
ABSTRACT
We applied the use of winnowing and k-grams to
fingerprint jar files, and attempted to detect jars that
contained or had significant similarities to other jars.
Indeed, this paper presents software which can be used
to check if a similarity exists between/among Java
JAR files. When similarity happens, variable,
constant, class, and method names could be changed,
code sequences could be wrapped into different
methods, and methods could be moved to different
Java classes. The tool catches similarity by analyzing
the Java bytecode sequences that describe the essential
design/algorithm of software. Extracting finger print
from Java opcode sequences are based on famous k-
gram and Winnowing algorithms.

Keywords
 k-grams, Winnowing, JAR file.

1. INTRODUCTION
The problems we have is how to detect software
copies. Generally speaking, software systems often
contain sections of code that are very similar. There
are two main kinds of similarity between code
fragments: similar based on the similarity of their
program text; or similar based on their functionality.
The first kind of similarity is often the result of
copying and pastes certain code fragments.
our focus is on functionality aspects of the tools. We
will try to detect and at the same time to minimize the
false positive and false negative errors. The
performance and space usage optimizations (if any)
will be the future goals. Indeed, our objective is to
have a tool which generates finger print from an
original JAR file, and we use the finger print to detect
if a suspected JAR file has cloned partially or wholly
from the original JAR file.

2. APPROACH
In this section, the detail design and implementation
information are presented. Specifically various design
decisions are summarized at the end of this section.

2.1 Design

The actual analysis phase starts by taking the jar files
and reads all the files it contains using unzip java class
. So the library extracting the jar file class files only by
checking the file extension. The program extracts the
targeted files and put it in a temporary directory on the
user home folder and it continues by reading the
contents of each class file that is already extracted on
the previous step. A specific method is used to take a
class file and scan all of its method reading every
method operations, converts this operation to an
ASCII code, and appends that code into a string. After
the program finishes scanning all the classes the string
will be saved in a text files in the temporary directory.

After a JAR file is converted to text based ASCII
symbol string, we need a technique to process it to
detect similarities. As we mentioned before, we adopt
k-gram technique.

The basic idea of k-gram is: divide a document into k-
grams, contiguous substring of length k, where k is a
parameter chosen by the user. Then hash each k-gram
and select some subset of these hashes to be the
document’s fingerprints [1,2]. The purpose of hashing
is to convert the k-grams into numbers, which can be
comparable easily.

The hash function should be chosen properly so that
the probability of collisions is very small. Therefore
whenever two documents share one or more
fingerprints, it is extremely likely that they share a k-
gram. Hashing process takes computing power, so
researchers try techniques to save computing power.

Since there is a k-gram for every ASCII symbol in
opcode string, a naive scheme that selected all hashed

1

Fingerprinting Jar Files Using
Winnowing and K-grams

Zeinab Bahmani
Computer Science

Carleton University
zbahmani@connect.carleton.ca

Najmeh Taleb
Computer Science

Carleton University
ntaleb@connect.carleton.ca

k-grams would create an index much larger than the
original documents. To select a sub-set of all hashes as
fingerprints, Manber’s [3] solution is 0 mod p shown
above. It does reduce the size of hashes, but the
maximum gap between two fingerprints is unbounded
and any matches inside a gap are not detected. Heintze
[4] proposed choosing the n smallest hashes of all k-
grams of a document as the fingerprint. The price for a
fixed-size fingerprint set is that only near-copies of
entire documents can be detected. To reduce the finger
print size generated from opcode string, Winnowing
algorithm is chosen [1]. This algorithm has two
configuration parameters: k is the k-gram size and w is
the window size. The Winnowing starts with k-gram
technique, and it selects the smallest hash value from
each overlapping window of w sequential hashes. The
intuition behind choosing the minimum hash is that
the minimum hash in one window is very likely to
remain the minimum hash in adjacent windows, since
the odds are that the minimum of w random numbers
is smaller than one additional random number. Thus,
many overlapping windows select the same hash, and
the number of fingerprints selected is far smaller than
the number of windows while still maintaining the
guarantee [1]. The commercially available plagiarism
detection system, MOSS[5], uses the winnowing
algorithm, so the algorithm has been proved scalable.
We adopt the algorithm given in [1], and we choose
the window size of four.

2.2 Decisions Made

At the beginning of the project, we were given two
major constrains: 1) The inputs to the program will be
JAR files; 2) The implements have to implement the
specified Java Interfaces [6]. Based on these
constrains, some design and implementation decisions
are made which relate to source code, size of k-grams,
size of winnowing, hashing function.

In order to improve performance, java library
methods, for example the hashCode() method, were
used wherever possible as these tend to be highly
optimized.

3. CONCLUSION

We designed and implemented a Java software
similarity detection tool, which can process JAR files
to extract .class file, further extract opcode from
these .class file.
When software copy happens, variable, constant,
class, and method names all could be changed; code
sequences can be wrapped in different methods; and
methods can be moved to different Java classes, code
locations can be moved back and forth. What we are
looking for are the essential parts, which can not be

easily changed. If these essential parts changes,
copying does not exist. The tool catches software copy
by analyzing the exact Java bytecode sequences that
describe the essential design/algorithm of software.
This is the main contribution to software copy
detection based on opcode.
Fingerprint is successfully generated from opcode
sequence by using k-grams and Winnowing
algorithms.
So, Fingerprinting using the winnowing and j-grams
methods appear to be an effective way to detect
potentially suspicious similarities between jar-files.

4. Future Work
During design and implementation of this software
tool, some areas we think should be further explored;
and some improvement should be made based on our
experiences gained and lessons learned. When
analyzing the JAR file, some other components should
be assessed. They are .xml file, packaging file, .html
file and etc. in JAR file. The finger print generation
part of this software tool can be directly used to
generate fingerprint for these text based files.

2

5. REFERENCE
[1]. S. Schleimer, D. Wilkerson, and A. Aiken,

“Winnowing: Local algorithms for document
fingerprinting,” in Proceedings of the ACM SIGMOD
International Conference on Management of Data, 2003,
pp. 76–85.

[2]. Governments push open-source software,
Retrieved Mar21,2010 from http://news.cnet.com/2100-
1001-272299.html Michel Ruffin, Christof Ebert, "Using
Open Source Software in Product Development: A
Primer," IEEE Software, vol. 21, no. 1, pp. 82-86,
Jan./Feb. 2004.

[3]. Udi Manber. Finding similar files in a large file
system. In Proceedings of the USENIX Winter 1994
Technical Conference, pages 1–10, San Fransisco, CA,
USA, 17–21 1994.

[4]. Nevin Heintze. Scalable document fingerprinting.
In 1996 USENIX Workshop on Electronic Commerce,
November 1996.

[5]. The MOSS (Measure Of Software Similarity)
System, http://theory.stanford.edu/~aiken/mos

[6]. Elmar Juergens and et al. CloneDetective – A
Workbench for Clone Detection Research, Retrieved
Mar21,2010 from
,http://www.cs.uoregon.edu/events/icse2009/images/postP
osters/CloneDetective.pdf

3

http://theory.stanford.edu/~aiken/mos

