
JarAnalyzer: Java Jar File Anaylzer

Wahee Ahmed
School of Computer Science

Carleton University

E-mail:wahmed2@connect.carleton.ca

 Karim Tantawy
School of Computer Science

Carleton University

E-mail: karim.tantawy@gmail.com

ABSTRACT

The main barrier for open source development and

adoption is violation of intellectual-property. This paper

introduces an open source project JarAnalyzer, to solve the code-

clone detection problem for Java open source projects.

JarAnalyzer will help people to detect similarities between two

JAR files by comparing their fingerprint. Fingerprint of the JAR

file can be configured and scaled, and can contain different

properties of JAR file. The fingerprint generation and comparison

algorithms are also discussed in this paper.

I. INTRODUCTION
The widely adopted solution to proprietary software is

using the open source software. According to the survey

conducted by Gartner Inc. indicates that 85% of companies which

were surveys are using open source software in their enterprises,

while 15% were still planning to use in next 12 months. Along

with this survey Gartner analyzed that about 69% of surveyed

companies which are using open source software in their

enterprises don’t have formal methodology of evaluating and

cataloguing them. Thus leading to huge potential liabilities for

intellectual-property violations [1].

A .Problem

The total time it takes to develop the software and risk

of producing bug can be reduced by using existing code. When IP

management is not done in proper way , software developers may

reuse and copy the code of open source software without having

knowledge of license. Proprietary software has the risk of opening

the entire software code if it inadvently includes one piece of code

that is under GPL lincese [2].

IP infringement is another problem in open source

software. Without compatible license or permission the IP fringers

uses open source code in their product. Once the software get

distributed in close source binary format it becomes really hard for

open source provider to verify it against their own code.

Our project JarAnalyzer is java based application

detecting the similarities of the two Jar files. To compare the two

JAR files, a fingerprint will be generated to store the JAR files

information. The key issue is getting the quick and accurate

comparison using the algorithm which generates the fingerprint

content. If the fingerprint is large or even if its identical to original

JAR file we will get accurate result but fingerprint generation and

comparison will take long time. Alternative to this would be

generating a very light weight fingerprint it would save lot of

running time but the result won’t be accurate and reliable.

B. Motivation

It requires lot of time and effort to compare the original

code in order to detect the software source code infringement. The

majority of software products aren’t in human readable format.

The motivation of this paper is to develop an open source java

based application to detect similarities of the two JAR files and

thus contribute to open source community.

C. Goals

To detect the code clone in JAR files is our main goal.

The JAR files are basically used to distribute the Java applications

and libraries. Among all the programming languages Java is the

mostly common used language to develop open source software

[3] [4].The implementation of our software is also done in Java.

The program will facilitate with percentage similarity of the two

JAR files in an acceptable time frame. Not only this but the

comparison result will also include the similar java classes.

D. Objectives

In order to achieve our goals we will implement the following

objective(s)

 The implementation of algorithm as an open source

Eclipse plug-in project. It will enable Eclipse users to

generate the JAR file fingerprint, compare JAR file

similarity

D. Outline

 The paper is organized in this manner: 2nd section

describes background information of this project. The 3rd section

will address the design approach and the decision made by us

during the implementation. The validation of our goal and results

of our testing are mentioned in 4th section. In our 5th section we

will talk about future work that can be done in order to achieve

accuracy.

II. BACKGROUND

The researches have been carried out to do code code-clone

detection. These researches classify the comparison algorithm into

two categories: structural based comparison and content based

comparison.

At the present JarAnalyzer is performing the comparison bases on

the content. The files from each directory are compared with

fingerprint of know JAR file.

III. APPROACH

A. Design

1) Generating Fingerprint: JarContent computes a fingerprint of a

JAR file as a collection each class file in the JAR.

2)Copy Detection: JarContent detects whether a JAR file A

contains code copied from JAR file A by computing and

comparing their fingerprints.

To compare two fingerprints, JARContent iterates all the class

fingerprints in the fingerprint of JAR A and compares each of

them with all class fingerprints in the fingerprint of JAR B.

3) Summary: The fingerprint generation and code-copy detection

algorithms are summarized as follows:

Algorithm 1: Generate fingerprint

Input: A JAR file.

Output: JAR file fingerprint

1.

2.

3.

4.

5.

6.

Algorithm 2: Fngerprint comparison

Input: Fingerprint for JAR file A.

Output: Result in % percentage

1.

2.

3.

4.

5.

6.

B. Decision Made

At the beginning we were just comparing the content of JAR files

(class files) on basis of names. But now in order to enhance our

percentage of similarity we will be comparing other JAR file

attributes as well like sizes , path etc.

IV. RESULTS

This section describes the current results of the experiments that

we carried out. So far our algorithm is able to detect 45% of

similarity among the JAR files.

V. CONCLUSION

REFERENCES
[1] Gartner Inc. http://www.gartner.com/it/page.jsp?id=801412.

Accessed

[2] GNU GPL. http://www.gnu.org/copyleft/gpl.html. Accessed

Febuary 18,

[3] Programming Language Popularity. http://langpop.com/.

Accessed

[4] TIOBE.http://www.tiobe.com/index.php/content/paperinfo/t

pci/index.

