
A Method of Detecting Code Cloning in Open Source
Software

 Zhexiong Wei
The School of Computer Science,

Carleton University, Ottawa, Ontario,
Canada

ABSTRACT
In this paper, we implement a method which is used to detect
code copying in open source software. This method generates a
small fingerprint which includes main features of class files
contained by a Java Jar file. By comparing the intrinsic and
extrinsic features of class files, the method can find the cloned
code in anonymous jar files. This method provides a tool to detect
cloned code correctly and effectively.

Keywords
Open Source Software, Code Cloning, Jar File, Class File,
Intrinsic Features, Extrinsic Features.

1. INTRODUCTION
Open source software (OSS) has become critical for most
organizations. Because there are many advantages of using open
source software[1], such as high-quality software, lost software
costs, abundant support and accountability, less dependence on
vendors and so on. Open source software has impact not just for
developers and IT-managers but also potentially for all the
persons throughout the value chain of an organization including
suppliers, customers, and partners. Today, more and more open
source software are developed and adopted in commercial
products development. Although organizations get benefits from
open source software, they have to take a critical view of open
source should raise some questions as well. Most software is a
working-in-program and not stable and secure. It maybe cause the
commercial product failed. Open source software applied several
open source licenses to protect itself. Those licenses are different
and incompatible. Before using the open source, the organization
must survey the license of the software and obey the license to
develop the commercial products. However, code of unknown
origin is encountered occasionally. It is difficult but necessary to
make it clear. This is related to the legality and success of the
product.

1.1 Problem
In this paper, we aimed at detecting software clone, which is
written in java programming language. We use the known
software code to compare with the software clone from one
commercial product. Then we can assure whether the organization
steal others’ achievement illegally. There are many clone
detection methods researched, such as string matching. But
sometimes those methods are out of work when the original
source code is not available. We focus on accessible attributes of
compiled files and calculate the similarity of their attributes.

1.2 Motivation
"The Open Source community attracts very bright, very motivated
developers, who although frequently unpaid, are often much
disciplined. In addition, these developers are not part of corporate
cultures where the best route to large salaries is to move into
management, hence some Open Source developers are amongst
the most experienced in the industry. In addition all users of Open
Source products have access to the source code and debugging
tools, and hence often suggest both bug fixes and enhancements
as actual changes to the source code. Consequently the quality of
software produced by the Open Source community sometimes
exceeds that produced by purely commercial
organizations."[2] For many developers, peer review and acclaim
is important. They will prefer to build software with clean design,
reliability and maintainability which is admired by their peers.
They develop software to contribute the open source community
and get benefits from others’ contribution. But there are some
phenomena, to which we have to pay attention, destroying the
balance of the open source community. Some organization or
individual steal the intellectual property, just make it their own by
modifying some code but dedicate nothing to the open source
community. Those behaviors show a complete lack of respect for
developer’s work and make a heavy attack on the ecosystem of
the community. We must take action to prevent this ethical
problem and protect authorities and the community. This is the
main motivation to detect code clone in Open source software

As so far, there are tons of open source tools and libraries. How to
safely leverage open source to enhance your own source code,
without incurring the legal risks that often accompany open
source becomes very important for the commercial software
developer and manager. Some issues [3] which you have met or
should avoid are listed in the following:

 Some commercial software suppliers have been sued by open
source advocates for downloading the open source while ignoring
the license obligations. Some of these lawsuits have been settled
out of court, but all of the ones that have gone to trial have been
settled in favor of the open source plaintiffs.

 Maybe your customers have heard about some of these
lawsuits, and know that sometimes the plaintiffs target them as
customers instead of you as their software supplier, so they are
demanding that you give them a thorough accounting of what is
inside your software.

 Maybe you suspect one of your engineers downloaded some
open source and didn’t tell anyone about the license obligations.

 Maybe you are worried that your source code includes some
open source software that could impact the value of your
intellectual property.

Based on those issues, organizations must take measures to
protect against these legal risks of open source. They should
periodically conduct a complete audit of their source code,
making sure you know exactly what open source is inside and
what the license obligations of that open source is, but not just
create an open source policy. But the price of the service
supported by a professional audit firm is high, and sometime there
is no entry to the original source code. We devote our energy to
audit the open source software with low cost

1.3 Goals
There are many available applications detecting code cloning with
simple string-matching. We pay more attention to the feature
attributes of a class, such as parameters of methods, return value
and the like. We take those feature attributes from the Java
Archive (JAR) file to composite the unique footprint. Then
calculate the similarity between the know JAR’s fingerprint and
an unknown JAR file. Eventually the application will output the
result to display match percentage between the two JARs.

1.4 Objectives
Several clone detection techniques have been described and
implemented, such as Text-based techniques, Token-based
techniques, AST-based techniques, Metrics-based techniques. But
most of those techniques need the original source code and
occupied much memory. Our objectives are to make a small
fingerprint using the feature attributes not all the content of source
code or the compiled class. A complicated method maybe be
written over hundreds lines code. If we use the feature attributes
to replace the method, there are only several strings.

Our approach does not rely upon the original source code,
because we don’t need to read the content of methods. We can
also get feature attributes from the JAR files. Although we just
utilize much less information, it dose not mean the low accuracy.
Following Walenstein [4], clone detection adequacy depends on
application and purpose. Intellectual property thieves maybe
modify the route and method content but rarely features of the
class. Representation of a class is not content details but features
which are the key points to identify two files.

1.5 Outline
In the following sections, we will discuss some basic knowledge,
and our main work concentrated in the section 3 including the
design strategy, algorithm and what decision we made. In the
section 4 and section 5, we compare several groups of files,
present results, draw the conclusion and look ahead the future
work.

2. BACKGROUND
Many researches in the field of clone code detection have been
done. Most of them are mutual and have a high degree of
accuracy. However some disadvantages exist in that software, e.g.
time-consuming, memory-waste, and requiring the source files.
As the open source software developed quickly, more unknown
tools and libraries make software developers and organizations

feel troubled. Fortunately, some researchers have paid their
attentions to the situation that there is not source code available
but compiled program. Cate Huston[10] uses winnowing to
fingerprint JAR files and some potentially interesting
information(e.g. filenames, size of the jar file, the number of
entities, and the jar name) of the JARs, ,to detect significant
similarities of those JARs. From the conclusion of that paper we
can learn that those potentially interesting information are less
consistent. This demonstrates what probability to be changed in
the software clone is and the key point of comparison is the
features or contents of methods. Carson Browns and David
Barrera [8] use the modification of n-gram method to generate the
fingerprint of the compiled java program. They make much
improvement including detection speed, small fingerprint and
good accuracy. We tend to do some research in this aspect. We
also take JAR files as input, and generate the fingerprint of the
Class files which are Java’s compiled files. The difference
between our researches is that we do not consider all the byte
code of methods in Class files but just the features of methods, e.g.
the count and type of the input parameters, the type of the return
value. Although software clones have been made plenty
modification, such as renaming classes, variables and methods,
adding some inessential code lines, changing the path of files and
so on, the main function of the method will not be destroyed.
According this point, the features which we have mentioned
above will be changed less. And org.netbeans.modules.classfile
API [7] supports the function to implement the fingerprint of
Class files. Patrice Arruda et al [9] use graph to describe the
dependency of classes and calculate the similarity with matrix.
Their approach focuses on the relationship between classes. The
idea of extracting extrinsic features of a class in our approach is
enligthened by [9].

3. APPROACH
3.1 Design
Considering that Java Jar files mainly comprise class files, this
method analyses the class files and use features of class files to
describe the fingerprint of jar files. We divide the features of class
files into two groups: intrinsic features and extrinsic features.
Intrinsic features of a class file include description of its methods.
The number and types of input parameters and the type of method
return compose the basic feature of a method in a class. The
extrinsic features are composed of the relationship of classes, for
example superclass, interfaces, and inner classes of a class. These
features can indicate the purpose of the class file so that the
approach can distinguish the behavior of cloning. Employing
these intrinsic and extrinsic features can discover the cloning code
which is just modified by refactoring functions of modern IDE.

3.2 Rules
Generally, jar files are kinds of Zip files. Thus before extracting
features from class files, we need to decompress the jar file. Java
Class Foundation Library provides API [5], java.util.jar, to finish
this job. We use JarResource class which is from a Java World
article [6] to obtain bytecode of all classes in a Jar file. The
org.netbeans.modules.classfile API [7] can transform the
bytecode of a class to an object in the memory. Therefore our
algorithm can manipulate class files to get all features of methods

in a class file. To clarify our algorithm, we assume that X is an
original Jar file which is used to generate a fingerprint and Y is an

anonymous Jar file which is possible cloning Jar file. iC denotes

a Class file that belongs to X. jD denotes a Class file that

belongs to Y. kM denotes a method that belongs to iC .

lN denotes a method that belongs to jD . The similarity of two

methods is calculated by Rule 1:

Rule 1: If two methods have same number of parameters and
same type of parameters and same type of return value, then the

similarity of two methods methodsS is 1; otherwise, the similarity

methodsS is 0.

If the similarity of two methods is obtained, the similarity of
intrinsic features of two classes can be analyzed by Rule 2:

Rule 2: the similarity of classes classesinS =
n

S
n

k
methods

1 , n is

the number of kM .

The similarity of extrinsic features of two classes can be
calculated by Rule 3 to Rule 6:

Rule 3: the similarity classesexS = (SuperClassS + InterfaceS +

InnerClassS) / 3.

Rule 4: the similarity SuperClassS is 1 if the type of Superclass is

same; otherwise is 0.

Rule 5: the similarity InterfaceS is 1 if the number of interfaces is

same and the types of interface are same; otherwise is 0.

Rule 6: the similarity InnerClassS is 1 if the number of inner

classes is same and the types of inner classes are same; otherwise
is 0.

The similarity of two classes is calculated by combining

classesinS and classesexS as Rule 7:

Rule 7: classesS = 0.6 classesinS + 0.4 classesexS .

The weight of classesinS is set to sixty percentage points because

our approach mainly focuses on methods in a class.

The similarity of two jar files is calculated by the Rule 8:

Rule 8: jarsS =
n

S
n

i
cclasses i

1
_max

, n is the number of classes

in the original jar file, max
icclassesS _ indicates the maximum of

similarity between iC and mjDj 1 , m is the number of

classes in the anonymous jar file.

3.3 Algorithm
Our approach compares the original jar file and the anonymous
jar file by two components. The first component is Fingerprint
Generator which manages to generate fingerprint from the
original jar file. Figure 1 describes the main steps of generating
fingerprint. The second component is Fingerprint Detector which
is charge of computing the similarity of two jar files. Figure 2
describes the main steps of generating the similarity.

Figure 1: Fingerprint Generator

Figure 2: Fingerprint Detector

3.4 Decision Made
Our approach only focuses on class files in a jar file because class
files are the core of a jar. The similarity between two methods is
simply calculated by Rule 1 and expressed by 1 or 0. There is no
value of similarity between 0 and 1. As a prototype of first
implementation, we intuitively keep the algorithms simple and
correct. Although this calculation losses some accuracy, the
intention can be described clearly and results are satisfying
reasonably.

We also only consider the basic type of Java such as int, short,
long, byte, float, double, string, char and boolean, and the original
objects of Java such as Integer, IO Stream and the like. Because
the source code trends to be changed by name refactoring, not to
be changed with the type and number of parameters of a method.
Except these primary circumstances, other self-defined types are
uniformly defined as Object type. Through these simple
categories of types of parameter, our approach can cover most
cases when comparing two methods.

In the course of implementing the algorithm, some classes in the
different jar files are very similar but the similarity calculated by
our algorithm is not high. However, some classes are different but
the similarity is high. Through analyzing the source code
artificially, we find that these classes have several methods which
have no parameter and no return value. This circumstance will
influence the result of comparison. Assuming that there are three
classes A, B and C, Class A has 6 methods (X1, X2, X3, X4, X5,
X6) among which there are two methods (X5 and X6) have no
parameter and no return value. Class B has 4 methods (Y1,Y2 ,Y3

,Y4). Class C has 4 methods (Z1, Z2, Z3, Z4) among which there
are two methods (Z3 and Z4) have no parameter and no return
value. Assuming X1, X2, X3 are equal to Y1, Y2, Y3,
respectively, so the similarity of Class A and B is 0.5. Assuming
X1, X2 are equal to Z1, Z2, respectively, the similarity of Class A
and C is 0.67 because Class C has two methods Z3 and Z4
compared to X5 and X6 even if they are entirely different.
Actually, Class A is more similar to Class B than Class B. Thus
methods of no parameter and return value have negative effect in
our algorithm. In most classes, methods of no parameter and
return value trends to be less important. Considering this
situation, we decide to remove methods which have no parameter
and return value. The benefits contributed by these methods are
much smaller than the harms.

4. RESULTS
To examine the correctness and effectiveness of this algorithm,
eight selected jar files are used as the testing set. The environment
of testing and the performance are described at first. Next the
testing results and analysis are demonstrated.

4.1 Performance
This implementation runs on a laptop, whose technical parameters
are shown as below:

Processor: Pentium(R) Dual-Core CPU T4500 @ 2.30GHz

Memory: 4.00 GB

System Type: 64-bit Operating System

The amount of jar files ranges from 1Kb to 2.6Mb. There are four
jar files which come from Eclipse IDE plugins, two from our own
implementations, one from Spring Framework, one from an
anonymous company. All comparison finished in 126.919s. The
worst case is the largest pairs of jar files. Although the algorithm
spends a little more time, the result sounds good.

4.2 Testing Results
In the set of testing jar, we first choose the simplest jar file,
test.jar, to compare with this jar itself. The result is very good and
the time is ideal. Next when comparing two entirely different jar
files, the result which is provided by this algorithm is correct. The
jar files, org.eclipse.help.ui_3.2.0.v20060602.jar and
org.eclipse.help.ui_3.5.0.v20100517, are obtained from Eclipse
plugins. They have similar functions but different versions. The
org.eclipse.help.ui_3.2.0.v20060602.jar calculates the similarity
of this jar file itself and then calculates the similarity of
org.eclipse.help.ui_3.5.0.v20100517. The result shows that the
former’s similarity is higher than the latter’s. This data is
reasonable because the difference between two versions is larger
than one version itself. Testing the different versions jar files of
JUnit, we discover that their similarity is low because JUnit
version 4 has many modifications of structures and functions
compared with JUnit version 3.8. JUnit version 4 introduces the
annotation function to facilitate programming test units. The
similarity of JUnit version 3.8 and JUnit version 4 is different
with its reverse because of different figerprints produced by
different jar files. Although the similarity has a little different, the
time consumed by calculation is almost equal. Finally, we
compare two larger jar files, one from Spring Framework and
another from an anonymous company which has a possibility to

clone the jar files of Spring Framework. The result reveals that
the similarity of these two jar files is 82.976% and the calculation
costs 126.919s. This indicates the second jar file has a high

probability of cloning source codes. Table 1 lists the all results of
our testing set.

Table 1: Testing Results

Fingerprint Generated From Another Java Jar File Certainty Time (s)

Test.jar Test.jar 100% 0.015

Test.jar Com.zxwei.comp5900.jar 0% 0.017

org.eclipse.help.ui_3.2.0.v20060602.jar org.eclipse.help.ui_3.2.0.v20060602.jar 82.976% 126.919

org.eclipse.help.ui_3.2.0.v20060602.jar org.eclipse.help.ui_3.5.0.v20100517.jar 98.846% 3.959

Junit.jar Junit.jar 94.313% 3.797

Junit.jar Junit-4.1.jar 98.0% 1.01

Junit-4.1.jar Junit.jar 25.396% 0.875

Spring.jar Ssb-core-01.50.00.jar 31.675% 0.891

5. CONCLUSION
Our approach of detecting code cloning in open source software
focus on class files in jar files. Utilizing the intrinsic and extrinsic
features of classes can effectively seek out the functional copies
of codes. This algorithm can be immune to simple refactoring.
Although the algorithm costs a little more time, the result is
correct and accurate.

5.1 Review goal and contributions
Our algorithm and implementation fulfills the objective of
detecting code cloning and provide a tool to help companies or
institutions who want to carry out open source software avoid
distinguish the copied codes.

5.2 Future work
Our approach has three main aspects of improvement in the
future. In the calculation of similarity of two methods, we can set
different weight to the number of parameters, types of parameters
and type of return value instead of Boolean value (0 or 1). This
improvement can further increase the accuracy of our algorithms.
In the aspect of extrinsic features, attributes of a class and
reference of other objects in a class are both important properties
of a class. Adding these features into the calculation of extrinsic
features can promote the accuracy of calculating similarity of two
classes. In the aspect of intrinsic features, considering structures
of if-else and while clauses can strengthen detailed description of
a method, thereby escalating the accuracy of the algorithm. After
improved on these three aspects, this algorithm will have a better
result.

6. REFERENCES
[1] Jason Williams, Peter Clegg. Emmett Dulaney Expanding

Choice: Moving to Linux and Open Source with Novell
Open Enterprise Server Published Mar 7, 2005 by Novell
Press

[2] "Analysis of the Impact of Open Source Software" (PDF)
[QINETIC2001], Peeling & Satchell, QinetiQ, 2001.

[3] Manage The License Obligations And Risks That Come
With Developing Commercial Software While Embedding
Open Source Inside, http://www.sourceauditor.com/
Copyright, Source Auditor, 2008, All rights reserved.

[4] A. Walenstein. Problems creating task-relevant clone
detection reference data. In Proceedings of the Working
Conference on Reverse Engineering (WCRE’03), pages
285–294. IEEE Computer Society Press, 2003.

[5] Java Platform API Specification
http://download.oracle.com/javase/6/docs/api/

[6] Arthur Choi, Java Tip 49: How to extract Java resources
from JAR and zip archives, JavaWorld.com, January 3rd,
1998, http://www.javaworld.com/javaworld/javatips/jw-
javatip49.html

[7] org.netbeans.modules.classfile,

http://bits.netbeans.org/dev/javadoc/org-netbeans-modules-
classfile/org/netbeans/modules/classfile/ClassFile.html

[8] Carson Brown, David Barrera, Dwight Deugo: FiGD: An
Open Source Intellectual Property Violation Detector. SEKE
2009: 536-541

[9] Patrice Arruda, Pierre Chamoun, Dwight Deugo: A
Framework for Detecting Code Piracy Using Class Structure.
SEKE 2010.
http://www.scs.carleton.ca/ocics/seminars/index.php?Abstrac
t=OCICS_SEMINAR_0052&Num=1

[10] Cate Huston, Fingerprinting Jar Files Using Winnowing,
http://catehuston.com/files/fingerprinting%20jar%20files%2
0using%20winnowing.pdf

