar file with the fingerprint of original one, then
the result is 1.0 but the result in the comment showed that how
many classes in the Jar files are matched. As to the time-cost
in the process of comparing, it cost about one seconds to
generate two fingerprints and get the result of the comparison.
To sum up, the result is sensible and useful for customer to
judge the similarity of two jar files.

V. CONCLUSION

A. Advantages
Firstly, the time-cost of the project is rather low in general.

And in some special case, such as the same two Jar files, it
would perform better. Secondly, this project considers open
source licenses, which make it more sensible when calculating
the similarity and sometimes fasten the process of comparison.
Thirdly, the program has good expansibility to add other
popular license besides the six most popular open source
licenses. The only job is just to add the detail of license in the
way defined in the file named “ConstantPara.jave” in the
project.

B. Future wok
Firstly, this program can be improved by modifying the

assisting open source application –“ jd-gui” and nesting this
application into the program which can simplify the user
action and make the project a unity. Secondly, the program
can be improved by considering the inheritance relationship
between classes, which could add as a weight to generate the
result to make the result more reliable.

